
L3.2 Adversarial Attacks

Zonghua Gu, Umeå University

Nov. 2023

Based on ICML 2018 tutorial https://adversarial-ml-tutorial.org

Outline

• Adversarial attacks via local search

• Physically-realizable attacks

• Training adversarially robust models

2

A Limitation of the (Supervised) ML Framework

• Distribution Shift: data
distribution during inference may
NOT be the same as the training
dataset

• May be naturally occurring, or
may be due to adversarial attacks

3

Adversarial Examples

• Starting with an image of a panda, the attacker adds a small
perturbation that has been calculated to make the image be
recognized as a gibbon with high confidence

4https://openai.com/blog/adversarial-example-research/

Adversarial Attacks w. Input Perturbation

• For a given input image 𝑥 with correct label 𝑦, and a neural
network 𝑓𝜃 𝑥 that maps from input to label, find a small
perturbation 𝛿 s.t.
• Untargeted attack: 𝑓𝜃 𝑥 + 𝛿 ≠ 𝑦

• Targeted attack: 𝑓𝜃 𝑥 + 𝛿 = 𝑡 ≠ 𝑦

• Which input perturbations 𝛿 are allowed? e.g., 𝛿 small w.r.t.
• 𝑙𝑝 norm (we focus on it in this lecture)

• Rotation and/or translation

• Other perturbations…

5

Vector Norms

• 𝑙𝑝 norm of a 𝑘-dimensional vector 𝑥 ∈ ℝ𝑘 is a scalar defined as

𝑥 𝑝 = σ𝑖=1
𝑘 𝑥𝑖

𝑝 1/𝑝
. Suppose 𝑥 =

3
4

• 𝑙1 norm: 𝑥 1 = σ𝑖 𝑥𝑖 (Manhattan Distance)
• = 3 + 4 = 7

• 𝑙2 norm: 𝑥 2 = σ𝑖 𝑥𝑖
2 (Euclidean norm)

• = 32 + 42 = 5

• 𝑙∞ norm: 𝑥 ∞ = max
𝑖

|𝑥𝑖|

• = max
𝑖

3,4 = 4

6https://montjoile.medium.com/l0-norm-l1-norm-l2-norm-l-infinity-norm-7a7d18a4f40c

𝑙1 norm

𝑙2 norm

𝑙∞ norm

Vector Norm Balls

• The 𝑙𝑝 norm ball 𝑥 𝑝 ≤ 𝜖 is the set of all vectors with 𝑝-norm
less than or equal to 𝜖: 𝐵𝑝 = {𝑥 ∈ ℝ𝑘| 𝑥 𝑝 ≤ 𝜖}

• 𝑙2 norm ball 𝑥 2 ≤ 𝜖 : a circle with radius 𝜖 centered at origin

• 𝑙∞ norm ball 𝑥 ∞ ≤ 𝜖 : a square with edge length 2𝜖 centered
at origin

7

𝑙2 vs. 𝑙∞Norm Balls
• Consider the original vector 𝑥0 =

10
10

and two disturbed vectors 𝑥1 =
3
3
, 𝑥2 =

0
10

• 𝛿1 = 𝑥0 − 𝑥1 =
10
10

−
3
3

=
7
7
, 𝛿2 = 𝑥0 − 𝑥2 =

10
10

−
0
10

=
10
0

• Same 𝑙2 distance:

• 𝛿1 2 = 72 + 72 ≈ 9.9, 𝛿2 2 = 102 + 02 = 10

• Different 𝑙∞ distances:
• 𝛿1 ∞ = max 7,7 = 7 , 𝛿2 ∞ = max 10,0 = 10

• 𝑙∞ distance cares about the one maximally-changed individual pixel,
whereas 𝑙2 distance cares about all pixels. An image with added random
salt-and-pepper noise will have a large 𝑙2 distance from the original
image, but not a large 𝑙∞ distance.

• 𝑙∞ seems to be more aligned w. human perception
• e.g., you can clearly see the color difference of the green pixel in the lower

right figure with large 𝑙∞ distance

8

Change one
pixel much

Change
every pixel a
little bit

same 𝑙2

small 𝑙∞

large 𝑙∞

Maximization Problem for Finding Adversarial
Examples
•max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃)

• Loss() may be Cross-Entropy loss
for multi-class classification

• Solved by constructing adversarial
examples via local search

• Attacks can be categorized w.r.t.
• Allowable perturbation set Δ

• Optimization procedure, e.g., by
Gradient Descent

9

Max

Min

Model Training vs. Local Search for Adversarial
Input Generation
• To solve min

𝜃
𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃) for

model training: gradient descent 𝜃 ← 𝜃 −
𝛼∇𝜃Loss 𝑥, 𝑦; 𝜃
• Update model params 𝜃 by following the

gradient downhill, in order to decrease
Loss 𝑥, 𝑦; 𝜃 . (𝛼 is the Learning Rate)

• To solve max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃) for

adversarial input generation: gradient
ascent 𝛿 ← 𝛿 + 𝛼∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃
• Update input 𝑥 + 𝛿 by following the gradient

uphill, in order to increase Loss 𝑥 + 𝛿, 𝑦; 𝜃 ,
while ensuring 𝛿 ∈ Δ

10

𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃)

𝜃

Loss 𝑥 + 𝛿, 𝑦; 𝜃

𝛿

Aside: Vector Derivative

• Consider a scalar (loss) function 𝑦 = 𝑓(𝑥) that takes as input a
𝑛-dim vector 𝑥 and returns a scalar value 𝑦, then ∇𝑥𝑓 𝑥 is a 𝑛-
dim vector:

• 𝑥 =

𝑥0
𝑥1
…

𝑥𝑛−1

, ∇𝑥𝑓 𝑥 =

𝜕𝑓

𝜕𝑥0
𝜕𝑓

𝜕𝑥1
…
𝜕𝑓

𝜕𝑥𝑛−1
• 𝑥, 𝛿 are vectors, e.g., a 128x128 pixel color image is a

128x128x3 tensor, encoded as a vector of size
128*128*3=49152

11

Projected Gradient Descent (PGD)

• Take a gradient step, and if you have stepped outside of
the feasible set, project back into the feasible set: Δ: 𝛿 ←
𝒫Δ 𝛿 + 𝛼∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃
• Input image 𝑥 is a constant; perturbation 𝛿 is the optimization

variable. Hence we take derivative w.r.t. 𝛿: ∇𝛿Loss()

12

Fast Gradient Sign Method (FGSM)

13

𝜖
𝛿 = 0

Gradient
∇𝛿Loss 𝒫Δ

𝛿 = 𝜖 ⋅ sign(∇𝛿Loss)

Δ = {𝛿: 𝛿 ∞ ≤ 𝜖}
(area within the
square)

𝜖

• FGSM is an attack designed for 𝑙∞ norm bound by
taking a single PGD (Projected Gradient Descent)
step within 𝑙∞ norm bound Δ = {𝛿: 𝛿 ∞ ≤ 𝜖}

• Starting from 𝛿 = 0, take a large step in the
gradient direction by making the learning rate 𝛼
very large. Then apply projection operator 𝒫Δ to
clip every dimension of 𝛿 to lie within range
−𝜖, 𝜖 : 𝒫Δ(𝛿) ≔ Clip(𝛿, −𝜖, 𝜖), i.e.,
• 𝛿 = 𝒫Δ 0 + 𝛼∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃 = 𝜖 ⋅
sign ∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃

• The specific values of 𝛼 and gradient do not
matter if they are large enough; only the gradient
direction matters (Any gradient direction in the
upper right quadrant of the 𝑙∞ norm ball will
result in the same 𝛿 at the upper right corner)

Adversarial Examples by FGSM

• Two NNs for MNIST classification. 𝑙∞ norm bound 𝛿 ∞ ≤ 𝜖 =
0.1

14

PGD w. Small Steps
• Recall FGSM takes one large step with size 𝛼 = 𝜖:
𝛿 = 𝒫Δ 0 + 𝛼∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃 = 𝜖 ⋅
sign ∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃

• PGD takes many small steps (each with size 𝛼) to
iteratively update 𝛿:
• Repeat: 𝛿 ← 𝒫Δ 𝛿 + 𝛼 ⋅ sign ∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃
• Rule-of-thumb: choose 𝛼 to be a small fraction of 𝜖, and

set the number of iterations to be a small multiple of
𝜖/𝛼

• Fig shows a sequence of gradient steps, with the
last step going outside of the 𝑙∞ ball Δ, but 𝒫Δ
brings it back into Δ
• Fig shows the final 𝛿 to end up at a corner of the 𝑙∞ ball,

but it may not be true in general

15

PGD Examples

16

Review: Cross-Entropy Loss for Multi-Class
Classification
• The SoftMax operator 𝜎:ℝ𝑘 → ℝ𝑘computes a vector of predicted

probabilities 𝜎(𝑧): ℝ𝑘 from a vector of logits 𝑧: ℝ𝑘 in the last
hidden layer (the penultimate layer), where 𝑘 is the number of
classes:

• 𝜎 𝑧 𝑖 =
exp 𝑧𝑖

σ𝑗=1
𝑘 exp 𝑧𝑗

• The loss function is defined as the negative log likelihood of the
predicted probability corresponding to the correct label 𝑦:

• Loss 𝑥, 𝑦; 𝜃 = − log𝜎(ℎ𝜃 𝑥 𝑦) = − log
exp ℎ𝜃 𝑥 𝑦

σ𝑗=1
𝑘 exp ℎ𝜃 𝑥 𝑗

=

log σ𝑗=1
𝑘 exp ℎ𝜃 𝑥 𝑗 − ℎ𝜃 𝑥 𝑦

• Minimizing Loss ℎ𝜃 𝑥 , 𝑦 amounts to maximizing the logit ℎ𝜃 𝑥 𝑦
corresponding to the correct label 𝑦

17

Untargeted vs. Targeted Attacks
• Untargeted attack: maximize loss of the true class 𝑦:

• max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃)

• Since SoftMax is a monotonic function:

• Loss 𝑥 + 𝛿, 𝑦; 𝜃 = log൫

൯

σ𝑗=1
𝑘 exp൫

൯

ℎ𝜃(

)
𝑥 +

𝛿 𝑗 − ℎ𝜃 𝑥 + 𝛿 𝑦

• This is equivalent to minimizing logit of the true class 𝑦 :

• min
𝛿∈Δ

ℎ𝜃 𝑥 + 𝛿 𝑦

• Targeted attack: maximize loss of the true class 𝑦 and
minimize loss of a particular target class 𝑦𝑡𝑎𝑟𝑔, in order
to change label to 𝑦𝑡𝑎𝑟𝑔:

• max
𝛿∈Δ

(Loss 𝑥 + 𝛿, 𝑦; 𝜃 − Loss 𝑥 + 𝛿, 𝑦𝑡𝑎𝑟𝑔; 𝜃)

• This is equivalent to minimizing logit of the true class 𝑦
while maximizing logit of the target class 𝑦𝑡𝑎𝑟𝑔:

• min
𝛿∈Δ

(ℎ𝜃 𝑥 + 𝛿 𝑦 − ℎ𝜃 𝑥 + 𝛿 𝑦𝑡𝑎𝑟𝑔)

• Alternative formulation: minimizing logit of all the other
classes 𝑦′ while maximizing logit of the target class 𝑦𝑡𝑎𝑟𝑔:

• min
𝛿∈Δ

(σ𝑦′≠𝑦𝑡𝑎𝑟𝑔
ℎ𝜃 𝑥 + 𝛿 𝑦′ − ℎ𝜃 𝑥 + 𝛿 𝑦𝑡𝑎𝑟𝑔)

18

Outline

• Adversarial attacks via local search

• Physically-realizable attacks

• Training adversarially robust models

19

Physically-Realizable Attacks
• Instead of directly manipulating pixels, it is possible to modify physical objects

and cause miss-classification
• [Evtimov et al 2017]: Physical Adversarial Examples Against Deep Neural

Networks
• https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

20

https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

An optimization approach to creating robust
adversarial examples
• The following optimization problem for targeted attack aims to

minimize the cost function for input 𝑥 + 𝛿 and target label 𝑦𝑡𝑎𝑟𝑔 (𝜆
is the Lagrange multiplier; the objective tries to minimize the
perturbation 𝛿 𝑝 instead of putting a hard bound on 𝛿 𝑝)
• argmin𝛿 𝜆 𝛿 𝑝 + 𝐽(𝑓𝜃 𝑥 + 𝛿 , 𝑦𝑡𝑎𝑟𝑔)

• To create a universal perturbation for robust adversarial examples,
enhance the training dataset with multiple (𝑘) variants of the input
image at different viewing angles and lighting conditions

• argmin𝛿 𝜆 𝛿 𝑝 +
1

𝑘
σ𝑖=1
𝑘 𝐽(𝑓𝜃 𝑥 + 𝛿 , 𝑦∗)

21

Optimizing Spatial Constraints
• To make the perturbation imperceptible to humans, we add a mask 𝑀𝑥 to localize

the perturbation to specific areas of the Stop Sign to mimic vandalism:

• argmin𝛿 𝜆 𝑀𝑥 ⋅ 𝛿 𝑝 +
1

𝑘
σ𝑖=1
𝑘 𝐽(𝑓𝜃 𝑥 +𝑀𝑥 ⋅ 𝛿 , 𝑦∗)

• Use 𝑙1 norm in 𝑀𝑥 ⋅ 𝛿 1 to find the most vulnerable regions (since 𝑙1 loss promotes
sparsity), then generate perturbation 𝛿 within these regions

• Video demos:
• “Bo Li – Secure Learning in Adversarial Autonomous Driving Environments”

https://www.youtube.com/watch?v=0VfBGWnFNuw&t=421s

22

https://www.youtube.com/watch?v=0VfBGWnFNuw&t=421s

Adversarial Traffic Signs

23

Blackbox Attacks
• We have been discussing Whitebox attacks, where we know the NN model parameters 𝜃

• Black Box Attacks:

• If you have the training dataset of the target Blackbox model:
• Train a proxy Whitebox model yourself
• Generate attacked objects for the proxy model

• If you do not have the training dataset, you can obtain input-output data pairs from the
target Blackbox model by invoking online cloud services
• May get expensive if the cloud service is not free

24

Target
Blackbox

Model

Proxy
Whitebox

Model

Training Data

Attacked
Input Image

Blackbox Attack Example

• [Evtimov et al 2017]: Physical
adversarial examples generated for
the YOLO object detector (the
proxy Whitebox model) are also be
able to fool Faster-RCNN (the
Blackbox model)

25

Phantom of the ADAS
• A phantom is a depthless presented/projected picture of a 3D object

(e.g., pedestrian, traffic sign, car, truck, bicycle…), with the purpose of
fooling ADAS to treat it as a real object and trigger an automatic
reaction

• Phantom attacks by projecting a phantom via a drone equipped with a
portable projector:

• https://www.youtube.com/watch?v=1cSw4fXYqWI&t=85s

• or by presenting a phantom on a hacked roadside digital billboard:
• https://www.youtube.com/watch?v=-E0t_s6bT_4

2626https://www.nassiben.com/phantoms

https://www.youtube.com/watch?v=1cSw4fXYqWI&t=85s
https://www.youtube.com/watch?v=-E0t_s6bT_4

Algorithm for Disguising Phantoms
• 1. Extract key points as focus areas of human attention for every frame based on the SURF

algorithm

• 2. Compute a local score for every block in a frame that represents how distant a block is
from the focus areas, and embed phantoms into “dead areas” that viewers will not focus on

• 3. Display the phantom in at least 𝑡 consecutive video frames (longer duration leads to
higher success rate)

27

Constraints on Perturbations

• In Phantom of the ADAS attack, phantoms are embedded into
“dead areas” that human viewers are not likely to focus on

• There is no 𝛿 ∈ Δ norm constraint on the allowable
perturbations, since it may not be well-aligned with human
perception

28

Outline

• Adversarial attacks via local search

• Physically-realizable attacks

• Training adversarially robust models

29

Standard ML vs. Adversarial Robust ML
• Standard ML: Empirical Cost Minimization: min

𝜃
𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃)

• Adversarial Input Generation (untargeted attack): max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃) (e.g., FGSM, PGD)

• Adversarial Robust ML: min
𝜃

𝔼 𝑥,𝑦 ∼𝐷max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃)

• Inner maximization problem: generating an adversarial input by adding a small perturbation 𝛿 (or
ensuring one does not exist)

• Outer minimization problem: training a robust classifier in the presence of adversarial examples
• Higher network capacity enables more complex decision boundary and more robust classification

30

Danskin’s Theorem

• How to compute the gradient of the objective with the max
term inside?

• Danskin’s Theorem:
• ∇𝑦max

𝑥
𝑓(𝑥, 𝑦) = ∇𝑦𝑓(𝑥

∗, 𝑦), where 𝑥∗ = argmax
𝑥

𝑓(𝑥, 𝑦)

• (Only true when max is performed exactly)

• In our case:
• ∇𝜃max

𝛿∈Δ
Loss(𝑥 + 𝛿, 𝑦; 𝜃) = ∇𝜃Loss(𝑥 + 𝛿∗, 𝑦; 𝜃), where

𝛿∗ = argmax
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃)

• Optimize through the max operator by finding the 𝛿∗ that maximizes
the loss function, then taking gradient at 𝑥 + 𝛿∗

31

Adversarial Training [Goodfellow et al., 2014]

• Adversarial training effectiveness is directly tied to how well we
perform the inner maximization. The key issue is incorporate a
strong attack into the inner maximization procedure
min
𝜃

𝔼 𝑥,𝑦 ∼𝐷max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃)

32

What Makes the Models Robust?

• The robust model has a smoother loss surface, making it more
difficult for an attacker to change the class label with small
gradient steps

33

Loss Surfaces Examples
• Upper right fig shows a smooth loss

surface with small gradients near
the correct label and large distances
to other labels, which makes attacks
more difficult

• Lower right fig shows a less smooth
loss surface and small distances to
other labels, which makes attacks
easier

• You can also think of them as 2
different directions on the same loss
surface, and the attacker’s goal is to
find the optimal direction to change
input 𝑥 (e.g., by gradient ascent
with FGSM or PGD)

34

𝑥

𝑦𝑦′ 𝑦′′

𝑦𝑦′ 𝑦′′

𝑥

	Default Section
	Slide 1: L3.2 Adversarial Attacks
	Slide 2: Outline
	Slide 3: A Limitation of the (Supervised) ML Framework
	Slide 4: Adversarial Examples
	Slide 5: Adversarial Attacks w. Input Perturbation
	Slide 6: Vector Norms
	Slide 7: Vector Norm Balls
	Slide 8: l sub 2 vs. l sub infinity Norm Balls
	Slide 9: Maximization Problem for Finding Adversarial Examples
	Slide 10: Model Training vs. Local Search for Adversarial Input Generation
	Slide 11: Aside: Vector Derivative
	Slide 12: Projected Gradient Descent (PGD)
	Slide 13: Fast Gradient Sign Method (FGSM)
	Slide 14: Adversarial Examples by FGSM
	Slide 15: PGD w. Small Steps
	Slide 16: PGD Examples
	Slide 17: Review: Cross-Entropy Loss for Multi-Class Classification
	Slide 18: Untargeted vs. Targeted Attacks
	Slide 19: Outline
	Slide 20: Physically-Realizable Attacks
	Slide 21: An optimization approach to creating robust adversarial examples
	Slide 22: Optimizing Spatial Constraints
	Slide 23: Adversarial Traffic Signs
	Slide 24: Blackbox Attacks
	Slide 25: Blackbox Attack Example
	Slide 26: Phantom of the ADAS
	Slide 27: Algorithm for Disguising Phantoms
	Slide 28: Constraints on Perturbations
	Slide 29: Outline
	Slide 30: Standard ML vs. Adversarial Robust ML
	Slide 31: Danskin’s Theorem
	Slide 32: Adversarial Training [Goodfellow et al., 2014]
	Slide 33: What Makes the Models Robust?
	Slide 34: Loss Surfaces Examples

