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A Hierarchy of Planners

• Mission Planning: map-
level navigation

• Behavior Planning: 
choosing a behavior 
based on environmental 
conditions

• Motion Planning: 
includes path planning 
and speed profile 
generation, generates a 
reference trajectory to be 
tracked by controller
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Controller (PID, 

MPC…)

Reference Trajectory



Outline

• Route planning

• Behavior planning 

• Motion Planning

• Responsibility-Sensitive 

Safety (RSS)
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Route Planning

• Find the optimal path for navigation from 

Start to Goal on a weighted graph

• Graph search algorithms

– Dijkstra’s, A*,…
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BFS and DFS
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https://medium.com/@nihatkoc/dfs-vs-bfs-6b632c381ed6

• Breadth-First Search (BFS): at each node, expand all neighbor nodes at the 
present depth prior to moving on to the nodes at the next depth level. (Left 
figure)

• Depth-First Search (DFS): at each node, expand as far as possible along 
each branch before backtracking. (Right figure)

• BFS and DFS are inefficient since they do not consider edge costs for 
selecting the next node to expand. BFS is better than DFS for path planning: 

– BFS can finish after finding a path to the goal with total cost ≤ cost of all other partial 
paths.

– DFS must expand all nodes of the graph.

• They are not used for robotic path planning. Shown here for comparison 
purposes.



Running Example

• Shortest path is S → 𝐶 → 𝐸 with length 

10 + 12 = 22
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Cannot finish here, must expand node C, since total 

cost 25 > 10, cost of the other partial path through C.
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Must always expand all nodes.



Dijkstra’s Algorithm

• open[v] is sorted 

and popped in 

decreasing order 

of 𝑢𝐶𝑜𝑠𝑡 +
𝑢𝑣𝐶𝑜𝑠𝑡, cost of 

partial path to 

the source node 

𝑠.
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Dijkstra Example
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Dijkstra Example cont’
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extractPath() yields the shortest path 

S → 𝐶 → 𝐺 with length 10 + 12 = 22 
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A* Algorithm (Compare to Dijkstra)
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open[v] is sorted and popped in decreasing order of 

𝑢𝐶𝑜𝑠𝑡 + 𝑢𝑣𝐶𝑜𝑠𝑡 + ℎ(𝑣), cost of partial path to the 

source node 𝑠 plus estimated cost-to-go ℎ(𝑣) ≤ 

actual cost-to-go (called an admissible heuristic). A* 

with ℎ 𝑣 = 0 becomes Dijkstra’s algo.

open[v] is sorted and popped in 

decreasing order of 𝑢𝐶𝑜𝑠𝑡 + 𝑢𝑣𝐶𝑜𝑠𝑡, 

cost of partial path to the source node 𝑠.
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A* Example
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Node Cost to 

S

Est. cost-

to-go ℎ(𝑣)
Est. total 

cost

C 10 10.5 (<12 

actual)

20.5

A 2 22.5 (<23 

actual)

24.5

Closed set: S, C

Node Cost to 

S

Est. cost-

to-go ℎ(𝑣)
Est. total 

cost

G 22 0 (exact) 22

A 2 22.5 (<23 

actual)

24.5

extractPath() yields the shortest path 

S → 𝐶 → 𝐺 with length 10 + 12 = 22 

ℎ 𝑆 = 11.5 

ℎ 𝐴 = 22.5 

ℎ 𝐶 = 10.5 

ℎ 𝐴 = 22.5 Closed set: S



How to Design an Admissible Heuristic?

• In the weighted graph representing the road 
network, edge cost may be travel distance, or 
travel time taking into account factors such as 
speed limit, traffic congestion level, etc. 

– If objective is to minimize total travel distance 
from start to goal, then edge cost is travel 
distance between two locations. We can set ℎ(𝑣)
to be the straight-line distance to goal.

– If objective is to minimize total travel time from 
start to goal, then edge cost is travel time 
between two locations. We can set ℎ(𝑣) to be the 
straight-line distance to goal divided by the 
maximum speed limit.
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Exercise
• Consider the following graph. Number pairs in parenthesis denote 

Cartesian coordinates of the node. Find the shortest path (green) 
from s (start) to t (goal) with:
– Dijkstra’s algo

– A* with heuristic function ℎ(𝑣) as the straight-line distance to goal.
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A* vs. Dijkstra

• Red crosses denote obstacles.

• Green circles denote explored positions.

• A* search is more efficient, as it is directed 
towards the target; Dijkstra’s algorithm 
explores in every direction and less efficient.

16
Grid Map A* Algorithm Dijkstra’s Algorithm



A* vs. Dijkstra (Animation)

17https://github.com/AtsushiSakai/PythonRobotics

More animations https://qiao.github.io/PathFinding.js/visual/

Dijkstra A* 

https://qiao.github.io/PathFinding.js/visual/


Outline

• Route planning

• Behavior planning 

• Motion Planning

• Responsibility-Sensitive 

Safety (RSS)
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Behavior Planner

• Plan the set of high-level 
driving actions, or 
maneuvers to safely 
achieve the driving 
mission under various 
driving situations based 
on:
– Rules of the road (traffic 

lights, stop signs…)

– Static objects (parked 
vehicles…)

– Dynamic objects (moving 
vehicles, cyclists, 
pedestrians…). Need 
behavior prediction.
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Driving Maneuvers

• Track speed
– Maintain current speed consistent with other vehicles on the 

road.

• Follow leader
– Match speed of the leading vehicle and maintain a safe distance.

• Decelerate to stop
– Begin decelerating and stop before a given space.

• Stop
– Remain stopped in the current position.

• Change lanes

• Turn
– Left, right, U-turn…

• Pass
– Complex maneuver involving changing lanes, passing, (optional) 

changing back to ego-lane.
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Behavior Planning Approaches

• Finite State Machine-
based

– Transitions triggered by 
inputs

• Rule-based: Logical 
statements with priorities

• Reinforcement Learning-
based

– Learned from trial-and-
error to maximize 
cumulative reward.
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FSM-based example: traffic light 

changing color

Rule1: green light at intersection → 

drive straight

Rule 2: pedestrian in intersection → 

stop

Rule-based planning example: Rule 

2 has higher priority and overrides 

Rule 1



An Intersection Scenario without 

Dynamic Objects
• 4-way intersection

• Two-lane road

• Stop sign in every 
direction

• No other dynamic 
objects

• Discretized into
– Approaching zone (red 

box)

– At zone (green box)

– On zone (orange box)

• Size of each zone 
determined by
– Ego vehicle speed

– Size of the intersection
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• To make the state machine more robust to noise in state estimation, 
may change Ego.Velocity==0 to Ego.Velocity<=StopThreshold

• For an intersection with stop signs, there is no transition from 
“Decelerate to Stop” to “Track Speed”, since vehicle must come to a 
complete stop at a Stop sign 

• For an intersection with traffic lights, there should be such a 
transition, as the light may turn green while vehicle is decelerating. 

24

✔



An Intersection Scenario with 

Dynamic Objects
• Additional state 

“Follow Leader” to 
handle situation 
when another 
vehicle is in front of 
ego-vehicle.

• Again, no transition 
from “Decelerate to 
Stop” to “Track 
Speed”, since 
vehicle must come 
to a complete stop 
at a Stop sign 
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Handling Multiple Scenarios with 

Hierarchical FSM
• Each driving scenario is modeled as a super-state, which contains a low-level 

FSM for the scenario.

• (Each low-level FSM is specific for the scenario, e.g., the two FSMs in the 
figure have different trigger conditions not shown)

26Entry transitions

Exit 

transitions



Handling Multiple Scenarios with 

Hierarchical FSM
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Limitations of FSM-based Behavior 

Planning
• State explosion for many and complex 

scenarios

• Dealing with measurement noise and 
uncertainty of the environment

– Hyperparameters can be used to deal with some 
noise, but only in some limited situations, e.g., 
Ego.Velocity<=StopThreshold instead of 
Ego.Velocity==0

• Incapable of dealing with unencountered 
scenarios

• Reinforcement Learning is a promising 
alternative

28



Outline

• Route planning

• Behavior planning 

• Motion Planning

• Responsibility-Sensitive 

Safety (RSS)
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Vehicle Control Architecture

30



Motion Planning

• Generate a feasible (smooth and collision-

free) trajectory 

– A trajectory is a path parametrized by time

31



Motion Planning Methods

• Also called trajectory planning 
or local planning, includes 
path planning and speed 
profile generation:

– Path planning: 
• Plan a path from point A to point B

– Speed profile generation
• Assign a speed value to every 

point on a given path

– Variational planning: combine 
both path planning and velocity 
planning to generate a trajectory 
in a single-step (omitted) 

32



Occupancy Grid

• Discretized grid map encoding occupancy 
of static objects (e.g., all non-drivable 
surfaces are occupied, incl. trees, 
buildings, sidewalks, lawns…), obtained 
with Lidar or camera

• Can be binary encoding (upper left), or 
probabilistic encoding (upper right), using a 
belief threshold to convert to binary 
encoding 33



Rapidly-exploring Random Tree (RRT)
• Insert start location S in tree

• While tree cannot connect to goal
– Sample random point 𝑟
– Find point 𝑝 in tree that is closest to 𝑟
– Add branch between 𝑝 and 𝑟

• Another variant is to add branch of predefined length from 𝑝 in direction of 𝑟

– If new branch intersects obstacle:
• Discard new branch (or shorten)

• Compute path from start (S) to goal (G) through tree

• Shortcut path: for any two points in path, add direct line unless direct line 
intersect an obstacle (collision checking)

34
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Path Smoothing
• Left: an example completed path

• Right: smoothed path (green), obtained by iteratively 
sampling points between nodes on the overall path 
and then checking if two points could be connected to 
reduce path length

35http://coecsl.ece.illinois.edu/ge423/spring13/RickRekoskeAvoid/rrt.html



RRT Animation

• RRT growth process (with start location but no 

goal location)

36More animations https://www.youtube.com/watch?v=pOFtvZ_qVsA

https://www.youtube.com/watch?v=pOFtvZ_qVsA


Probabilistic Roadmap (PRM) 

• Map construction:

• While # points in roadmap lower 
than threshold
– Sample random point 

– If new point is not in collision:
• Connect new point to all other points 

in the roadmap with lines, as long as 
they do not intersect obstacles.

• Path finding:
– Connect start location to nearest 

point in roadmap s.t. connecting 
line does not intersect obstacle

– Connect goal location to nearest 
point in roadmap s.t. connecting 
line does not intersect obstacle

– Find a path between start and goal 
traversing the roadmap, with 
algorithms such as as A* or 
Dijkstra’s algo.

37By Eric O. Scott - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44485745



RRT vs. PRM

• With RRT, each time new start/goal 

locations are given, an entirely new graph 

must be generated, which may be 

inefficient. 

• PRM builds a roadmap graph for traveling 

through a region, but relies on A* or 

Dijkstra’s algo to find the shortest path 

from start to goal traversing the roadmap. 

Hence the roadmap is reused each time 

new start/goal locations are given.
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RRT & PRM

• Many variants of RRT and PRM are 
probabilistically complete: 

– If a path exists, it will be found in finite time

– But in the worst-case, solution time can be very 
long (even longer than exhaustive search)

• No guarantees on solution quality

– May not find the shortest path 
• With PRM, A*/Dijkstra is guaranteed to find the shortest 

path for the given roadmap, but the roadmap may not 
be optimal.

– Often needs post-processing (e.g., smoothing)

39



Quiz

• Which statement is true for RRT and PRM 

motion planning algorithms?

– A. Both algorithms will produce the shortest path.

– B. Both algorithms can be used for high 

dimensional spaces 

• Robotic motion planning may be high-dimensional; 

mobile robot path planning is low-dimensional (3 for 

ground robot, 6 for aerial robot).

– C. PRM always results in a better path than RRT.

– D. The time for computation is consistent and 

predictable.

• ANS: B
40



Parametric Curve-based Planning
• Non-parametric path: a path is represented as a sequence of points 

(as in A*, Dijkstra’s algo, RRT/PRM)

• Parametric path: a smooth parametric curve that satisfies boundary 
conditions at 2 end points, constraints on curvature, and optimizes 
an objective function.

– 𝑥0, 𝑦0, 𝜃0, 𝜅0 , (𝑥𝑓 , 𝑦𝑓, 𝜃𝑓, 𝜅𝑓): pose (position and heading angle) and 

curvature (𝜅 =
1

𝑅
, inverse of radius of rotation) of starting and final points

– 𝜅 ≤ 𝜅𝑚𝑎𝑥: curvature has an upper bound for every point on the curve, 
to help satisfy kinematic/dynamic constraints, and improve rider comfort.

• Example: Quintic splines and polynomial spirals

41Coursera MOOC Motion Planning for Self-Driving Cars



Quintic Splines
• Path modeled as 5th-order polynomials, with closed-form solutions for 

boundary conditions (𝑥, 𝑦, 𝜃, 𝜅)

– 𝑥 𝑢 = 𝛼5𝑢5 + 𝛼4𝑢4 + 𝛼3𝑢3 + 𝛼2𝑢2 + 𝛼1𝑢 + 𝛼0

– 𝑦 𝑢 = 𝛽5𝑢5 + 𝛽4𝑢4 + 𝛽3𝑢3 + 𝛽2𝑢2 + 𝛽1𝑢 + 𝛽0

– 𝑢 ∈ [0,1]

– The curve connects from start point (𝑥 0 , 𝑦(0)) to end point 𝑥 1 , 𝑦 1

• Pro: path has closed-form equation for given start and end points

• Con: curvature function and its derivatives may be discontinuous

42
https://pythonrobotics.readthedocs.io/en/latest/modules/path_planning.html



Polynomial Spirals
• Curvature defined as polynomial function (cubic or higher): 

– 𝜅 𝑠 = 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0

– It is smooth and never discontinuous, so constraining a few points often enough to constrain the entire 
curve.

• Path modeled based on curvature function: 

– 𝜃 𝑠 = 𝜃0 + 0׬

𝑠
𝑎3𝑠′3 + 𝑎2𝑠′2 + 𝑎1𝑠′1 + 𝑎0 𝑑𝑠′ = 𝜃0 + 𝑎3

𝑠4

4
+ 𝑎2

𝑠3

3
+ 𝑎1

𝑠2

2
+ 𝑎0𝑠

– 𝑥 𝑠 = 𝑥0 + 0׬

𝑠
cos 𝜃 𝑠′ 𝑑𝑠′

– 𝑦 𝑠 = 𝑦0 + 0׬

𝑠
sin 𝜃 𝑠′ 𝑑𝑠′

• Pro: curvature function is smooth, so curvature can be given upper bound constraint.

• Con: path has no closed-form equation; Fesnel integrals need to be computed with numerical 
integration using Simpson’s rule, which divides the integration interval into 𝑛 regions, and 
evaluates the function at each region boundary:

– 0׬

𝑠
𝑓 𝑠′ 𝑑𝑠′ ≈

𝑠

3𝑛
𝑓 0 + 4𝑓

𝑠

𝑛
+ 2𝑓

2𝑠

𝑛
+ ⋯ + 𝑓(𝑠) (fig below shows example w. 𝑛 = 2)

– Numerical Integration| What is Simpson's Rule? [Intuition] 
https://www.youtube.com/watch?v=DdNAcv_rezc

43
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Bending Energy Optimization Objective

44

• Consider curvature modeled as Cubic spiral.

• Minimize Bending Energy, defined as integral of squared curvature 
along the path, to distribute curvature evenly along spiral to promote 
comfort:

– Min 𝑓𝑏𝑒 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑠𝑓 = 0׬

𝑠𝑓 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0
2 𝑑𝑠

• Subject to constraints:
– End point constraints: 

• Starting point: 𝑥𝑠 0 , 𝑦𝑠 0 , 𝜃 0 , 𝜅 0 = 𝑥0, 𝑦0, 𝜃0, 𝜅0

• Ending point: 𝑥𝑠 𝑠𝑓 , 𝑦𝑠 𝑠𝑓 , 𝜃 𝑠𝑓 , 𝜅 𝑠𝑓 = 𝑥𝑓 , 𝑦𝑓, 𝜃𝑓 , 𝜅𝑓

– Curvature constraints for two intermediate points:

• 𝜅(
𝑠𝑓

3
) ≤ 𝜅𝑚𝑎𝑥 , 𝜅(

2𝑠𝑓

3
) ≤ 𝜅𝑚𝑎𝑥

• The optimization problem has closed-form solutions



Soft Constraints

• Since it is challenging to satisfy hard 

equality constraints, they can be softened 

into penalty terms in the objective function:

– Min 𝑓𝑏𝑒 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑠𝑓 + 𝛼 𝑥𝑠 𝑠𝑓 − 𝑥𝑓 +

𝛽 𝑦𝑠 𝑠𝑓 − 𝑦𝑓 + 𝛾 𝜃𝑠 𝑠𝑓 − 𝜃𝑓

– s.t. 𝜅(
𝑠𝑓

3
) ≤ 𝜅𝑚𝑎𝑥 , 𝜅

2𝑠𝑓

3
≤ 𝜅𝑚𝑎𝑥 , 𝜅 𝑠𝑓 = 𝜅𝑓

45



Example Spline vs. Spiral

46



Speed Profile Generation

• Behavior planner provides reference speed to 
local planner
– May be current road speed limit

– Or current maneuver (stopping due to Stop sign or 
red light, following a lead vehicle…)

• Time-To-Collision (TTC) can be computed by 
difference in speeds 𝑣𝑒𝑔𝑜 − 𝑣𝑙𝑒𝑎𝑑 divided by 
distance (arc length 𝑠)

47



Curvature and Lateral Acceleration

• Speed also bounded by max lateral 
acceleration and curvature

– 𝑣𝑘 ≤
𝑎𝑙𝑎𝑡

𝜅𝑖

• Final reference speed selected as minimum 
of all upper bounds

48



Speed Profile Examples

49



Linear Ramp vs. Trapezoidal 

Profile
• Linear ramp profile: constant acceleration to 

reach reference speed

• Trapezoidal profile: constant-0-constant 
deceleration (e.g., for stopping at red light)

50



Linear Ramp Profile
• Given path length 𝑠 and initial/final speeds 𝑣0, 𝑣𝑓, compute required 

acceleration 𝑎:

– 𝑎 =
𝑣𝑓

2−𝑣0
2

2𝑠

– Proof: consider a robot with starting speed 𝑣0 and constant acceleration 𝑎. After time 

𝑡, it reaches speed of 𝑣0 + 𝑎𝑡 = 𝑣𝑡, and travels a distance of 𝑠 =
𝑣0+𝑣𝑡

2
𝑡 =

𝑣𝑡
2−𝑣0

2

2𝑎
.

• May clamp acceleration 𝑎 to improve rider comfort.

• For each path segment, compute speed using accumulated path arc length 
𝑠𝑖 up to that point, to generate the speed profile:

– 𝑣𝑓𝑖
= 2𝑎𝑠𝑖 + 𝑣0

2

51



Trapezoidal Profile
• Given total path length 𝑠, 

initial/final speeds 𝑣0, 𝑣𝑓, and 
transit speed 𝑣𝑡.

• For 1st segment 𝑠𝑖 ≤ 𝑠𝑎: 

– Compute path arc length: 𝑠𝑎 =
𝑣𝑡

2−𝑣0
2

2𝑎0

– Then compute speed profile: 𝑣𝑓𝑖 =

2𝑎0𝑠𝑖 + 𝑣0
2

• For 2nd segment sa ≤ 𝑠𝑖 ≤ 𝑠𝑏: 
– Speed is constant 𝑣𝑓𝑖 = 𝑣𝑡

• For 3rd segment sb ≤ 𝑠𝑖 ≤ 𝑠𝑓, 

– Compute path arc length: 𝑠𝑓 − 𝑠𝑏 =
0−𝑣𝑡

2

2𝑎0

– Then compute speed profile: 𝑣𝑓𝑖 =
2𝑎0(𝑠𝑖−𝑠𝑏) + 𝑣𝑡

2
52
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Outline

• Route planning

• Behavior planning 

• Motion Planning

• Responsibility-Sensitive 

Safety (RSS)
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Avoid collisions at all cost?

• But absolute safety is impossible. 

• In the scenario below, the AV (yellow car in the center lane) can do 
nothing to ensure absolute safety.

– If the red car swerves into the AV, collision cannot be prevented 

• To avoid this scenario, should the AV never drive in the center lane? 
Or should it never leave the garage? 

– Avoiding collisions at all cost leads to a useless system.

54



Explicit Traffic Rules

• Hard rules set limits on 
vehicle operation. 
Examples:
– Come to complete stop 

at red lights

– Don’t cross a double-
yellow line

– Obey posted speed 
limits

– Yield to other road 
users when signaled

– …

• These rules can be 
programmed into the 
AV.

55



Implicit Traffic Rules

• A general set of principles applied by the 

human driver. They are flexible and culturally 

dependent.

– Keep a safe distance from the car in front of you.

– Drive cautiously under limited visibility.

– Don’t drive slowly in the fast lane.

– Don’t cut off other drivers.

– …

• How to formalize and program these rules 

into the AV?
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Responsibility-Sensitive Safety (RSS)
• RSS formalizes human notions of safe driving into a verifiable 

model with logically provable rules, defines appropriate 
responses, and ensures that only safe decisions are made by 
the AV, and clearly assigns blame/responsibility in case of 
accidents.

• Goal: An AV should never be responsible for accidents, 
meaning:
– It should never cause accidents

– It should properly respond to mistakes of other drivers

• RSS is a mathematical, interpretable model, formalizing the 
implicit rules (common sense) of
– What is a dangerous situation?

– What is the proper response to a dangerous situation?

– Who is responsible for an accident?

• RSS: Safety Assurance for Automated Vehicles 
https://www.youtube.com/watch?v=EceAB6TUYzo
– Shalev-Shwartz S, Shammah S, Shashua A. On a formal model 

of safe and scalable self-driving cars[J]. arXiv preprint 
arXiv:1708.06374, 2017. 
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Five Rules of RSS

• 1. Do not hit the car in front (safe longitudinal distance. See 
figure below for example)

• 2. Do not cut-in recklessly (safe lateral distance)

• 3. Right-of-Way is given, not taken.

• 4. Be careful in areas with limited visibility

• 5. If you can avoid a crash without causing another, you must
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RSS: High-Level Description

• Define safe distance (longitudinal).

• A situation is dangerous if it is non-safe 
longitudinally.

• Blame time: the first moment in which the situation 
becomes dangerous

• Proper response:
– If the longitudinal distance becomes non-safe, brake 

longitudinally.

• Responsibility:
– We prove that a collision can only occur if one of the 

agents did not respond properly.

– The responsibility is on the agent(s) that did not 
respond properly.
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Non-safe Lateral Maneuver

• Proper response: red should brake laterally,

– since red is cutting into yellow’s lane.

– “Brake laterally” means “brake while steer to the 

right direction”.
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Non-Safe Longitudinal Maneuver

• Proper response: yellow should brake,

– Since yellow is driving too fast and getting too 

close.
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Responsibility 

• Hit from behind 
– Yellow is not 

responsible for the 
accident.
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• Side hit
– Red is not responsible 

for the accident.



Keep Safe Distances

• The AV (blue car) should keep safe longitudinal and 
lateral distances from other cars
– If the front car slams on the brakes, how much longitudinal 

distance does it need to avoid a rear-end collision?

– If the left or right car suddenly swerves, how much lateral 
distance does it need to avoid a side collision?
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Rule 1: Safe Longitudinal Distance
• Consider two cars travelling in the same direction: front car 𝑐𝑓 and rear car 𝑐𝑟. 

In order to ensure that 𝑐𝑟 will never hit 𝑐𝑓 from behind, it is the responsibility of 
𝑐𝑟 to keep a safe longitudinal distance 𝑑𝑚𝑖𝑛 from 𝑐𝑓. The worst-case situation is 
that 𝑐𝑓 suddenly brakes hard, it will take 𝑐𝑟 some response time 𝜌 (sensing and 
reaction delay) to realize this and to start braking as well, and then both cars 
will decelerate. Assuming known parameters of: 𝑣𝑓: front vehicle speed; 𝑣𝑟: rear 
ego-vehicle speed; 𝛽𝑚𝑎𝑥: maximum deceleration rate due to braking for 𝑐𝑓; 
𝛽𝑚𝑖𝑛:minimum deceleration rate for 𝑐𝑟; 𝛼𝑚𝑎𝑥:maximum acceleration rate for 𝑐𝑟, 
we can derive 𝑑𝑚𝑖𝑛 as:
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Safe Longitudinal Distance: the Proof
• Red (black) lines indicate accel/velocity/position of front (rear) car.

• At time 0, the initial distance between front car 𝑐𝑓 and rear car 𝑐𝑟 is 
𝑑0, and front car and rear car have initial speeds 𝑣𝑓 and 𝑣𝑟, 
respectively. Assuming 𝛽min ≤ 𝛽max, their distance will decrease 
monotonically with time. To avoid collision, the minimum initial 
distance 𝑑𝑚𝑖𝑛 can be obtained by assuming both cars will come to 
a full stop at some time 𝑡𝑐 with distance 𝑑 = 0. 

• Front car: during time interval [0, 𝑡𝑐], front car applies brake with 

constant deceleration 𝛽max, and travels a distance of 
𝑣𝑓

2

2𝛽𝑚𝑎𝑥

(average speed 
𝑣𝑓

2
times time-to-stop 

𝑣𝑓

𝛽𝑚𝑎𝑥
).

• Rear car: during time interval [0, 𝜌], rear car accelerates with 
constant acceleration 𝛼𝑚𝑎𝑥. At time 𝜌, it reaches speed of 𝑣𝜌,𝑚𝑎𝑥 =
𝑣𝑟 + 𝜌𝛼𝑚𝑎𝑥, and travels a distance of (𝑣𝑟 +

1

2
𝜌𝛼𝑚𝑎𝑥)𝜌 = 𝑣𝑟𝜌 +

1

2
𝛼𝑚𝑎𝑥𝜌2. During time interval [𝜌, 𝑡𝑐], rear car applies brake with 

constant deceleration 𝛽min. At time 𝑡𝑐, it reaches speed of 0, and 

travels a distance of 
𝑣𝜌,𝑚𝑎𝑥

2

2𝛽𝑚𝑖𝑛
=

𝑣𝑟+𝜌𝛼𝑚𝑎𝑥
2

2𝛽𝑚𝑖𝑛
.

• Min initial distance 𝑑min =distance traveled by rear car before full 

stop - distance traveled by front car before full stop= ൤

൨

𝑣𝑟𝜌 +
1

2
𝛼𝑚𝑎𝑥𝜌2 +

𝑣𝑟+𝜌𝛼𝑚𝑎𝑥
2

2𝛽𝑚𝑖𝑛
−

𝑣𝑓
2

2𝛽𝑚𝑎𝑥 +
, where 𝑥 + = max(0, 𝑥).
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Safety vs. Efficiency
• RSS allows to formally define the desired balance of safety and efficiency of 

AVs on the road.
– e.g., 𝑑𝑚𝑖𝑛 is larger if we assume a large deceleration rate 𝛽𝑚𝑎𝑥 for the front car; or 

larger acceleration rate 𝛼𝑚𝑎𝑥 or smaller deceleration rate 𝛽𝑚𝑖𝑛 for the rear car. So the 
AV will drive more conservatively, resulting in lower efficiency, and vice versa

• These parameters should be determined by regulatory authorities working 
with the car makers.

– E.g., NHTSA (National Highway Traffic Safety Administration) in USA.
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Proper Response

• The moment the distance between the two cars is less than 
𝑑𝑚𝑖𝑛, the AV will perform the proper response: after a 
response time 𝜌, apply braking of at least 𝛽𝑚𝑖𝑛 until a safe 
following distance is restored or until the vehicle comes to a 
complete stop.

• RSS can be a proactive safety mechanism that improves 
Automatic Emergency Braking (AEB). Called Automatic 
Preventive Braking (APB), it determines the moment when a 
vehicle enters a dangerous situation, then uses comfortable, 
subtle braking (𝛽𝑚𝑖𝑛) to help return the vehicle to a safer 
position without waiting for an imminent collision to engage 
maximum braking force. This preventive approach would 
provide a stopping distance buffer that could prevent a chain 
reaction of braking and swerving should an emergency stop 
occur.
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Other RSS Rules

• Rule 2: Safe Lateral Distance
– Safe lateral distance enables AVs to be aware when their lateral safety 

may be compromised by unsafe drivers turning into their lanes.

• Rule 3. Right of way is given, not taken
– On well-marked roads, the right of way is clear. Lane lines, signs, and 

traffic lights establish priorities for routes as they intersect one another. 
However, there are other times when the right of way is less clear, and 
human drivers must negotiate with one another.

• Rule 4. Be cautious in areas with limited visibility
– Drivers must proceed cautiously, especially as they approach 

crosswalks or pass cars parked along the street

• Rule 5. If the vehicle can avoid a crash without causing another one, 
it must
– It covers scenarios where a dangerous situation may have been 

imposed so suddenly that a collision cannot be avoided unless a more 
evasive action is taken. e.g., if boxes fall off the front car, and the next 
lane is free, the following car can take evasive action to avoid the 
accident.
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Integration into Apollo and CARLA

• RSS is open-source as a C++ library. 
It has been integrated into Baidu 
Apollo’s planner module, and the 
driving simulator CARLA

• RSS safety sensor in CARLA
– Use the opensource library to evaluate if 

a driving situations is safe or unsafe 
according to RSS. In that regard, a 
driving situation is composed of the ego 
vehicle (here in this video the ego 
vehicle is the one focused by the 
camera), and another traffic participant 
(e.g. a leading vehicle). The sensor 
evaluates longitudinal and lateral 
conflicts, but does not yet cover 
intersection conflicts. 

– The results are highlighted via green (all 
safe), yellow (only lateral or longitudinal 
unsafe) and red lines (dangerous 
situation that requires to a counter 
measure according to RSS).

– https://www.youtube.com/watch?v=UxK
PXPT2T8Q
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Summary

• RSS formalizes what is dangerous, what is 

the proper response to danger, and who is 

responsible for accidents.

• Soundness: it complies with the common 

sense of human judgement.

• Usefulness: we give 100% guarantees to 

never cause accidents and always 

properly respond to dangerous situations.
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