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ML Taxonomy

Supervised Learning

e Supervised Learning:

* The system is presented with example inputs and their
desired outputs, given by a “teacher”, and the goal is to
learn a general rule that maps inputs to outputs

 Classification (cat or dog?)
* Regression (housing price next year?)

e Unsupervised Learning:

* No labels aregiven to the learning algorithm, leaving it on
its own to find structure in its input. Unsupervised learning
can be a goal in itself (discovering hidden patterns in data)
or a means towards an end (feature learning)

* Reinforcement Learning:

* An agent interacts with a dynamic environment in which it
must perform a certain goal. The agent is provided
feedback in terms of rewards and it tries to learn an
optimal policy that maximizes its cumulative rewards.

* Applications: Game playing (AlphaGo); Robotics; AD...
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Training vs. Inference

* Training: millions of iterations of
forward pass + back propagation
to adjust model params (e.g., NN
weights); requires large CPU/GPU
clusters and days/weeks of
training time

* Inference (also called prediction):
a single forward pass; can be run
on edge devices
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def train(train_images, train_labels):
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def predict(model, test_images):
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Supervised Learning: Classification and
Regression

* Both are Supervised Learning
algorithms that require ground-
truth values as labels.

e Classification is used
to predict/classify discrete °T

labels such as Male or Female, 02
True or False, Spam or Not Spam, .t

etc. osf o=
° RegFESSIOn |S used tO predlct 05 -04 -03 02 01 0 0.1 0.2 20 30 40 50 60 70 80 90 100

continuous values such as price, Classification Regression

Sa Ia ry, age, EtC . https://www.javatpoint.com/regression-vs-classification-in-machine-learning

e Loss functions measure how the
predicted value differs from
ground-truth value.



Linear Regression

* Function apﬁroximation y =
wx + b, with learnable
parameters 8 = {w, b}, where
x,y,b are vectors, and w is a
weight matrix
* e.g., we want to predict price of a
house based on its feature vector
X = [x; x, x3]", where x; Is area in
sguare meters (sgm), x, IS
location ranking (Iocg, X5 IS year of
construction (yoc)

* Predicted price y =wx + b =
W1X1 ~+ Wr X9 + W3 X3 + b

* Fig shows an example for scalar x and
y
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Linear Regression example. y = 7x + N(0, 200)




A Neuron and its Activation Function

e Activation function is a nonlinear
monotonic function that acts like
a “gate”: output is larger for larger

input activation -
* Perceptrony = 0(z) = step(wx + :
b) (activation function f = step T Byt — 1 EE0
function, shown below) 6 .
* Linear Regressionify =z = wx + .
b (activation function f = identity
function)

* Logistic Regressionif y = 0(z) =
o(wx + b) (activation function f =
sigmoid function)



Logistic Regression for Binary Classification

* Consider a binary classification
problem: an input image x may be
classified as a dog with probability
ng = dog|x), a cat with probability

P
+ P(y = cat|x) = 1.0
* Logistic Regression: Use sigmoid

function 0(z;) = —— to map from

the activation (als%)+5allled the logit) to

the output probability

* In addition to binary classification at
the output layer, sigmoid may also be
used as the non-linear activation
function in the hidden layers of a NN

23/ = cat|x1, with P(y = dog|x)

0.6 F

activation

Sigmoid function
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Deep Neural Networks and Activation Functions

* We can stack many hidden layers to
form a DNN if we have enough data
and computing power to train it

* The high model capacity of DNN comes
from non-linear activation functions in
hidden layers

 Without non-linear activation functions,
a DNN with many layers can be

collapsed into an equivalent single-layer gigmoid | Leaky ReLU ’
NN o) = 1 max(0.1z, z)

* Fully-Connected NNs

: - tanh 1
* Number of params at the i-th layer is Maxout
. tanh a ° ¢ Tx Ty
(N;—; + 1) * N;, where Nj is the anh(z) | S S

number of neurons at the i-th layer. Can ) - "
grow very large ReLl(JO ) / o J
* Convolutional NNs have much fewer e {a(ew_l) el

params

Common Activation Functions

https://laptrinhx.com/complete-guide-of-activation-functions-574622854/



Example: Two-Layer Fully-Connected NN for
Solving XOR

* Consists of one input,
one hidden, and one
output layer, with i
sigmoid activations _ s}

-

0




Setting # Layers and Their Sizes

* An example illustrating adding more hidden neurons increases
model capacity and reduces training error

* But too many layers and neurons may lead to overfitting

3 hidden neurons © hidden neurons | 20 hidden neurons




Loss Functions

e Classification

* Cross-Entropy Loss, Log Loss, Focal Loss, Exponential Loss, Hinge
Loss...

* Regression

* MSE (Mean Squared Error)/L2 Loss/Quadratic Loss, MAE (Mean
Absolute Error)/L1 Loss, Huber Loss, Log Cosh Loss, Quantile Loss...



NN for Multi-Class Classification

» Consider a NN defining the model hy: X — R¥, as the mapping
from input x to output hg(x), a k-dim vector of logits, where k
is the number of classes

* 0 is the set of params (weights and biases)
* y is the correct label for input x

* (Here hg does not include the last SoftMax layer that outputs the
prediction scores)

* e.g., a 3-layer NN consisting of 2 layers with ReLU activation
functions and a last linear layer is

¢ h@ (X) — W3 maX(O, WZ maX(O, Wlx + bl) + bz) + b3



Important

Cross-Entropy Loss for Multi-Class Classification

e The SoftMax operator g: R* — chompgtes a
vector of predicted probabilities 0 (z): R* that
sum to 1.0, from a vector of logits z: R" in the

last hidlcczlen layer (the penultimate layer), e i o e
where k is the number of classes: £ =8 ox —ew WedTranoe Toeh ToRTh
exp (Z ) Predicted distribution: 2% 30% 45% 0% 25% 5% 0%
° O-(Z)l —_ l A

Y51 exp(z))
* The loss function is defined as the negative

ikeli ' ili Classifier
TSR SASHRIY o Envopy Loss | ,
* Loss(x,y;0) = ~loga(hp (), = - - 10g(0.25) = 1.386
o exp(hg(x)y) _
251 exp(hg(x);)
1Og(2§§:1 exp(he (x)])) _ h9 (x)y log,(x) = log(x) / log(2)
° MInImIZI ng LOSS(hH (x)’ y) mou ntS tO Aurélien Géron A Short Introduction to Entropy, Cross-Entropy and KL-Divergence (YouTube)

maximizing the logit (hg(x)) corresponding
y
to the correct label y
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CE Loss Example

e Consider a NN for 3-class classification. Fig shows the last linear layer and the SoftMax layer

* The last linear Iayer7gomputes the vector of logits hg(x) = Wx; + b =
F—2.85 86 .28]" (x is the input image to the NN, x; is the intermediate input to the last

ayer)
* The SoftMax layer computes the vector of predicted probabilities [.016 631 .353]7 for
labels [1 2 3]", and the loss —log.353, assuming correct label y; = 3
* Logits: [e™285, e85, ¢28] = [.058,2.36,1.32]

« Normalize by e=285 + ¢:86 4 ¢28 = 3,738 to get SoftMax scores [, 2% 1321 — 1 016,.631,.353]
3.738° 3.738” 3.738

Belllseead i b 15 0.0 cross-entropy loss (Softmax)

07 | 02 | 005 | 0.16 22 | 4| 02 -2.85 0.058 0.016
- exp normalize s
00 | -045| -02 | 0.03 44 0.3 > | 086 | —| 2.36 — 0.631 [ -9
to one) 0.452

0.28 1.32 0.353
W 56 b correct
label

L

Last Linear Layer SoftMax Layer



Multi-Class Image Classification

* Two stages: feature extraction from input, and classification
based on extracted features

* Classifier returns output as a list of probabilities with size equal
to the number of classes, but it may also return the top-1 or
top-5 results with highest probability ranking

P(0) = .01 —
P(1) = .01
P(2) = .01

5 '+ P(3) = .02
15 | Featu.re | Classifier P(1)=03 | sum
» Extraction P(5) =.01 [ t01.0

P(6) = .02
‘ , S Y / P(7) = .02

CNN SoftMax P(8) = .85
(or classic CV algo) P(9) = .02 _




Binary Classification Metrics

relevant elements
I 1

false negatives

* The relevant class is considered “Positive” in a binary
classifier

e e.g., conswider a medical test that aims to diaghose
people with a certain disease. “Positive” denotes sick
(has disease), and “Negative” denotes healthy (no
disease)

* True Positive (TP): a sick person is diagnosed as sick

* True Negative (TN): a healthy person is diagnosed as

healthy

. F_allie Positive (FP): a healthy person is misdiagnosed as
Sic

* False Negative (FN): a sick person is misdiagnosed as
healthy

* Never Forget Again! // Precision vs Recall with a Clear
Example of Precision and Recall by Kimberly Fessel

* https://www.youtube.com/watch?v=gWfzIYCvBqgo

selected elements

How many selected
items are relevant?

Precision =

Precision = L, Recall (TPR) =
TP+FP

true negatives

How many relevant
items are selected?

Recall = —

TP
TP+FN



https://www.youtube.com/watch?v=qWfzIYCvBqo

Example Confusion Matrix 1

. TP 1
Precision = =—=.125
TP+FP  1+7

* When the classifier predicts positive, it is correct 12.5% of the time

TP 1

e Recall (True Positive Rate, TPR) = N 1a2 Y 333

* Among all the positive cases, the classier correctly classifies 33.3% of them as positive

Precision*Recall .333%.125
e F1 =2+« — =2x—— =.,182
(Precision+Recall) .333+.125

FP 7

* False Positive Rate (FPR) = TN = 7100 Y 072

* Among all the negative cases, the classier misclassifies 7.2% of them as positive

TP+TN 1+90

e Accuracy = = = .91
TP+TN+FP+FN  1+90+7+2

* The classifier makes the correct prediction 91% percent of the time
e Positive correlation between TPR vs. FPR

* In general, negative correlation between precision and recall (but not strictly monotonic)
Ground Truth

Positive Negative
Neg | False Negative (FN)=2 True Negative (TN)=90
Predicted — —
Pos | True Positive (TP)=1 False Positive (FP)=7

https://medium.com/swlh/recall-precision-f1-roc-auc-and-everything-542aedf322b9



Example Confusion Matrix 2

TP

Precision = (|II defined)
TP+FP _ 040

 When the classifier Predlcts positive, it is correct ?% of the time (since it never predicts positive,
the question is ill-de ned)

Recall (TPR) = TPZPFN = =0

 Among all the positive cases, the classier correctly classifies 0% of them as positive

FpP 0
FPR = =——=10
FP+TN 0497 _ _ N -
* Among all the negative cases, the classier misclassifies 0% of them as positive

TP+TN 0497
Accuracy = = = .97
TP+TN+FP+FN  0+97+0+3

* The classifier makes the correct prediction 97% percent of the time

A medical test that never makes any positive diagnoses is highly accurate for a rare disease
(diagnose everyone to be healthy), but completely useless

Ground Truth

Positive Negative

Neg | False Negative (FN)=3 True Negative (TN)=97

Predicted "
Pos | True Positive (TP)=0 False Positive (FP)=0




ROC and AUC

* Binary classification is typically based on a f\
decision threshold parameter. Moving the
decision threshold will cause FPR and TPR to
move in the same direction

* Lower threshold for positive prediction leads Distribution of
to higher FPR and higher TPR, and vice versa negative data

* Receiver Operating Characteristic (ROC) 'tems
Curve plots FPR (x-axis) vs. TPR (y-axi?; Area
Under the Curve (AUC) is the area under
ROC (.5 < ROC < 1, since FPR < TPR) - —

* Fig shows an example with 4 points (FPR, TPR) |

Decision
thresh.

Distribution of
positive data
items

highlighted: (0,0), (.2, .6), (.6, .8), (.6,1.0) Predict negative " Predict positive
° The ideal ROC curve: FPR — 0, TPR = . ReceiverOperatingCharact&s&tic(ROC)Curvellﬂﬁ

1,AUC = 1, with FP = FN = 0, o
 The worst ROC curve; FPR = TPR,AUC = .5
(dotted line)

call)

O

False Positive Rate



Confusion Matrix

* Binary classification is a special case of multi-class classification

Accuracy = —==] . tvewracy — —TPHTN |
d SEg Binary Y TP+ IN+FP+EN |
> x(i, ) L |
i=1 j=I1
Ground Truth
Cls1 | Cls2 | Cls3 Ground Truth
Cls3 Pos Neg
Pos FN TN
Pred. | Cls2 Pred.
Cls1 Neg TP FP




Training Neural Networks




Back-Propagation for NN Training

* Consider a single neuron denoted as a w rvarions
function f params z > a

* Forward inference: computing its output  input  x
activation a based on its input x, weight oL/ 0w

w, and bias b:a = wx + b

gradients OL/0db 6L/6a
* Back-propagation: computing gradients oLjax 10

with chain rule, and use gradient
descent to update weights and biases: %//JQEN;%

Forward inferenc

JOL _OJLof oL _ dJLof oL _ JLOf @m
G

ow dadw’db dadb’dx dadx radient back-prop (slow)

output layer

input layer
hidden layer



Gradient Descent

* To minimize the expected loss over training dataset D, use gradient descent 8 « 6 —
aVgLoss(x,y; )

* Loss surface of a DNN is highly non-convex; can only hope to find “reasonably good” local minima

Differentiable

[E(xy)~pLoss(x,y; 0)

A

\’

Parameters @

Can use gradient descent
method to find good #

v

23



Gradient Descent

» Steepest descent may result in inefficient
zig-zag path

* More advanced GD methods exploit

momentum, e.g., Nesterov, AdaGrad,
RMSProp, Adam...

* Mini-batch Stochastic Gradient Descent
* Only use a small portion (a mini-batch) of the

training data to compute the gradient 0

e Common mini-batch sizes are 32/64/128 —
examples

* Loop:

 Sample a mini-batch of data

* Forward prop it through the graph, get loss

e Backprop to calculate the gradients

* Update the parameters using gradient descent

http://dataplusplus.ca/blog/2017/gradient-descent-with-momentum

4



Batch Normalization

For each mini-batch:

* 1. Compute the empirical mean and variance independently for each dimensioni =1, ..m 085 //
* 2. Normalize to a unit Gaussian with 0 mean and unit variance ' :/
* BN layers inserted before nonlinear activation function, and it keeps x’s average value around 0 for G
maximum gradient during learning A

* Scale and shift params y, [ gives more flexibility during training

* Benefits: ! |

- Improves gradient flow through the network; Allows higher learning rates; Reduces the strong dependence Tia R
on initialization; Acts as a form of regularization J,
Input: Values of z over a mini-batch: B = {1, }; CONV
Parameters to be learned: v, 3 T
Output: {y; = BN, g(z;)}
BN
[ 2 :
UB = Z T // mini-batch mean tanh
=1 J}
2 1 = 2 “ % . FC
og — — Z(rZ — uB) // mini-batch variance
I = }
=1
—~ x e .
T; e -3 // normalize El
Vo +e€ !
yi «— 7%; + B = BN, 5(z;) // scale and shift tanh




Learning Rate Schedule during Training

" Training Loss

Reduce learning rate

|

low learning rate

high learning rate

good learning rate

epoch



Hyperparameter Optimization

* Example hyperparams
* Network architecture

* Learning rate, its decay schedule, Grid Lavout Random Layout
update type

* Regularization (L2/Dropout
strength)

* Grid search vs. random search

* If a function f of two variables
can be approximated by another S - | )

- : Figure 1: Grid and r scarch of nine trials for optimizing a function f(x,y) = g(: )~
fu nction Of One€ varia ble - gtrxl; :f'rilthrldunw [:E:j‘:; dinzifozjliy U;Ezi“;fllf 5;u:;::’T:J{£T5ijwnc;::irr_:;en[:‘ :ind
(f (xl' xZ) =~ g (xl))l then we Say left of each square A(y) is shown in yellow. With grid search, nine trials only test g(x)
that f haS 3 IOW effectlve in three distinct places. With random search, all nine trials explore distinct values of

. . . . g. Ths failure of grid search 1s the rule rather than the exception in high dimensional
dimension. Fig. 1 illustrates how hyper-parameter optimization.

pOl Nt grl d S an d un IfO rrm Iy ran d om Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter

p0| nt Sets d Iffe r |n hOW they Cope optimization.” Journal of machine learning research 13.2 (2012).

with low effective dimensionality

Unimportant parameter
|.,Jr'|irﬂp{‘.-rt.‘mt parameter

Important parameter Important parameter
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Classification Accuracy

* Big gap between training accuracy
and validation accuracy may imply
overfitting => decrease model

capacity/size

* No gap may imply underfitting =>
increase model capacity/size

;
J
|
f /A |
/ v N
J
\ '/|| \ ’l
[\ “.\.I v
‘l
/
e v /\,\f/\.-\ A%
— Training accurac y
— Validation accuracy
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Fold #1

K-Fold Cross-Validation

Dataset Fold #3

Fold #4

* Divide data into train data and test
data. Since we cannot peek at the

Fold #5

. M . . Fold #1 Fold #1 Fold #1 Fold #1 Fold #1

te St d ata d u rl n g t ra I n I n g tl m e’ We Vaﬁdation Tr(;ining Troaining Tr(')aining T:aining
. Fold #2 Fold #2 Fold #2 Fold #2 Fold #2

u S e p a rt Of t h e t ra I n d a ta fO r C ro S S - Training Validation Training Training Training
. . Fold #3 Fold #3 Fold #3 Fold #3 Fold #3

V | d t Training Training Validation Training Training
a I a I O n Fold #4 Fold #4 Fold #4 Fold #4 Fold #4

Training Training Training Validation Training

e e.g., Divide training data into K=5 parts [ s | [Fourms |[ Foars || Foars || Foars

(f0|d5) Use each fold as validation — Traning Training Training | | Validation
data, and the other 4 folds as training e e

data. Cycle through the choice of @
which fold used for validation and g

Validation

average results Fold 72

Validation
Fold #3

train data test data Validation

Fold #4
* Validation

Fold #5

fold 1 fold 2 fold 3 fold 4 fold 5 test data Validation

https://github.com/jeffheaton/t81 558 deep_learning/blob/master/t81 558 class_05_ 2 kfold.ipynb



Data Augmentation for Enlarging Training
Dataset

Mirroring

* Mirroring, random cropping,
color shifting, rotation,
shearing, local warping...

30
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