3.2 Adversarial Attacks

“panda” “gibbon”

57.7% confidence 99.3% confidence

Zonghua Gu, Umea University
Nov. 2023

Based on ICML 2018 tutorial https://adversarial-ml-tutorial.org

Outline

* Adversarial attacks via local search
* Physically-realizable attacks
* Training adversarially robust models

A Limitation of the (Supervised) ML Framework

* Distribution Shift: data
distribution during inference may
NOT be the same as the training
dataset

* May be naturally occurring, or
may be due to adversarial attacks

ﬁ

Adversarial Examples

e Starting with an image of a panda, the attacker adds a small
perturbation that has been calculated to make the image be
recognized as a gibbon with high confidence

+ .007 x

. | L
€T sign(VJ(0,z,y)) esign(V,J (0, x,v))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

https://openai.com/blog/adversarial-example-research/

Adversarial Attacks w. Input Perturbation

* For a given input image x with correct label y, and a neural
network fg(x) that maps from input to label, find a small
perturbation 0 s.t.

* Untargeted attack: fg(x + 8) # y
* Targeted attack: fy(x +6) =t #y

* Which input perturbations ¢ are allowed? e.g., 6 small w.r.t.
* L, norm (we focus on it in this lecture)

* Rotation and/or translation
* Other perturbations...

Vector Norms

. lp norm of a k-dimensional vector x € R¥ is a s
1/p 3
lxll, = (Zklxil?) 7. Suppose x = |7

* [; norm: ||x]|; = X;|x;| (Manhattan Distance)
= [3] + 4] = 7

* [, norm: ||x||, = N > x# (Euclidean norm)

« =132 +42=5
* lo, norm: [|x]|o = max |x;|
l
« = max(3,4) = 4
l

https://montjoile.medium.com/I0-norm-l1-norm-I12-norm-l-infinity-norm-7a7d18a4f40c

[{ norm

2

[, norm

[, norm

Vector Norm Balls

* The [, norm ball ||x][,, < € is the set of all vectors with p-norm
less than or equalto €: B, = {x € IRk|||x||p < €}

* [, norm ball ||x]|, < € : acircle with radius € centered at origin

* [, horm ball ||x]|. < €:asquare with edge length 2¢ centered
at origin

p=1 p=2 P

I
e

P

[, vs. loNorm Balls

* Consider the original vector x° = Eg] and two disturbed vectors x! =

3 0
[3],x2 = [10] o a1 i . ; , el
P =t o= [10] - [3] - [7]'52 =20 —xf = [10] - [10] = [0] Change
* Same [, distance: :
5%, =TT T ~ 99, 1671, = VIO T O = 10 ﬁ;’telgybft'xe' i

* Different [, distances:

* 161 = max(7,7) = 7,116%|lo = max(10,0) = 10
* [, distance cares about the one maximally-changed individual pixel,

whereas [, distance cares about all pixels. An image with added random

salt-and-pepper noise will have a large [, distance from the original

image, but not a large [, distance. '
Change one

e [, seems to be more aligned w. human perception ,
pixel much

right figure with large [, distance E

* e.g., you can clearly see the color difference of the green pixel in the lower
large [,

o
o
o
o
o
o
o

Maximization Problem for Finding Adversarial
Examples
e max L 5,y; 0 M
max oss(x + 96,y;0) ax
* Loss() may be Cross-Entropy loss l

for multi-class classification

* Solved by constructing adversarial
examples via local search Loss(z + 8, y:6)

 Attacks can be categorized w.r.t.

 Allowable perturbation set A | ;
« Optimization procedure, e.g., by < — >
Gradient Descent f -

Model Training vs. Local Search for Adversarial
Input Generation

* To solve mgin [E(x y)~pLoss(x,y; 8) for
model training: gradient descent 8 « 6 —

aVgLoss(x,y; 0)
e Update model params 6 by following the \

gradient downhill, in order to decrease
Loss(x,y; 8). (a is the Learning Rate) > 0

* To solve max Loss(x + 6,y; 0) for
adversarlafmput generation: gradient

ascent§ « 6 + aVgLoss(x + 6,y;60) \»\
* Update input x + 6 by following the gradient
A

E(xy)~pLoss(x,y; 0)

Loss(x + 6,y;0)

uphill, in order to increase Loss(x + 6, y; 8),
while ensuring 6 € A

10

Aside: Vector Derivative

* Consider a scalar (loss) function y = f(x) that takes as input a
n-dim vector x and returns a scalar value y, then V.. f (x) is a n-
dim vector:

- Af -
e %_’;?
*X = & Vaf (x) = x4
_X;L af
| 0Xp— 1

* X, 0 are vectors, e.g., a 128x128 pixel color image is a
128x128x3 tensor, encoded as a vector of size
128*128*3=49152

Projected Gradient Descent (PGD)

* Take a gradient step, and if you have stepped outside of
the feasible set, project back into the feasible set: A: § «
PA(CY + aVgsLoss(x + 8, y; 8))

* Input image x is a constant; perturbation ¢ is the optimization
variable. Hence we take derivative w.r.t. 6: VgLoss()

Fast Gradient Sign Method (FGSM)

 FGSM is an attack designed for [, norm bound by
taking a sin%Ie PGD (Projected Gradient Descent)
step within s, norm bound A = {§:||6]|s < €}

e Starting from 6 = 0, take a Iarﬁe step in the
gradient direction by making the learning rate « Gradient
very large. Then apply projection operator P, to VsLoss &
clip every dimension ot 0 to lie within range
|—€,€]: PA(6) = Clip(6,|—¢€,€)), i.e.,

= IPA(O + aVgsLoss(x + 6, y; 6)) =€
sign(V(gLoss(x + 4, y; 9))

ls=¢- sign(VsLoss)

* The specific values of @ and gradient do not G > @
matter if they are large enough; only the gradient
direction matters (Any gradient direction in the €
upper right quadrant of the [, norm ball will
result in the same 4 at the upper right corner) A= (5 16]ln < €)

(area within the
square)

Adversarial Examples by FGSM

* Two NNs for MNIST classification. l,, norm bound ||6]|o, < € =
0.1

2-layer fully
connected MLP 6 layer ConvNet

Conv-32x28x28 Conv-64x14x14

;—) — ; —> —> — — i —>

FC-10 Conv-32x28x28 Conv-64x14x14 FC-10
FC-200 Test Error, epsilon=0.1 FC-100
Pred: 7 Pred: 3 92.6%
MLP: 7 - 7
41.7%
Pred: 7 Pred: 3
2.9% 1.1%

ConvNet: 7 ‘ -
; MLP ConvNet

B Clean mFGSM

PGD w. Small Steps

* Recall FGSM takes one large step with size a = €:
§d = PAl0 + aVsLoss(x + 6, y; 8)) =€ -
sign(V(g oss(x + 4§, y; 0))

* PGD takes many small steps (each with size «) to
iteratively update o:

* Repeat: § « P, (5 + a - sign(VsLoss(x + 8, y; 9)))

e Rule-of-thumb: choose a to be a small fraction of €, anc
se/t the number of iterations to be a small multiple of
€/a

* Fig shows a sequence of gradient steps, with the
last step going outside of the [, ball A, but Py
brings it back into A

* Fig shows the final 6 to end up at a corner of the [, ball,
but it may not be true in general

Y

PGD Examples

Pred: 7 Pred: 3

Pred: 7 Pred: 3

w5 77

Test Error, epsilon=0.1

74.3%
41.7%
2.9 1.1 %I
I —
MLF ConviNet

mClean mFGSM mPGD

16

Review: Cross-Entropy Loss for Multi-Class
Classification

* The SoftMax operator o: R¥ - R¥computes a vector of predicted
probabilities o (z): R*¥ from a vector of logits z: R in the last
hidden layer (the penultimate layer), where k is the number of

classes:
exp(z;)

° O'(Z)l — 29{:1 eXp(Zj)
* The loss function is defined as the negative log likelihood of the
predicted probability corresponding to the correct label y:

hg(x)
* Loss(x,y; 0) = —loga(hg(x)y) = — log (z@fi&é&ﬂ) }
]=

log(X%_, exp(hg(x);)) — hg(x),
* Minimizing Loss(hg(x),y) amounts to maximizing the logit hg(x),,
corresponding to the correct label y

Untargeted vs. Targeted Attacks

* Untargeted attack: maximize loss of the true class y:
* max Loss(x + 6,y;0)
* Since SoftMax is a monotonic function:
* Loss(x +6,y;0) = log(Z;‘:l exp(hg (x + i
8);)) — ho(x + 8), max (I
* This is equivalent to minimizing logit of the true class y : Pred: 7 OE d
* min hg(x + 6),,
* Targeted attack: maximize loss of the true class y and ?
minimize loss of a particular target class y;4r4, in order
to change label to y¢4r4:
* max (Loss(x + 6,y;60) — Loss(x + 6, Yeargs 9))

* This is equivalent to minimizing logit of the true class y
while maximizing logit of the target class y;4r4:

* min (hg(x + 8)y — ho(x + 8)y,,,,)

e Alternative formulation: minimizing logit of all the other
classes y" while maximizing logit of the target class y;44:

) rglegl (Zy’iwarg he (x + 6)3” —he(x + 5)}’targ)

Outline

* Adversarial attacks via local search
* Physically-realizable attacks
* Training adversarially robust models

19

Physically-Realizable Attacks

* Instead of directly manipulating pixels, it is possible to modify physical objects
and cause miss-classification

e [Evtimov et al 2017]: Physical Adversarial Examples Against Deep Neural
Networks

* https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

e

[Kurakin Goodfellow Bengio 2017]
e
4 -" ! % ': K

[Sharif Bhagavatula Bauer Reiter 2016]

[Eykholt Evtimov Fernandes Li Rahmati Xiao Prakash Kohno Song 2017]

20

https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

An optimization approach to creating robust
adversarial examples

* The following optimization problem for targeted attack aims to
minimize the cost function for input x + 6 and target label y;4,4 (4
is the Lagrange multiplier; the objective tries to minimize the
perturbation [|6]|,, instead of putting a hard bound on [|5]|,)

* argming A[|8]l, + J(fo(x + 6), YViarg)

* To create a universal perturbation for robust adversarial examples,
enhance the training dataset with multiple (k) variants of the input
image at different viewing angles and lighting conditions

* argming /'1||5||p + Z 1](f9(x +6),y)

ool)

21

Optimizing Spatial Constraints

* To make the perturbation imperceptible to humans, we add a mask M, to localize
the perturbation to specific areas of the Stop Sign to mimic vandalism:

. 1 R
» argming AIM, - 8ll, + L 2isaJ (fo(x + My - 8),57)
* Use l; normin ||M, - 6|1 to find the most vulnerable regions (since [; loss promotes
sparsity), then generate perturbation é within these regions
* VVideo demos:

* “Bo Li — Secure Learning in Adversarial Autonomous Driving Environments”
https://www.youtube.com/watch?v=0VfBGWnFNuw&t=421s

O ~O
Model Physical Dynamics by Sampling QO :5 b Dutput‘ SLF;S'ETD
from Distribution O O 45

BESEe
@‘ ——— Stationary + Drive-By Testing |

JIOPRTOP
a. S8

—

. \ - "
Perturbed Stop Sign Under
Varying Distances/Angles

https://www.youtube.com/watch?v=0VfBGWnFNuw&t=421s

Adversarial Traffic Signs

Distance/Angle

Subtle Poster

Subtle Poster
Right Turn

Camouflage
Graffiti

Camouflage Art
(LISA-CNN)

Camouflage Art

= L4 |

3% 15

107 0°

107 30°

407 0°

(GTSRB-CNN)

Targeted-Attack Success

23

Blackbox Attacks

* We have been discussing Whitebox attacks, where we know the NN model parameters 6
* Black Box Attacks:

 If you have the training dataset of the target Blackbox model:
* Train a proxy Whitebox model yourself
* Generate attacked objects for the proxy model

 If you do not have the training dataset, you can obtain input-output data pairs from the
target Blackbox model by invoking online cloud services

* May get expensive if the cloud service is not free Attacked

Input Image

Target Proxy
Blackbox % Whitebox —}%
Model Model

Training Data

Blackbox Attack Example

* [Evtimov et al 2017]: Physical
adversarial examples generated for
the YOLO object detector (the
proxy Whitebox model) are also be
able to fool Faster-RCNN (the
Blackbox model)

25

Phantom of the ADAS

* A phantom is a depthless presented/projected picture of a 3D object
#e.g., pedestrian, traffic sign, car, truck, bicycle...), with the purpose of
ooling ADAS to treat it as a real object and trigger an automatic
reaction

* Phantom attacks by projecting a phantom via a drone equipped with a
portable projector:

* https://www.youtube.com/watch?v=1cSwa4fXYqWI|&t=85s

e or by presenting a phantom on a hacked roadside digital billboard:
* https://www.youtube.com/watch?v=-EOQt s6bT 4

26

https://www.nassiben.com/phantoms

26

https://www.youtube.com/watch?v=1cSw4fXYqWI&t=85s
https://www.youtube.com/watch?v=-E0t_s6bT_4

Algorithm for Disguising Phantoms

. 1I. Ext_r?]ct key points as focus areas of human attention for every frame based on the SURF
algorithm

* 2. Compute a local score for every block in a frame that represents how distant a block is
from the focus areas, and embed phantoms into “dead areas” that viewers will not focus on

* 3. Display the phantom in at least t consecutive video frames (longer duration leads to
higher success rate)

Original frame Detecting focus areas in a frame
(in blue)

Phantom Duration (s)

100 |
8o |-
~
g 6of
w
v o
g —e— Mobil
) R s 0 leyve
Detecting dead areas in a frame Detecting dead areas in the g 40t ; 3
. . . 7 —*— Tesla
(in green) entire advertisement
20 -
~
o 2 or
g
¥ = L | L] :] L] : 1
w 104 4] 0.2 0.4 0.6 0.8 1

c N9 I8 YRIBLNBISANEE8ES 27

Constraints on Perturbations

* In Phantom of the ADAS attack, phantoms are embedded into
“dead areas” that human viewers are not likely to focus on

* Thereis no 6 € A norm constraint on the allowable
perturbations, since it may not be well-aligned with human
perception

Outline

* Adversarial attacks via local search
* Physically-realizable attacks
* Training adversarially robust models

29

Standard ML vs. Adversarial Robust ML

* Standard ML: Empirical Cost Minimization: m@in [E(x,y)~pLoss(x,y; 0)

* Adversarial Input Generation (untargeted attack): rglean Loss(x + 6,y; 0) (e.g., FGSM, PGD)

* Adversarial Robust ML: m@in [E(x,y)~p max Loss(x + 0,y; 0)

O0EA

* Inner maximization problem: generating an adversarial input by adding a small perturbation 6 (or

ensuring one does not exist)

e QOuter minimization problem: training a robust classifier in the presence of adversarial examples
* Higher network capacity enables more complex decision boundary and more robust classification

1) Simple decision 2) Adversarial
boundary examples Y
within L., balls

3) Training on
requires a
complex decision

boundary

30

Danskin’s Theorem

* How to compute the gradient of the objective with the max
term inside?

* Danskin’s Theorem:
V, max f,y) =V, f(x",y), where x = arg}rcnax f(x,y)
* (Only true when max is performed exactly)

* |n our case:

* Vg max Loss(x + 8,y;0) = VgLoss(x + 67, y; 8), where

6" = argmax Loss(x + 8, y; 0)
SEA
* Optimize through the max operator by finding the §* that maximizes

the loss function, then taking gradientat x + 6~

Adversarial Training [Goodfellow et al., 2014]

Repeat:
1. Select minibatch B, initialize gradient vector g := 0
2. For each (z,y) in B:
a. Find an attack perturbation 4* by (approximately) optimizing
0" = argmax {(hg(z + 0),y)
|6]| e
b. Add gradient at §*
g:=g+ Vel(hs(z +0%),y)
3. Update parameters 6
o
B:=0— Eg
* Adversarial training effectiveness is directly tied to how well we
perform the inner maximization. The key issue is incorporate a

strong attack into the inner maximization procedure

mein (xy)~D X Loss(x +0,y;0)

32

What Makes the Models Robust?

* The robust model has a smoother loss surface, making it more
difficult for an attacker to change the class label with small

gradient steps
Test Error, epsilon=0.1

74.4%
A41.7%
2.6% .
1.1% 0.9%\ 2-8%
— —_— I
ConvNet Robust ConvNet

Loss surface: Loss surface:
B Clean mFGSM mPGD standard training robust training

33

Loss Surfaces Examples

* Upper right fig shows a smooth loss
surface with small gradients near
the correct label and large distances
to other labels, which makes attacks
more difficult

* Lower right fig shows a less smooth
loss surface and small distances to
other labels, which makes attacks
easier

* You can also think of them as 2
different directions on the same loss
surface, and the attacker’s goal is to
find the optimal direction to change
input x (e.g., by gradient ascent
with FGSM or PGD)

y Y
N >
X
y y y'
_ : >
X

34

	Default Section
	Slide 1: L3.2 Adversarial Attacks
	Slide 2: Outline
	Slide 3: A Limitation of the (Supervised) ML Framework
	Slide 4: Adversarial Examples
	Slide 5: Adversarial Attacks w. Input Perturbation
	Slide 6: Vector Norms
	Slide 7: Vector Norm Balls
	Slide 8: l sub 2 vs. l sub infinity Norm Balls
	Slide 9: Maximization Problem for Finding Adversarial Examples
	Slide 10: Model Training vs. Local Search for Adversarial Input Generation
	Slide 11: Aside: Vector Derivative
	Slide 12: Projected Gradient Descent (PGD)
	Slide 13: Fast Gradient Sign Method (FGSM)
	Slide 14: Adversarial Examples by FGSM
	Slide 15: PGD w. Small Steps
	Slide 16: PGD Examples
	Slide 17: Review: Cross-Entropy Loss for Multi-Class Classification
	Slide 18: Untargeted vs. Targeted Attacks
	Slide 19: Outline
	Slide 20: Physically-Realizable Attacks
	Slide 21: An optimization approach to creating robust adversarial examples
	Slide 22: Optimizing Spatial Constraints
	Slide 23: Adversarial Traffic Signs
	Slide 24: Blackbox Attacks
	Slide 25: Blackbox Attack Example
	Slide 26: Phantom of the ADAS
	Slide 27: Algorithm for Disguising Phantoms
	Slide 28: Constraints on Perturbations
	Slide 29: Outline
	Slide 30: Standard ML vs. Adversarial Robust ML
	Slide 31: Danskin’s Theorem
	Slide 32: Adversarial Training [Goodfellow et al., 2014]
	Slide 33: What Makes the Models Robust?
	Slide 34: Loss Surfaces Examples

