
L3.1 Convolutional Neural Networks

Acknowledgement: some contents taken from UC Berkeley CS231n https://cs231n.github.io
Coursera MOOC on CNN: https://www.coursera.org/learn/convolutional-neural-networks
Hung-yi Lee: https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.html  

Zonghua Gu, Umeå University

Nov. 2023



Outline

• Convolution layers

• Pooling and Fully-Connected layers

• Well-known CNN architectures

2



Classic Computer Vision
• Most “classic” (non-ML) CV algorithms are implemented in the 

OpenCV library, including
• Core Operations:

• basic operations on image like pixel editing, geometric transformations...
• Image Processing

• Thresholding, smoothing, edge detection, Hough Line Transform…
• Feature Detection and Description

• HOG, SIFT, SURF, BRIEF, ORB…
• Video analysis

• Object tracking w. optical flow
• Camera Calibration and 3D Reconstruction

• They are simple, fast and reliable (e.g., for lane detection), and are 
often used in place of or in conjunction w. complex ML/DL 
algorithms, which may sometimes be unreliable and unpredictable

3



Input Image Encoding
• A size 𝑁 × 𝑁 color image has volume 
𝑁 × 𝑁 × 3, w. 𝑁 × 𝑁 pixels and 3 color 
components (Red, Green, and Blue, RGB) 
for each pixel

• A size 𝑁 × 𝑁 greyscale image has 
volume 𝑁 × 𝑁 × 1

• Color depth, or bit depth, is number of 
bits used for each color component 
of a single pixel
• Typical value is 8, so pixel value has 

range [0, 255]
• Larger depth is possible, e.g., true color 

(24-bit) is used in computer and phone 
displays for human eyes, but 8-bit is 
typically enough for CV tasks

4

=



Filters/Kernels in Computer Vision
• Convolution operation: we slide each filter (also called kernel) across the width and height of the input volume, 

and compute dot products between the entries of the filter and the input. As the filter slides over the width and 
height of the input volume, a 2D feature map (also called activation map) is produced that gives the responses of 
that filter at every spatial position.

• Dot product: elementwise multiplication of a filter w. corresponding input values, then summing them to generate one 
output value

• Filters extract features used by downstream tasks such as classification, image segmentation, etc. 

5



A Filter for Vertical Edge Detection

6

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

1 0 -1

1 0 -1

1 0 -1

=

0 30 30 0

0 30 30 0

0 30 30 0

0 30 30 0

∗

∗

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

=

0 -30 -30 0

0 -30 -30 0

0 -30 -30 0

0 -30 -30 0

1 0 -1

1 0 -1

1 0 -1



Sobel Filter for Vertical Edge Detection

7

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

1 0 -1

2 0 -2

1 0 -1

=

0 40 40 0

0 40 40 0

0 40 40 0

0 40 40 0

∗

∗

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

=

0 -40 -40 0

0 -40 -40 0

0 -40 -40 0

0 -40 -40 0

1 0 -1

2 0 -2

1 0 -1



Common Filters in CV

• These filters were designed, or “hand-crafted”, by human 
experts

8



Machine Learning Meets CV

• Instead of hand-crafted 
filters in classic CV, why not 
learn custom filters from 
data by supervised 
learning?
• For easy tasks like edge 

detection, learning may 
recover filters similar to 
hand-crafted ones. 

• For difficult tasks like cat vs. 
dog classification, learning is 
essential to achieving good 
results

9

=∗
𝑤1𝑤2𝑤3

𝑤4𝑤5𝑤6

𝑤7𝑤8𝑤9



Convolutional Neural Network (CNN)
• Since the Deep Learning revolution that 

started a decade ago, Deep Neural 
Networks (DNNs) are widely deployed 
in many application domains
• Multiple hidden layers of a DNN extract a 

hierarchy of increasingly-abstract 
features layer-by-layer, until the last layer 
produces a classification result

• A CNN, or ConvNet, consists of a 
sequence of Convolutional (CONV) 
Layers, Pooling (POOL) Layers and non-
linear activation functions for feature 
extraction, followed by one or more 
Fully-Connected (FC) Layers for 
classification based on the extracted 
features

10

P(Stop) = .8
P(Yield) = .1
P(Speed Limit) = .05
…

CNN
Feature

Extractor H
ea

d

CNNInput Image

C
O

N
V

+R
eL

U

…

Po
o

lin
g

C
O

N
V

+R
eL

U

Po
o

lin
g

FC
 L

ay
er

FC
 L

ay
er

So
ft

M
ax

…



Receptive Field and Parameter Sharing

• Each neuron in a CONV layer has local, sparse 
connectivity to a small patch of the input volume 
w. size of the filter, called its Receptive Field (e.g., 
3x3, 5x5, etc.)
• Each neuron covers a limited, narrow “field-of-view”
• In contrast, each neuron in a FC layer has RF that 

covers the entire input volume

• Parameter sharing: all neurons in the same CONV 
layer share the same filter params 𝑤, 𝑏
• It helps to reduce the number of params significantly 

compared to fully-connected networks
• It gives translation invariance, e.g., an edge can be 

detected regardless of its location in the image

11

A filter sliding across 
different parts of the image



Convolution Operation
• A filter slides over the image spatially,  

computing dot products 𝒘𝑇𝒙 + 𝑏 to 
generate a feature map as output

• Input may be an input RGB image w. 3 
channels, hence depth=3, or intermediate 
feature maps generated by hidden layers 
of a CNN. We use the terms “input 
volume” and “output volume” to 
emphasize they may be 3D tensors

• At each position, output is a scalar 
number, computed by taking dot product 
𝒘𝑇𝐱 + 𝑏 between the 5 × 5 × 3 filter 
with weights 𝑤, bias 𝑏, and a 5 × 5 × 3
image patch 𝑥, with 5 ∗ 5 ∗ 3 = 75
multiply operations and one addition of 
the bias

12

32

32

3

32x32x3 input  

5x5x3 filter

Output: a 

scalar number 



Convolution 
Operation

13

32

32

3

32x32x3 input
5x5x3 filter

1

28

28

convolve (slide) 

over all spatial 

locations

32

32

3

32x32x3 input  

5x5x3 filter

1

28

28

convolve 

(slide) over all  

spatial

locations

One (blue) filter 
generates one 2D 
feature map as 
output

Two filters (blue
and green) 
generate two 2D 
feature maps 
(blue and green), 
stacked along the 
depth dimension 
to produce a 3D 
output volume



Stacked feature maps

• If we have six 5 × 5 filters, 
we’ll get six different feature 
maps, each computed by 
convolution of one filter with 
the input
• For each 5×5 patch of the 

input, there are 6 different 
neurons looking at it, each 
extracting different features

• We stack these up to get an 
output volume (a new 
“image”) of size 28 × 28 × 6, 
an intermediate 
representation to be passed 
to subsequent layers

14

32

3 6

28

feature maps

32

28

Convolution Layer w.

six 5x5 filters



Convolution of a Filter on an RGB Image w. 3 
Channels

15

=∗

4 x 4

6 x 6 x 3

3 x 3 x 3

• 6x6 input feature map w. 3 
channels; one 3x3 filter 
with depth 3; 4x4 output 
feature map w. one channel

• # channels of input feature 
map == # depth of each 
filter (3)

• # channels of output 
feature map == # filters (1)

• (Even though the fig shows 
sequential computation, 
convolution operations are 
inherently parallel, hence 
suitable for implementation 
on parallel hardware like 
GPUs)



Convolution of 2 Filters on an RGB Image w. 3 
Channels

• 6x6 input feature 
map w. 3 channels; 
two 3x3 filters with 
depth 3; 4x4 
output feature 
map w. two 
channels

• # channels of input 
feature map == # 
depth of each filter 
(3)

• # channels of 
output feature 
map == # filters (2)

16

=

6 x 6 x 3 4 x 4 x 23 x 3 x 3

∗

∗

3 x 3 x 3

Important



Convolution in PyTorch

• conv=nn.Conv2d(in_channels=2, 
out_channels=1, kernel_size=3)

• A CONV layer with an input image with 2 channels (in_channels=2), 1 3 ×
3 filter (with depth 2), 1 output feature maps (out_channels=1). 

• (Bias terms are assumed to be 0)

17
input 1 filter/kernel output



Convolution in PyTorch Cont’
• conv4=nn.Conv2d(in_channels=2, 
out_channels=3, kernel_size=3)
• Pytorch code for a CONV layer with an input image with 2 channels 

(in_channels=2), 3 3 × 3 filters (with depth 2), 3 output feature maps 
(out_channels=3)

• (Bias terms are assumed to be 0)

18

input

3 filters/kernels output



Convolution Example 1: Computing a Single 
Output Element

19https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



Convolution Example 2

20
Input image with 2 channels Three 3 × 3 filters



Convolution Example 2 Cont’

• Each of the three filters 
convolved with the input 
image generates an output 
feature map.

• The output volume consists of 
three 3 × 3 feature maps, with 
volume 3 × 3 × 3

21



Convolution Example 3

• 3 filters 𝑾𝟎, 𝑾𝟏, 𝑾𝟐, each extracting different 
features. (𝑾𝒊 ∗ 𝑿𝒋 denotes convolution of filter 
𝑾𝒊 w. input 𝑿𝒋) (bias terms are assumed to be 
0 here)

• Upper left: filter 𝑾𝟎 extracts vertical line 
features 𝒁𝟎 from input image 𝑿𝟏 (the other 2 
filters do not extract any meaningful features)

• Lower left: filter 𝑾𝟏 extracts horizontal line 
features 𝒁𝟏 from input image 𝑿𝟐 (the other 2 
filters do not extract any meaningful features)

22
223 filters/kernels, 3 output feature/activation map



Filters and feature maps Example

23

32 5x5 filters
one filter =>

one feature map

filters



7x7 input, 3x3 filter, stride=1 ⇒ output: 5x5

24



7x7 input, 3x3 filter, stride=2 ⇒ output: 3x3

25



7x7 input, 3x3 filter, stride=3 ⇒ output: ???

26

The rightmost and 
bottom columns 
are not processed!



Solution: Add padding

• 7x7 input, 3x3 filter, stride=3, zero padding 𝑃 = 1 ⇒ output: 
3x3

27

0 0 0 0 0 0 0 0 0

0

0

0

0

0 0 0 0 0 0 0 0 0

0

0

0

0

0 0 0 0 0 0 0 0 0

0

0

0

0



Computation of CONV Layer Sizes

• A filter typically has square shape 𝐹 × 𝐹. A filter has the same depth 𝐷1 as its input volume, 
and the number of filters 𝐾 equals the depth 𝐷2 of its output volume

• Same Padding:  stride 𝑆 = 1, filter size 𝐹 × 𝐹, and zero-padding 𝑃 =
1

2
(𝐹 − 1). Then output 

feature map has same spatial size as input
• W2 =

1

𝑆
𝑊1 + 2𝑃 − 𝐹 + 1 =

1

1
𝑊1 + 𝐹 − 1 − 𝐹 + 1 = 𝑊1; similarly, 𝐻2 = 𝐻1

• e.g., 𝐹 < 3 ⇒ 𝑃 = 0; 𝐹 = 3 ⇒ 𝑃 = 1; 𝐹 = 5 ⇒ 𝑃 = 2 28

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1

- F = 5, S = 1, P = 2

- F = 1, S = 1, P = 0

Important



CONV Example 1: No Padding

• Input volume: 5 × 5 × 1 (
)

𝑊1 = 𝐻1 =
𝑁1 = 5, 𝐷1 = 1

• A 3 × 3 × 1 filter (𝐾 = 1, 𝐹 = 3) w. 
stride 𝑆 = 1, no padding 𝑃 = 0

• Output feature map: 

• Spatial size: W2 = H2 = N2 =
1

𝑆
(

)

𝑁1 +

2𝑃 − 𝐹 + 1 =
1

1
5 + 0 − 3 + 1 = 3

• Depth: 𝐷2 = 𝐾 = 1

• Output volume: 3 × 3 × 1

29

3 × 3 Filter 
1 0 1
0 1 0
1 0 1

Map



CONV Example 2: Same Padding
• Input volume: 5 × 5 × 1

• A 3 × 3 × 1 filter (𝐾 = 1, 𝐹 = 3) w. stride 𝑆 = 1, padding 𝑃 = 1

• Output feature map: 
• Spatial size: W2 = H2 = N2 =

1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
5 + 2 − 3 + 1 = 5 (same as input)

• Depth: 𝐷2 = 𝐾 = 1

• Output volume: 5 × 5 × 1

30



CONV Example 3: Stride 𝑆 = 2
• Input volume: 5 × 5 × 3

• Two 3 × 3 × 3 filters (𝐾 = 2, 𝐹 = 3) w. stride 𝑆 = 2, padding 𝑃 = 1

• Output volumes: Two 3 × 3 × 1 (since 
1

2
5 + 2 ∗ 1 − 3 + 1 = 3)

• Convolution Demo: https://cs231n.github.io/convolutional-networks/

31

https://cs231n.github.io/convolutional-networks/


CONV Example 4: No Padding vs. Same Padding
• Input volume: 32 × 32 × 3 (𝑊1 = 𝐻1 = 𝑁1 = 32, 𝐷1 = 3)

• 10 5 × 5 × 3 filters (𝐾 = 10, 𝐹 = 5) w. stride 𝑆 = 1, no padding 
𝑃 = 0

• Each output feature map: 
• Spatial size: W2 = H2 = N2 =

1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
32 − 5 + 1 = 28

• Depth: 𝐷2 = 𝐾 = 10

• Output volume: 28 × 28 × 10

• No. params (incl. weights and Bias terms) in this layer: each filter 
has 5 ∗ 5 ∗ 3 + 1 = 76 params, so 10 filters add up to 76 ∗ 10 =
760 params

32

32

32

3

32

32

10
Input volume Output volume

3x3 Conv

w. 10 filters

32

32

3

28

28

10

3x3 Conv

w. 10 filters

• Input volume: 32 × 32 × 3 (𝑊1 = 𝐻1 = 𝑁1 = 32, 𝐷1 = 3)

• 10 5 × 5 × 3 filters (𝐾 = 10, 𝐹 = 5) w. stride 𝑆 = 1, padding 𝑃 = 2

• Each feature map: 
• Spatial size: W2 = H2 = N2 =

1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
32 + 2 ∗ 2 − 5 +

1 = 32
• Depth: 𝐷2 = 𝐾 = 10

• Output volume:32 × 32 × 10

• No. params: same as above



Pointwise Convolution with 1×1 Filter

• A 1 × 1 filter performs “mixing” of the input channels, then 
applies a non-linear activation function

• Can be used to reduce the number of channels (volume depth); 
the non-linear activation function also helps increase model 
capacity

33

∗ =

6 × 6 × 32 1 × 1 × 32 6 × 6 × # filters



1 × 1 Filter Example
• Input volume: 56 × 56 × 64 (𝑊1 = 𝐻1 = 𝑁1 = 56, 𝐷1 = 64)

• 32 1 × 1 × 64 filters (𝐾 = 32, 𝐹 = 1) w. stride 𝑆 = 1, no padding

• Each feature map: 
• Spatial size: W2 = H2 = N2 =

1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
56 − 1 + 1 = 56

• Depth: 𝐷2 = 𝐾 = 32

• Output volume:56 × 56 × 32

• No. params: each filter has 1 ∗ 1 ∗ 64 + 1 = 65 params, so 32 filters add up to 65 ∗ 32 = 2080
params

3464

56

56
1x1 Conv

w. 32 filters

32

56

56

(Each filter has size  

1x1x64, and performs a  

64-dimensional dot  

product)



Dilated Convolution

35

• Increase receptive field 
size without increasing # 
params

Regular convolution
(1-dilated)

2-dilated 
convolution



3D Convolution

• 3D filter slides along all 3 
axes (width, height, depth). 
Very computation intensive

• Useful for 3D images such as 
medical CT/MRI images, or 
Point Clouds from Lidar

36



Converting Convolution to Matrix Multiplication: 
1D CONV Example
• Since parallel hardware (GPU, 

FPGA…) can handle matrix 
multiplication efficiently, this 
conversion increases computation 
efficiency at the expense of 
increased memory size for storing 
the weights (bias terms are not 
shown in fig)

37

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

𝑤0

𝑤1

𝑤2

∗
𝑦1

𝑦2

𝑦3

=

𝑤0 𝑤1 𝑤2 0 0

0 𝑤0 𝑤1 𝑤2 0

0 0 𝑤0 𝑤1 𝑤2

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

×
𝑦1

𝑦2

𝑦3

=

Kernel

Input

Output



Converting Convolution to Matrix Multiplication: 
2D CONV Example

38

• An Illustrated Explanation of 
Performing 2D Convolutions 
Using Matrix Multiplications 
https://medium.com/@_init_
/an-illustrated-explanation-of-
performing-2d-convolutions-
using-matrix-multiplications-
1e8de8cd2544

https://medium.com/@_init_/an-illustrated-explanation-of-performing-2d-convolutions-using-matrix-multiplications-1e8de8cd2544
https://medium.com/@_init_/an-illustrated-explanation-of-performing-2d-convolutions-using-matrix-multiplications-1e8de8cd2544
https://medium.com/@_init_/an-illustrated-explanation-of-performing-2d-convolutions-using-matrix-multiplications-1e8de8cd2544
https://medium.com/@_init_/an-illustrated-explanation-of-performing-2d-convolutions-using-matrix-multiplications-1e8de8cd2544
https://medium.com/@_init_/an-illustrated-explanation-of-performing-2d-convolutions-using-matrix-multiplications-1e8de8cd2544


Outline

• Convolution layers

• Pooling and Fully-Connected layers

• Well-known CNN architectures

39



Typical CNN Architecture

• Multiple layers, each consisting of CONV, POOL and non-linear 
activation functions (e.g., ReLU), are stacked into a deep network
• Many variants possible, e.g., multiple CONV layers can be stacked without 

POOL and activation functions in-between

40

32

32

3

CONV,

POOL,  

ReLU

e.g. 6  

5x5x3  

filters

28

28

6

CONV,

POOL,  

ReLU

e.g. 10  

5x5x6  

filters

CONV,

POOL,  

ReLU

….

10

24

24

ReLU

Activation 
Function



Pooling (Sub-Sampling) Layer

• A pooling filter has depth 1, and operates over each feature map independently, hence the input 
volume and output volume have the same depth 𝐷1 = 𝐷2
• In contrast, a CONV filter has the same depth 𝐷1 as its input volume, and the number of filters 𝐾 equals 

the depth 𝐷2 of its output volume
• Common settings: 𝐹 = 2, 𝑆 = 2, or 𝐹 = 3, 𝑆 = 2

• Example: pooling w. a 2 × 2 filter w. stride 𝑆 = 2, no padding. Output volume: 
𝑊1

2
×

𝐻1

2
× D1(since 

1

2
𝑊1 − 2 + 1 =

𝑊1

2
,
1

2
𝐻1 − 2 + 1 =

𝐻1

2
)

41

Important



Max Pooling w. Examples
• Max pooling: take the max element 

among the 𝐹 ∗ 𝐹 elements in each 𝐹 ×
𝐹 patch of each input feature map to 
reduce its dimension (𝐹 = 2, 𝑆 = 2)

• Alternative: average pooling is less 
commonly used

• Pooling is also called subsampling or 
downsampling
• Max pooling selects the brighter pixels 

from the image. It is useful when the 
background of the image is dark and we 
are interested in only the lighter pixels of 
the image. 

• Average pooling method smooths out the 
image and hence the sharp features may 
not be identified when this pooling 
method is used

42

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

max pooling

6 8

3 4

3.3 5.3

2 2

avg pooling



Overlapping Pooling

• Input volume: 𝑁 × 𝑁 × D1
• A 3 × 3 pooling filter w. stride 𝑆 = 1, no padding

• Output volume: (𝑁 − 2) × (𝑁 − 2) × D1(since 
1

1
𝑁 − 3 + 1 = 𝑁 − 2)

• In practice, it is more common to have 𝐹 = 3, 𝑆 = 2 for overlapping pooling

43

1 3 2 1 3

2 9 1 1 5

1 3 2 3 2

8 3 5 1 0

5 6 1 2 9

9 9 5

9 9 5

8 6 9

max pool w. 3x3

filter and stride 1



Fully-Connected (FC) Layer

• Each neuron connects to the entire input volume w. no 
weight sharing
• No. params for FC layer of size 𝑁𝑜𝑢𝑡 connected to input layer of size 
𝑁𝑖𝑛 is (𝑁𝑖𝑛 + 1) ∗ 𝑁𝑜𝑢𝑡 (= 20 + 1 ∗ 5 = 105 for the example)

44

bias



A Complete CNN Example

• A CNN with a CONV layer, a FC layer and a SoftMax layer

45
Huang C, Fan J, Chen X, et al. Divide and slide: Layer-wise refinement for output range analysis of deep neural 
networks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(11): 3323-3335.

Step 6 (SoftMax)

.97

.03

Logits: 
4
−1

SoftMax scores: 
1

24+2−1
24

2−1
=

.97

.03



Summary of 3 Types of CNN Layers

46

CONV POOL FC

Input volume 𝑊1 × 𝐻1 × 𝐷1 𝑊1 × 𝐻1 × 𝐷1 𝑁𝑖𝑛

Output 
volume

𝑊2 × 𝐻2 × 𝐾 𝑊2 × 𝐻2 × 𝐷1 𝑁𝑜𝑢𝑡

No. params 𝐹 ∗ 𝐹 ∗ 𝐷1 + 1 ∗ 𝐾 0 𝑁𝑖𝑛 + 1 ∗ 𝑁𝑜𝑢𝑡

No. MULs 𝐹 ∗ 𝐹 ∗ 𝐷1 + 1 ∗ 𝐾 ∗𝑊2 ∗ 𝐻2 0 𝑁𝑖𝑛 + 1 ∗ 𝑁𝑜𝑢𝑡

(1) No. MULs for CONV layer: 𝐹 ∗ 𝐹 ∗ 𝐷1 + 1 MULs to compute each output element; 𝐾 ∗
𝑊2 ∗ 𝐻2 output elements
(2) Bias term of +1 is often omitted

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks

Important



MLP vs. CNN 

47

• In a Multi-Layer Perceptron (MLP), 
all layers are FC layers

• Cannot alter input image size

• No translation invariance

• No. params can grow very large, 
prune to overfitting

• In a CNN, only the last few (typically 
<=3) layer(s) are FC

• CONV layers can handle images of 
arbitrary size 

• Translation invariance

• Fewer params than MLP



Outline

• Convolution layers

• Pooling and Fully-Connected layers

• Well-known CNN architectures

48



LeNet-5 (LeCun et al. 1989)

49

Layer Input
𝑊1 × 𝐻1 × 𝐷1

No. 
Filters

Filter
𝐾 × 𝐾 × 𝐷/𝑆

Output
𝑊2 × 𝐻2 × 𝐷2

No. params

C1:CONV 32 × 32 × 1 6 5 × 5 × 1 28 × 28 × 6 156

S2:POOL 28 × 28 × 6 6 2 × 2 × 1/2 14 × 14 × 6 0

C3:CONV 14 × 14 × 6 16 5 × 5 × 6 10 × 10 × 16 2416

S4:POOL 10 × 10 × 16 16 2 × 2 × 1/2 5 × 5 × 16 0

C5:CONV 5 × 5 × 16 120 5 × 5 × 16 1 × 1 × 120 48120

F6 FC - − 84 10164

Output FC 10 850



LeNet-5 Details
• Input image: 32 × 32 × 1 (grey-scale images of hand-written digits w. size 32 × 32 pixels)

• Conv filters 5 × 5 × 1 w. stride 1; Pooling filters 2 × 2 w. stride 2

• Conv layer C1 maps from input volume 32 × 32 × 1 to 6 feature maps w. volume 28 × 28 × 6 (since 
1

1
(32 −

5) + 1 = 28). No params: 5 ∗ 5 ∗ 1 + 1 ∗ 6 = 156

• Pooling layer S2 maps from input volume 28 × 28 × 6 to 6 feature maps w. volume 14 × 14 × 6 (since 
1

2
(28 −

2) + 1 = 14). 

• Conv layer C3 maps from input volume 14 × 14 × 6 to 16 feature maps w. volume 10 × 10 × 16 (since 
1

1
(14 −

5) + 1 = 10). No params: 5 ∗ 5 ∗ 6 + 1 ∗ 16 = 2416

• Pooling layer S4 maps from input volume 10 × 10 × 16 to 16 feature maps w. volume 5 × 5 × 16 (since 
1

2
(10 −

2) + 1 = 5)

• Conv layer C5 maps from input volume 5 × 5 × 16 to 120 feature maps w. volume 1 × 1 × 120 (since 
1

1
(5 −

5) + 1 = 1). No params: 5 ∗ 5 ∗ 16 + 1 ∗ 120 = 48120
• You can also view it as an equivalent Fully-Connected layer that maps from the flattened input of size 400 × 1 (5 ∗ 5 ∗ 16 = 400) 

to output of size 120 × 1. For details, refer to L4.2 “Turning FC layer into CONV Layers”

• FC layer F6 maps from input of size 120 × 1 to output of size 84 × 1. No params: (120 + 1) ∗ 84 = 10164

• Output layer (SoftMax) maps from input of size 84 × 1 to output of size 10. No params: (84 + 1) ∗ 10 = 850

• Refs: p. 28 “Computation of CONV Layer Sizes”; p. 41 “Pooling (Sub-Sampling) Layer”; p. 46 “Summary of 3 Types 
of CNN Layers”

50
https://www.analyticsvidhya.com/blog/2021/03/the-architecture-of-lenet-5/
https://towardsdatascience.com/understanding-lenet-a-detailed-walkthrough-17833d4bd155



ImageNet Large Scale Visual Recognition 
Challenge
• 1,000 object classes, 1.4 M labeled images

51



AlexNet [Krizhevsky et al. 2012] 
• Input image: 227 × 227 × 3

• 1st layer (CONV1): 96 11 × 11 filters w. stride 𝑆 = 4, w. ReLU activation function
• Output volume: 55 × 55 × 96 (since 

1

4
227 − 11 + 1 = 55). 

• 2nd layer (POOL1): 3 × 3 filters w. stride 𝑆 = 2 (overlapping)
• Output volume: 27 × 27 × 96 (since 

1

2
55 − 3 + 1 = 27)

• … 
• Total # params: 60M
• Introduced ReLU activation function

52



VGGNet [Simonyan 2014] (the best performing 
variant VGG-16)

53

Same padding used for all CONV layers



VGG-16 Details
• VGG-16 has 16 weight layers, not including POOL layers w. 0 weight

• Input image: 224 × 224 × 3

• 1st and 2nd CONV layers: 64 3 × 3 filters w. stride 𝑆 = 1, padding 𝑃 = 1
• Output volume: 224 × 224 × 64 (since 

1

1
224 + 2 ∗ 1 − 3 + 1 = 224)

• 3rd POOL layer: 2 × 2 filters w. stride 𝑆 = 2
• Output volume: 112 × 112 × 64 (since 

1

2
224 − 2 + 1 = 112)

• 4th and 5th CONV layers: 128 3 × 3 filters w. stride 𝑆 = 1, padding 𝑃 = 1
• Output volume: 112 × 112 × 128 (since 

1

1
112 + 2 ∗ 1 − 3 + 1 = 112)

• 6th POOL layer: 2 × 2 filters w. stride 𝑆 = 2
• Output volume: 56 × 56 × 128 (since 

1

2
112 − 2 + 1 = 56)

• Total # params: 60M 
• ImageNet top 5 error: 7.3%

54



Stacked 3 × 3 CONV Layers
• 2 stacked 3 × 3 CONV layers w. padding 𝑃 = 1 have the same effective receptive field as a 
5 × 5 CONV layer; 3 stacked 3 × 3 CONV layers w. padding 𝑃 = 1 have RF of 7 × 7; 𝐿 stacked 
3 × 3 CONV layers w. padding 𝑃 = 1 have RF of 1 + 2𝐿. Benefits: 
• Fewer params. Suppose all volumes have  the same depth 𝐷, then a 7 × 7 CONV layer has 

7 ∗ 7 ∗ 𝐷 + 1 ∗ 𝐷 ≈ 49𝐷2 params, while three stacked 3x3 CONV layers have only (
)

3 ∗ 3 ∗ 𝐷 +
1 ∗ 𝐷 ∗ 3) ≈ 27𝐷2 params

• Multiple layers of non-linear activation functions increases CNN depth, hence larger model 
capacity

55https://zhuanlan.zhihu.com/p/79258431



VGGNet Variants

56

Best performing variant
VGG-16



GoogLeNet [Szegedy et al., 2014]

57Inception Module

Additional classification heads
for regularization



Inception Module

• Can’t make up your mind about filter size? Have them all in the 
Inception Module!
• But this increases computation load

• Additional 1 × 1 CONV layers serve as bottleneck to reduce 
number of parameters and computation load

58



59

• Without the bottleneck layer: No. params: 5 ∗ 5 ∗ 192 ∗ 32 = 153600; No. 
MULs: (5 ∗ 5 ∗ 192) ∗ (32 ∗ 28 ∗ 28) = 120M

59

28 × 28 × 192

CONV

16,

1 × 1 × 192 28 × 28 × 16

CONV

32,

5 × 5 × 16

Same 

padding 

(𝑃 = 2)
28 × 28 × 32

28 × 28 × 192

CONV

32,

5 × 5 × 192

Same 

padding 

(𝑃 = 2) 28 × 28 × 32

• With the bottleneck layer: No. params: 1 ∗ 1 ∗ 192 ∗ 16 + 5 ∗ 5 ∗ 16 ∗ 32 =
15872; No. MULs: (1 ∗ 1 ∗ 192) ∗ (16 ∗ 28 ∗ 28) + (5 ∗ 5 ∗ 16) ∗ (32 ∗
28 ∗ 28) = 12.4M



GoogLeNet Size

• Compared to AlexNet:
• 12x less params (only 5M, due to no FC layers), 2x more compute (due to more 

CONV layers)

60



Xception [Chollet 2017] MobileNets [Howard et 
al. 2017] : Depthwise Separable Convolution

• Intermediate feature maps serve as bottleneck to 
reduce number of parameters and computation 
load

• A Basic Introduction to Separable Convolutions 
https://towardsdatascience.com/a-basic-introduction-
to-separable-convolutions-b99ec3102728

• Depthwise Separable Convolution - A FASTER 
CONVOLUTION! 
https://www.youtube.com/watch?v=T7o3xvJLuHk

61

Each filter is convolved with all 
input channels

Each filter is convolved with one input channel

Followed by pointwise convolution

Regular Convolution

https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://www.youtube.com/watch?v=T7o3xvJLuHk


Example: Regular Convolution

62

No. params: 3 ∗
3 ∗ 2 ∗ 4 = 72
(Four 3 × 3 × 2
filters) (not 

counting Bias 

terms)

No. MULs: (3 ∗ 3 ∗
2) ∗ (4 ∗ 4 ∗ 4) =
1152 (3 ∗ 3 ∗ 2
MULs to compute 

each output 

element; 4 ∗ 4 ∗ 4
output elements)

Input feature map

2 channels



Example: Depthwise Separable Convolution

63

1. Depthwise Convolution 

2. Pointwise Convolution 

1 × 1
filters

No. params: 3 ∗ 3 ∗ 2 +
2 ∗ 4 = 26 (Two 3 × 3 ×
1 filters and four 1 × 1 ×
2 filters) (not counting 

Bias terms)

No. MULs: (3 ∗ 3 ∗ 1) ∗
(2 ∗ 4 ∗ 4) + (1 ∗ 1 ∗ 2) ∗
(4 ∗ 4 ∗ 4) = 416
(Depthwise Conv: 3 ∗ 3 ∗
1 MULs to compute 

each output element; 2 ∗
4 ∗ 4 output elements; 

Pointwise Conv: 1 ∗ 1 ∗ 2
MULs to compute each 

output element; 4 ∗ 4 ∗ 4
output elements)



Residual Networks (ResNet) [He et al. 2015]
• In a standard NN, output from a given layer is 
𝐹 𝑥

• In ResNet w. skip connection, output from a 
given layer is 𝐻 𝑥 = 𝐹 𝑥 + 𝑥

• Benefits:
• Residual connections help in handling the 

vanishing gradient problem in very deep NNs
• If identity mapping is close to optimal, then 

weights can be small to capture minor differences 
only, in other words, “unnecessary layers” can 
learn to be identity mapping. This allows stacking 
many layers (e.g., 152) without overfitting

64



Deeper Nets have Better Performance

65



CNN Layer Patterns
• A typical CNN architecture looks like: INPUT->[[CONV->RELU]*N->POOL?]*M->[FC->RELU]*K->FC 

• where * indicates repetition, and POOL? indicates an optional pooling layer. 𝑁 ≥ 0 (usually 𝑁 ≤ 3), 𝑀 ≥ 0, 𝐾 ≥ 0 (and usually 
𝐾 < 3)

• Some common architectures:
• INPUT->FC, implements a linear classifier. Here N = M = K = 0.

• INPUT->CONV->RELU->FC

• INPUT->[CONV->RELU->POOL]*2->FC->RELU->FC (fig below). There is a single CONV layer between every 
POOL layer.

• INPUT->[CONV->RELU->CONV->RELU->POOL]*3->[FC->RELU]*2->FC There are two CONV layers 
stacked before every POOL layer, e.g., two stacked 3 × 3 CONV Layers. This is generally a good idea for larger and deeper 
networks, because multiple stacked CONV layers can develop more complex features of the input volume before the destructive 
pooling operation

66



Transfer Learning
• Instead of training your CNN from scratch, start from a pre-trained CNN (e.g., ResNet) and 

fine-tune it for your task

• First, replace SoftMax layer (classification head) with your own

• Next, train the CNN while keeping parameters frozen for
• all CONV layers and only train the FC layer
• or part of the earlier CONV layers close to the input layer (since earlier layers extract lower-level 

features that are more likely to be common among different tasks)
• or none of the layers
• The decision depends on how much training data you have, and how similar your task is to that of 

the pre-trained CNN

67

Replace SoftMax 
layer 

Retrain one or 
more later layers

Keep frozen earlier layers


	Default Section
	Slide 1: L3.1 Convolutional Neural Networks

	Untitled Section
	Slide 2: Outline
	Slide 3: Classic Computer Vision
	Slide 4: Input Image Encoding
	Slide 5: Filters/Kernels in Computer Vision
	Slide 6: A Filter for Vertical Edge Detection
	Slide 7: Sobel Filter for Vertical Edge Detection
	Slide 8: Common Filters in CV
	Slide 9: Machine Learning Meets CV
	Slide 10: Convolutional Neural Network (CNN)
	Slide 11: Receptive Field and Parameter Sharing
	Slide 12: Convolution Operation
	Slide 13: Convolution Operation
	Slide 14: Stacked feature maps
	Slide 15: Convolution of a Filter on an RGB Image w. 3 Channels
	Slide 16: Convolution of 2 Filters on an RGB Image w. 3 Channels
	Slide 17: Convolution in PyTorch
	Slide 18: Convolution in PyTorch Cont’
	Slide 19: Convolution Example 1: Computing a Single Output Element
	Slide 20: Convolution Example 2
	Slide 21: Convolution Example 2 Cont’
	Slide 22: Convolution Example 3
	Slide 23: Filters and feature maps Example
	Slide 24: 7x7 input, 3x3 filter, stride=1 ⇒ output: 5x5
	Slide 25: 7x7 input, 3x3 filter, stride=2 ⇒ output: 3x3
	Slide 26: 7x7 input, 3x3 filter, stride=3 ⇒ output: ???
	Slide 27: Solution: Add padding
	Slide 28: Computation of CONV Layer Sizes
	Slide 29: CONV Example 1: No Padding
	Slide 30: CONV Example 2: Same Padding
	Slide 31: CONV Example 3: Stride cap S equals 2
	Slide 32: CONV Example 4: No Padding vs. Same Padding
	Slide 33: Pointwise Convolution with 1×1 Filter
	Slide 34: 1×1 Filter Example
	Slide 35: Dilated Convolution
	Slide 36: 3D Convolution
	Slide 37: Converting Convolution to Matrix Multiplication: 1D CONV Example
	Slide 38: Converting Convolution to Matrix Multiplication: 2D CONV Example
	Slide 39: Outline
	Slide 40: Typical CNN Architecture
	Slide 41: Pooling (Sub-Sampling) Layer
	Slide 42: Max Pooling w. Examples
	Slide 43: Overlapping Pooling
	Slide 44: Fully-Connected (FC) Layer
	Slide 45: A Complete CNN Example
	Slide 46: Summary of 3 Types of CNN Layers
	Slide 47: MLP vs. CNN 
	Slide 48: Outline
	Slide 49: LeNet-5 (LeCun et al. 1989)
	Slide 50: LeNet-5 Details
	Slide 51: ImageNet Large Scale Visual Recognition Challenge
	Slide 52: AlexNet [Krizhevsky et al. 2012] 
	Slide 53: VGGNet [Simonyan 2014] (the best performing variant VGG-16)
	Slide 54: VGG-16 Details
	Slide 55: Stacked 3×3 CONV Layers
	Slide 56: VGGNet Variants
	Slide 57: GoogLeNet [Szegedy et al., 2014]
	Slide 58: Inception Module
	Slide 59
	Slide 60: GoogLeNet Size
	Slide 61: Xception [Chollet 2017] MobileNets [Howard et al. 2017] : Depthwise Separable Convolution
	Slide 62: Example: Regular Convolution
	Slide 63: Example: Depthwise Separable Convolution
	Slide 64: Residual Networks (ResNet) [He et al. 2015]
	Slide 65: Deeper Nets have Better Performance
	Slide 66: CNN Layer Patterns
	Slide 67: Transfer Learning


