
L5 Planning

1

Acknowledgement: slides partly based on https://www.coursera.org/learn/motion-planning-self-driving-cars

Zonghua Gu, Umeå University

Nov. 2023

A Hierarchy of Planners

• Mission Planning: map-
level navigation

• Behavior Planning:
choosing a behavior
based on environmental
conditions

• Motion Planning:
includes path planning
and speed profile
generation, generates a
reference trajectory to be
tracked by controller

2

Controller (PID,

MPC…)

Reference Trajectory

Outline

• Route planning

• Behavior planning

• Motion Planning

• Responsibility-Sensitive

Safety (RSS)

3
Paden B, Čáp M, Yong S Z, et al. A survey of motion planning and control techniques for

self-driving urban vehicles[J]. IEEE Transactions on intelligent vehicles, 2016, 1(1): 33-55.

Route Planning

• Find the optimal path for navigation from

Start to Goal on a weighted graph

• Graph search algorithms

– Dijkstra’s, A*,…

4

BFS and DFS

5
https://medium.com/@nihatkoc/dfs-vs-bfs-6b632c381ed6

• Breadth-First Search (BFS): at each node, expand all neighbor nodes at the
present depth prior to moving on to the nodes at the next depth level. (Left
figure)

• Depth-First Search (DFS): at each node, expand as far as possible along
each branch before backtracking. (Right figure)

• BFS and DFS are inefficient since they do not consider edge costs for
selecting the next node to expand. BFS is better than DFS for path planning:

– BFS can finish after finding a path to the goal with total cost ≤ cost of all other partial
paths.

– DFS must expand all nodes of the graph.

• They are not used for robotic path planning. Shown here for comparison
purposes.

Running Example

• Shortest path is S → 𝐶 → 𝐸 with length

10 + 12 = 22

6

S A B

C

2 3

G

10

12

20

S A B

C

2 3

G

10

12

20

BFS

S A B

C

2 3

G

10

12

20

7

S A B

C

2 3

G

10

12

20

S A B

C

2 3

G

10

12

20

S A B

C

2 3

G

10

12

20

S A B

C

2 3

G

10

12

20

Cannot finish here, must expand node C, since total

cost 25 > 10, cost of the other partial path through C.

S A B

C

2 3

G

10

12

20

DFS

S A B

C

2 3

G

10

12

20

8

S A B

C

2 3

G

10

12

20

S A B

C

2 3

G

10

12

20

S A B

C

2 3

G

10

12

20

S A B

C

2 3

G

10

12

20

Must always expand all nodes.

Dijkstra’s Algorithm

• open[v] is sorted

and popped in

decreasing order

of 𝑢𝐶𝑜𝑠𝑡 +
𝑢𝑣𝐶𝑜𝑠𝑡, cost of

partial path to

the source node

𝑠.

9

S A B

C

2 3

G

10

12

20

Dijkstra Example

Node Cost to S

S 0

S A B

C

2 3

G

10

12

20

S A B

C

2 3

G

10

12

20

Node Cost to S

A 2

C 10

Node Cost to S

B 5

C 10

Closed set: S

Closed set: S, A

10

S A B

C

2 3

G

10

12

20

Dijkstra Example cont’

Node Cost to S

C 10

G 25

S A B

C

2 3

G

10

12

20

S A B

C

2 3

G

10

12

20

Node Cost to S

G 22

Closed set: S, A, B

Closed set: S, A, B, C

extractPath() yields the shortest path

S → 𝐶 → 𝐺 with length 10 + 12 = 22

11

A* Algorithm (Compare to Dijkstra)

12

open[v] is sorted and popped in decreasing order of

𝑢𝐶𝑜𝑠𝑡 + 𝑢𝑣𝐶𝑜𝑠𝑡 + ℎ(𝑣), cost of partial path to the

source node 𝑠 plus estimated cost-to-go ℎ(𝑣) ≤

actual cost-to-go (called an admissible heuristic). A*

with ℎ 𝑣 = 0 becomes Dijkstra’s algo.

open[v] is sorted and popped in

decreasing order of 𝑢𝐶𝑜𝑠𝑡 + 𝑢𝑣𝐶𝑜𝑠𝑡,

cost of partial path to the source node 𝑠.

S A B

C

2 3

G

10

12

20

A* Example

Node Cost to

S

Est. cost-

to-go ℎ(𝑣)
Est. total

cost

S 0 11.5 (<22

actual)

11.5

S A B

C

2 3

G

10

12

20

S A B

C

2 3

G

10

12

20

Closed set: S

13

Node Cost to

S

Est. cost-

to-go ℎ(𝑣)
Est. total

cost

C 10 10.5 (<12

actual)

20.5

A 2 22.5 (<23

actual)

24.5

Closed set: S, C

Node Cost to

S

Est. cost-

to-go ℎ(𝑣)
Est. total

cost

G 22 0 (exact) 22

A 2 22.5 (<23

actual)

24.5

extractPath() yields the shortest path

S → 𝐶 → 𝐺 with length 10 + 12 = 22

ℎ 𝑆 = 11.5

ℎ 𝐴 = 22.5

ℎ 𝐶 = 10.5

ℎ 𝐴 = 22.5 Closed set: S

How to Design an Admissible Heuristic?

• In the weighted graph representing the road
network, edge cost may be travel distance, or
travel time taking into account factors such as
speed limit, traffic congestion level, etc.

– If objective is to minimize total travel distance
from start to goal, then edge cost is travel
distance between two locations. We can set ℎ(𝑣)
to be the straight-line distance to goal.

– If objective is to minimize total travel time from
start to goal, then edge cost is travel time
between two locations. We can set ℎ(𝑣) to be the
straight-line distance to goal divided by the
maximum speed limit.

14

Exercise
• Consider the following graph. Number pairs in parenthesis denote

Cartesian coordinates of the node. Find the shortest path (green)
from s (start) to t (goal) with:
– Dijkstra’s algo

– A* with heuristic function ℎ(𝑣) as the straight-line distance to goal.

15

A* vs. Dijkstra

• Red crosses denote obstacles.

• Green circles denote explored positions.

• A* search is more efficient, as it is directed
towards the target; Dijkstra’s algorithm
explores in every direction and less efficient.

16
Grid Map A* Algorithm Dijkstra’s Algorithm

A* vs. Dijkstra (Animation)

17https://github.com/AtsushiSakai/PythonRobotics

More animations https://qiao.github.io/PathFinding.js/visual/

Dijkstra A*

https://qiao.github.io/PathFinding.js/visual/

Outline

• Route planning

• Behavior planning

• Motion Planning

• Responsibility-Sensitive

Safety (RSS)

18
Paden B, Čáp M, Yong S Z, et al. A survey of motion planning and control techniques for

self-driving urban vehicles[J]. IEEE Transactions on intelligent vehicles, 2016, 1(1): 33-55.

Behavior Planner

• Plan the set of high-level
driving actions, or
maneuvers to safely
achieve the driving
mission under various
driving situations based
on:
– Rules of the road (traffic

lights, stop signs…)

– Static objects (parked
vehicles…)

– Dynamic objects (moving
vehicles, cyclists,
pedestrians…). Need
behavior prediction.

19

Driving Maneuvers

• Track speed
– Maintain current speed consistent with other vehicles on the

road.

• Follow leader
– Match speed of the leading vehicle and maintain a safe distance.

• Decelerate to stop
– Begin decelerating and stop before a given space.

• Stop
– Remain stopped in the current position.

• Change lanes

• Turn
– Left, right, U-turn…

• Pass
– Complex maneuver involving changing lanes, passing, (optional)

changing back to ego-lane.

20

Behavior Planning Approaches

• Finite State Machine-
based

– Transitions triggered by
inputs

• Rule-based: Logical
statements with priorities

• Reinforcement Learning-
based

– Learned from trial-and-
error to maximize
cumulative reward.

21

FSM-based example: traffic light

changing color

Rule1: green light at intersection →

drive straight

Rule 2: pedestrian in intersection →

stop

Rule-based planning example: Rule

2 has higher priority and overrides

Rule 1

An Intersection Scenario without

Dynamic Objects
• 4-way intersection

• Two-lane road

• Stop sign in every
direction

• No other dynamic
objects

• Discretized into
– Approaching zone (red

box)

– At zone (green box)

– On zone (orange box)

• Size of each zone
determined by
– Ego vehicle speed

– Size of the intersection

22

23

✔

✔

• To make the state machine more robust to noise in state estimation,
may change Ego.Velocity==0 to Ego.Velocity<=StopThreshold

• For an intersection with stop signs, there is no transition from
“Decelerate to Stop” to “Track Speed”, since vehicle must come to a
complete stop at a Stop sign

• For an intersection with traffic lights, there should be such a
transition, as the light may turn green while vehicle is decelerating.

24

✔

An Intersection Scenario with

Dynamic Objects
• Additional state

“Follow Leader” to
handle situation
when another
vehicle is in front of
ego-vehicle.

• Again, no transition
from “Decelerate to
Stop” to “Track
Speed”, since
vehicle must come
to a complete stop
at a Stop sign

25

Handling Multiple Scenarios with

Hierarchical FSM
• Each driving scenario is modeled as a super-state, which contains a low-level

FSM for the scenario.

• (Each low-level FSM is specific for the scenario, e.g., the two FSMs in the
figure have different trigger conditions not shown)

26Entry transitions

Exit

transitions

Handling Multiple Scenarios with

Hierarchical FSM

27

Limitations of FSM-based Behavior

Planning
• State explosion for many and complex

scenarios

• Dealing with measurement noise and
uncertainty of the environment

– Hyperparameters can be used to deal with some
noise, but only in some limited situations, e.g.,
Ego.Velocity<=StopThreshold instead of
Ego.Velocity==0

• Incapable of dealing with unencountered
scenarios

• Reinforcement Learning is a promising
alternative

28

Outline

• Route planning

• Behavior planning

• Motion Planning

• Responsibility-Sensitive

Safety (RSS)

29
Paden B, Čáp M, Yong S Z, et al. A survey of motion planning and control techniques for

self-driving urban vehicles[J]. IEEE Transactions on intelligent vehicles, 2016, 1(1): 33-55.

Vehicle Control Architecture

30

Motion Planning

• Generate a feasible (smooth and collision-

free) trajectory

– A trajectory is a path parametrized by time

31

Motion Planning Methods

• Also called trajectory planning
or local planning, includes
path planning and speed
profile generation:

– Path planning:
• Plan a path from point A to point B

– Speed profile generation
• Assign a speed value to every

point on a given path

– Variational planning: combine
both path planning and velocity
planning to generate a trajectory
in a single-step (omitted)

32

Occupancy Grid

• Discretized grid map encoding occupancy
of static objects (e.g., all non-drivable
surfaces are occupied, incl. trees,
buildings, sidewalks, lawns…), obtained
with Lidar or camera

• Can be binary encoding (upper left), or
probabilistic encoding (upper right), using a
belief threshold to convert to binary
encoding 33

Rapidly-exploring Random Tree (RRT)
• Insert start location S in tree

• While tree cannot connect to goal
– Sample random point 𝑟
– Find point 𝑝 in tree that is closest to 𝑟
– Add branch between 𝑝 and 𝑟

• Another variant is to add branch of predefined length from 𝑝 in direction of 𝑟

– If new branch intersects obstacle:
• Discard new branch (or shorten)

• Compute path from start (S) to goal (G) through tree

• Shortcut path: for any two points in path, add direct line unless direct line
intersect an obstacle (collision checking)

34

1 S

2

3

4

5

6

G

S

G

S

G

Path Smoothing
• Left: an example completed path

• Right: smoothed path (green), obtained by iteratively
sampling points between nodes on the overall path
and then checking if two points could be connected to
reduce path length

35http://coecsl.ece.illinois.edu/ge423/spring13/RickRekoskeAvoid/rrt.html

RRT Animation

• RRT growth process (with start location but no

goal location)

36More animations https://www.youtube.com/watch?v=pOFtvZ_qVsA

https://www.youtube.com/watch?v=pOFtvZ_qVsA

Probabilistic Roadmap (PRM)

• Map construction:

• While # points in roadmap lower
than threshold
– Sample random point

– If new point is not in collision:
• Connect new point to all other points

in the roadmap with lines, as long as
they do not intersect obstacles.

• Path finding:
– Connect start location to nearest

point in roadmap s.t. connecting
line does not intersect obstacle

– Connect goal location to nearest
point in roadmap s.t. connecting
line does not intersect obstacle

– Find a path between start and goal
traversing the roadmap, with
algorithms such as as A* or
Dijkstra’s algo.

37By Eric O. Scott - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44485745

RRT vs. PRM

• With RRT, each time new start/goal

locations are given, an entirely new graph

must be generated, which may be

inefficient.

• PRM builds a roadmap graph for traveling

through a region, but relies on A* or

Dijkstra’s algo to find the shortest path

from start to goal traversing the roadmap.

Hence the roadmap is reused each time

new start/goal locations are given.

38

RRT & PRM

• Many variants of RRT and PRM are
probabilistically complete:

– If a path exists, it will be found in finite time

– But in the worst-case, solution time can be very
long (even longer than exhaustive search)

• No guarantees on solution quality

– May not find the shortest path
• With PRM, A*/Dijkstra is guaranteed to find the shortest

path for the given roadmap, but the roadmap may not
be optimal.

– Often needs post-processing (e.g., smoothing)

39

Quiz

• Which statement is true for RRT and PRM

motion planning algorithms?

– A. Both algorithms will produce the shortest path.

– B. Both algorithms can be used for high

dimensional spaces

• Robotic motion planning may be high-dimensional;

mobile robot path planning is low-dimensional (3 for

ground robot, 6 for aerial robot).

– C. PRM always results in a better path than RRT.

– D. The time for computation is consistent and

predictable.

• ANS: B
40

Parametric Curve-based Planning
• Non-parametric path: a path is represented as a sequence of points

(as in A*, Dijkstra’s algo, RRT/PRM)

• Parametric path: a smooth parametric curve that satisfies boundary
conditions at 2 end points, constraints on curvature, and optimizes
an objective function.

– 𝑥0, 𝑦0, 𝜃0, 𝜅0 , (𝑥𝑓 , 𝑦𝑓, 𝜃𝑓, 𝜅𝑓): pose (position and heading angle) and

curvature (𝜅 =
1

𝑅
, inverse of radius of rotation) of starting and final points

– 𝜅 ≤ 𝜅𝑚𝑎𝑥: curvature has an upper bound for every point on the curve,
to help satisfy kinematic/dynamic constraints, and improve rider comfort.

• Example: Quintic splines and polynomial spirals

41Coursera MOOC Motion Planning for Self-Driving Cars

Quintic Splines
• Path modeled as 5th-order polynomials, with closed-form solutions for

boundary conditions (𝑥, 𝑦, 𝜃, 𝜅)

– 𝑥 𝑢 = 𝛼5𝑢5 + 𝛼4𝑢4 + 𝛼3𝑢3 + 𝛼2𝑢2 + 𝛼1𝑢 + 𝛼0

– 𝑦 𝑢 = 𝛽5𝑢5 + 𝛽4𝑢4 + 𝛽3𝑢3 + 𝛽2𝑢2 + 𝛽1𝑢 + 𝛽0

– 𝑢 ∈ [0,1]

– The curve connects from start point (𝑥 0 , 𝑦(0)) to end point 𝑥 1 , 𝑦 1

• Pro: path has closed-form equation for given start and end points

• Con: curvature function and its derivatives may be discontinuous

42
https://pythonrobotics.readthedocs.io/en/latest/modules/path_planning.html

Polynomial Spirals
• Curvature defined as polynomial function (cubic or higher):

– 𝜅 𝑠 = 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0

– It is smooth and never discontinuous, so constraining a few points often enough to constrain the entire
curve.

• Path modeled based on curvature function:

– 𝜃 𝑠 = 𝜃0 + 0׬

𝑠
𝑎3𝑠′3 + 𝑎2𝑠′2 + 𝑎1𝑠′1 + 𝑎0 𝑑𝑠′ = 𝜃0 + 𝑎3

𝑠4

4
+ 𝑎2

𝑠3

3
+ 𝑎1

𝑠2

2
+ 𝑎0𝑠

– 𝑥 𝑠 = 𝑥0 + 0׬

𝑠
cos 𝜃 𝑠′ 𝑑𝑠′

– 𝑦 𝑠 = 𝑦0 + 0׬

𝑠
sin 𝜃 𝑠′ 𝑑𝑠′

• Pro: curvature function is smooth, so curvature can be given upper bound constraint.

• Con: path has no closed-form equation; Fesnel integrals need to be computed with numerical
integration using Simpson’s rule, which divides the integration interval into 𝑛 regions, and
evaluates the function at each region boundary:

– 0׬

𝑠
𝑓 𝑠′ 𝑑𝑠′ ≈

𝑠

3𝑛
𝑓 0 + 4𝑓

𝑠

𝑛
+ 2𝑓

2𝑠

𝑛
+ ⋯ + 𝑓(𝑠) (fig below shows example w. 𝑛 = 2)

– Numerical Integration| What is Simpson's Rule? [Intuition]
https://www.youtube.com/watch?v=DdNAcv_rezc

43

https://www.youtube.com/watch?v=DdNAcv_rezc

Bending Energy Optimization Objective

44

• Consider curvature modeled as Cubic spiral.

• Minimize Bending Energy, defined as integral of squared curvature
along the path, to distribute curvature evenly along spiral to promote
comfort:

– Min 𝑓𝑏𝑒 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑠𝑓 = 0׬

𝑠𝑓 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0
2 𝑑𝑠

• Subject to constraints:
– End point constraints:

• Starting point: 𝑥𝑠 0 , 𝑦𝑠 0 , 𝜃 0 , 𝜅 0 = 𝑥0, 𝑦0, 𝜃0, 𝜅0

• Ending point: 𝑥𝑠 𝑠𝑓 , 𝑦𝑠 𝑠𝑓 , 𝜃 𝑠𝑓 , 𝜅 𝑠𝑓 = 𝑥𝑓 , 𝑦𝑓, 𝜃𝑓 , 𝜅𝑓

– Curvature constraints for two intermediate points:

• 𝜅(
𝑠𝑓

3
) ≤ 𝜅𝑚𝑎𝑥 , 𝜅(

2𝑠𝑓

3
) ≤ 𝜅𝑚𝑎𝑥

• The optimization problem has closed-form solutions

Soft Constraints

• Since it is challenging to satisfy hard

equality constraints, they can be softened

into penalty terms in the objective function:

– Min 𝑓𝑏𝑒 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑠𝑓 + 𝛼 𝑥𝑠 𝑠𝑓 − 𝑥𝑓 +

𝛽 𝑦𝑠 𝑠𝑓 − 𝑦𝑓 + 𝛾 𝜃𝑠 𝑠𝑓 − 𝜃𝑓

– s.t. 𝜅(
𝑠𝑓

3
) ≤ 𝜅𝑚𝑎𝑥 , 𝜅

2𝑠𝑓

3
≤ 𝜅𝑚𝑎𝑥 , 𝜅 𝑠𝑓 = 𝜅𝑓

45

Example Spline vs. Spiral

46

Speed Profile Generation

• Behavior planner provides reference speed to
local planner
– May be current road speed limit

– Or current maneuver (stopping due to Stop sign or
red light, following a lead vehicle…)

• Time-To-Collision (TTC) can be computed by
difference in speeds 𝑣𝑒𝑔𝑜 − 𝑣𝑙𝑒𝑎𝑑 divided by
distance (arc length 𝑠)

47

Curvature and Lateral Acceleration

• Speed also bounded by max lateral
acceleration and curvature

– 𝑣𝑘 ≤
𝑎𝑙𝑎𝑡

𝜅𝑖

• Final reference speed selected as minimum
of all upper bounds

48

Speed Profile Examples

49

Linear Ramp vs. Trapezoidal

Profile
• Linear ramp profile: constant acceleration to

reach reference speed

• Trapezoidal profile: constant-0-constant
deceleration (e.g., for stopping at red light)

50

Linear Ramp Profile
• Given path length 𝑠 and initial/final speeds 𝑣0, 𝑣𝑓, compute required

acceleration 𝑎:

– 𝑎 =
𝑣𝑓

2−𝑣0
2

2𝑠

– Proof: consider a robot with starting speed 𝑣0 and constant acceleration 𝑎. After time

𝑡, it reaches speed of 𝑣0 + 𝑎𝑡 = 𝑣𝑡, and travels a distance of 𝑠 =
𝑣0+𝑣𝑡

2
𝑡 =

𝑣𝑡
2−𝑣0

2

2𝑎
.

• May clamp acceleration 𝑎 to improve rider comfort.

• For each path segment, compute speed using accumulated path arc length
𝑠𝑖 up to that point, to generate the speed profile:

– 𝑣𝑓𝑖
= 2𝑎𝑠𝑖 + 𝑣0

2

51

Trapezoidal Profile
• Given total path length 𝑠,

initial/final speeds 𝑣0, 𝑣𝑓, and
transit speed 𝑣𝑡.

• For 1st segment 𝑠𝑖 ≤ 𝑠𝑎:

– Compute path arc length: 𝑠𝑎 =
𝑣𝑡

2−𝑣0
2

2𝑎0

– Then compute speed profile: 𝑣𝑓𝑖 =

2𝑎0𝑠𝑖 + 𝑣0
2

• For 2nd segment sa ≤ 𝑠𝑖 ≤ 𝑠𝑏:
– Speed is constant 𝑣𝑓𝑖 = 𝑣𝑡

• For 3rd segment sb ≤ 𝑠𝑖 ≤ 𝑠𝑓,

– Compute path arc length: 𝑠𝑓 − 𝑠𝑏 =
0−𝑣𝑡

2

2𝑎0

– Then compute speed profile: 𝑣𝑓𝑖 =
2𝑎0(𝑠𝑖−𝑠𝑏) + 𝑣𝑡

2
52

𝑠𝑓

Outline

• Route planning

• Behavior planning

• Motion Planning

• Responsibility-Sensitive

Safety (RSS)

53
Paden B, Čáp M, Yong S Z, et al. A survey of motion planning and control techniques for

self-driving urban vehicles[J]. IEEE Transactions on intelligent vehicles, 2016, 1(1): 33-55.

Avoid collisions at all cost?

• But absolute safety is impossible.

• In the scenario below, the AV (yellow car in the center lane) can do
nothing to ensure absolute safety.

– If the red car swerves into the AV, collision cannot be prevented

• To avoid this scenario, should the AV never drive in the center lane?
Or should it never leave the garage?

– Avoiding collisions at all cost leads to a useless system.

54

Explicit Traffic Rules

• Hard rules set limits on
vehicle operation.
Examples:
– Come to complete stop

at red lights

– Don’t cross a double-
yellow line

– Obey posted speed
limits

– Yield to other road
users when signaled

– …

• These rules can be
programmed into the
AV.

55

Implicit Traffic Rules

• A general set of principles applied by the

human driver. They are flexible and culturally

dependent.

– Keep a safe distance from the car in front of you.

– Drive cautiously under limited visibility.

– Don’t drive slowly in the fast lane.

– Don’t cut off other drivers.

– …

• How to formalize and program these rules

into the AV?

56

Responsibility-Sensitive Safety (RSS)
• RSS formalizes human notions of safe driving into a verifiable

model with logically provable rules, defines appropriate
responses, and ensures that only safe decisions are made by
the AV, and clearly assigns blame/responsibility in case of
accidents.

• Goal: An AV should never be responsible for accidents,
meaning:
– It should never cause accidents

– It should properly respond to mistakes of other drivers

• RSS is a mathematical, interpretable model, formalizing the
implicit rules (common sense) of
– What is a dangerous situation?

– What is the proper response to a dangerous situation?

– Who is responsible for an accident?

• RSS: Safety Assurance for Automated Vehicles
https://www.youtube.com/watch?v=EceAB6TUYzo
– Shalev-Shwartz S, Shammah S, Shashua A. On a formal model

of safe and scalable self-driving cars[J]. arXiv preprint
arXiv:1708.06374, 2017.

57

https://www.youtube.com/watch?v=EceAB6TUYzo

Five Rules of RSS

• 1. Do not hit the car in front (safe longitudinal distance. See
figure below for example)

• 2. Do not cut-in recklessly (safe lateral distance)

• 3. Right-of-Way is given, not taken.

• 4. Be careful in areas with limited visibility

• 5. If you can avoid a crash without causing another, you must

58

RSS: High-Level Description

• Define safe distance (longitudinal).

• A situation is dangerous if it is non-safe
longitudinally.

• Blame time: the first moment in which the situation
becomes dangerous

• Proper response:
– If the longitudinal distance becomes non-safe, brake

longitudinally.

• Responsibility:
– We prove that a collision can only occur if one of the

agents did not respond properly.

– The responsibility is on the agent(s) that did not
respond properly.

59

Non-safe Lateral Maneuver

• Proper response: red should brake laterally,

– since red is cutting into yellow’s lane.

– “Brake laterally” means “brake while steer to the

right direction”.

60

Non-Safe Longitudinal Maneuver

• Proper response: yellow should brake,

– Since yellow is driving too fast and getting too

close.

61

Responsibility

• Hit from behind
– Yellow is not

responsible for the
accident.

62

• Side hit
– Red is not responsible

for the accident.

Keep Safe Distances

• The AV (blue car) should keep safe longitudinal and
lateral distances from other cars
– If the front car slams on the brakes, how much longitudinal

distance does it need to avoid a rear-end collision?

– If the left or right car suddenly swerves, how much lateral
distance does it need to avoid a side collision?

63

Rule 1: Safe Longitudinal Distance
• Consider two cars travelling in the same direction: front car 𝑐𝑓 and rear car 𝑐𝑟.

In order to ensure that 𝑐𝑟 will never hit 𝑐𝑓 from behind, it is the responsibility of
𝑐𝑟 to keep a safe longitudinal distance 𝑑𝑚𝑖𝑛 from 𝑐𝑓. The worst-case situation is
that 𝑐𝑓 suddenly brakes hard, it will take 𝑐𝑟 some response time 𝜌 (sensing and
reaction delay) to realize this and to start braking as well, and then both cars
will decelerate. Assuming known parameters of: 𝑣𝑓: front vehicle speed; 𝑣𝑟: rear
ego-vehicle speed; 𝛽𝑚𝑎𝑥: maximum deceleration rate due to braking for 𝑐𝑓;
𝛽𝑚𝑖𝑛:minimum deceleration rate for 𝑐𝑟; 𝛼𝑚𝑎𝑥:maximum acceleration rate for 𝑐𝑟,
we can derive 𝑑𝑚𝑖𝑛 as:

64

Safe Longitudinal Distance: the Proof
• Red (black) lines indicate accel/velocity/position of front (rear) car.

• At time 0, the initial distance between front car 𝑐𝑓 and rear car 𝑐𝑟 is
𝑑0, and front car and rear car have initial speeds 𝑣𝑓 and 𝑣𝑟,
respectively. Assuming 𝛽min ≤ 𝛽max, their distance will decrease
monotonically with time. To avoid collision, the minimum initial
distance 𝑑𝑚𝑖𝑛 can be obtained by assuming both cars will come to
a full stop at some time 𝑡𝑐 with distance 𝑑 = 0.

• Front car: during time interval [0, 𝑡𝑐], front car applies brake with

constant deceleration 𝛽max, and travels a distance of
𝑣𝑓

2

2𝛽𝑚𝑎𝑥

(average speed
𝑣𝑓

2
times time-to-stop

𝑣𝑓

𝛽𝑚𝑎𝑥
).

• Rear car: during time interval [0, 𝜌], rear car accelerates with
constant acceleration 𝛼𝑚𝑎𝑥. At time 𝜌, it reaches speed of 𝑣𝜌,𝑚𝑎𝑥 =
𝑣𝑟 + 𝜌𝛼𝑚𝑎𝑥, and travels a distance of (𝑣𝑟 +

1

2
𝜌𝛼𝑚𝑎𝑥)𝜌 = 𝑣𝑟𝜌 +

1

2
𝛼𝑚𝑎𝑥𝜌2. During time interval [𝜌, 𝑡𝑐], rear car applies brake with

constant deceleration 𝛽min. At time 𝑡𝑐, it reaches speed of 0, and

travels a distance of
𝑣𝜌,𝑚𝑎𝑥

2

2𝛽𝑚𝑖𝑛
=

𝑣𝑟+𝜌𝛼𝑚𝑎𝑥
2

2𝛽𝑚𝑖𝑛
.

• Min initial distance 𝑑min =distance traveled by rear car before full

stop - distance traveled by front car before full stop= ൤

൨

𝑣𝑟𝜌 +
1

2
𝛼𝑚𝑎𝑥𝜌2 +

𝑣𝑟+𝜌𝛼𝑚𝑎𝑥
2

2𝛽𝑚𝑖𝑛
−

𝑣𝑓
2

2𝛽𝑚𝑎𝑥 +
, where 𝑥 + = max(0, 𝑥).

65

𝑣𝑟 𝑣𝑓

𝛽𝑚𝑖𝑛 𝛽𝑚𝑎𝑥

𝑑𝑚𝑖𝑛

65

𝜌

𝛼𝑚𝑎𝑥

−𝛽𝑚𝑖𝑛

−𝛽𝑚𝑎𝑥

𝛼𝑚𝑎𝑥

𝛽𝑚𝑖𝑛

𝛽𝑚𝑎𝑥

Accel

Velocity

Position 𝑑

𝑡

𝑡

𝑡

𝑑min

Collision

𝑑 = 0

𝑣𝑟

𝑣𝑓

𝑡𝑐

𝜌 𝑡𝑐

𝜌 𝑡𝑐

0

0

0

Safety vs. Efficiency
• RSS allows to formally define the desired balance of safety and efficiency of

AVs on the road.
– e.g., 𝑑𝑚𝑖𝑛 is larger if we assume a large deceleration rate 𝛽𝑚𝑎𝑥 for the front car; or

larger acceleration rate 𝛼𝑚𝑎𝑥 or smaller deceleration rate 𝛽𝑚𝑖𝑛 for the rear car. So the
AV will drive more conservatively, resulting in lower efficiency, and vice versa

• These parameters should be determined by regulatory authorities working
with the car makers.

– E.g., NHTSA (National Highway Traffic Safety Administration) in USA.

6666

𝑣𝑟 𝑣𝑓

𝛽𝑚𝑖𝑛 𝛽𝑚𝑎𝑥

𝑑𝑚𝑖𝑛

Proper Response

• The moment the distance between the two cars is less than
𝑑𝑚𝑖𝑛, the AV will perform the proper response: after a
response time 𝜌, apply braking of at least 𝛽𝑚𝑖𝑛 until a safe
following distance is restored or until the vehicle comes to a
complete stop.

• RSS can be a proactive safety mechanism that improves
Automatic Emergency Braking (AEB). Called Automatic
Preventive Braking (APB), it determines the moment when a
vehicle enters a dangerous situation, then uses comfortable,
subtle braking (𝛽𝑚𝑖𝑛) to help return the vehicle to a safer
position without waiting for an imminent collision to engage
maximum braking force. This preventive approach would
provide a stopping distance buffer that could prevent a chain
reaction of braking and swerving should an emergency stop
occur.

67

Other RSS Rules

• Rule 2: Safe Lateral Distance
– Safe lateral distance enables AVs to be aware when their lateral safety

may be compromised by unsafe drivers turning into their lanes.

• Rule 3. Right of way is given, not taken
– On well-marked roads, the right of way is clear. Lane lines, signs, and

traffic lights establish priorities for routes as they intersect one another.
However, there are other times when the right of way is less clear, and
human drivers must negotiate with one another.

• Rule 4. Be cautious in areas with limited visibility
– Drivers must proceed cautiously, especially as they approach

crosswalks or pass cars parked along the street

• Rule 5. If the vehicle can avoid a crash without causing another one,
it must
– It covers scenarios where a dangerous situation may have been

imposed so suddenly that a collision cannot be avoided unless a more
evasive action is taken. e.g., if boxes fall off the front car, and the next
lane is free, the following car can take evasive action to avoid the
accident.

68

Integration into Apollo and CARLA

• RSS is open-source as a C++ library.
It has been integrated into Baidu
Apollo’s planner module, and the
driving simulator CARLA

• RSS safety sensor in CARLA
– Use the opensource library to evaluate if

a driving situations is safe or unsafe
according to RSS. In that regard, a
driving situation is composed of the ego
vehicle (here in this video the ego
vehicle is the one focused by the
camera), and another traffic participant
(e.g. a leading vehicle). The sensor
evaluates longitudinal and lateral
conflicts, but does not yet cover
intersection conflicts.

– The results are highlighted via green (all
safe), yellow (only lateral or longitudinal
unsafe) and red lines (dangerous
situation that requires to a counter
measure according to RSS).

– https://www.youtube.com/watch?v=UxK
PXPT2T8Q

69

https://www.youtube.com/watch?v=UxKPXPT2T8Q
https://www.youtube.com/watch?v=UxKPXPT2T8Q

Summary

• RSS formalizes what is dangerous, what is

the proper response to danger, and who is

responsible for accidents.

• Soundness: it complies with the common

sense of human judgement.

• Usefulness: we give 100% guarantees to

never cause accidents and always

properly respond to dangerous situations.

70

	Default Section
	Slide 1: L5 Planning
	Slide 2: A Hierarchy of Planners

	Mission Planning
	Slide 3: Outline
	Slide 4: Route Planning
	Slide 5: BFS and DFS
	Slide 6: Running Example
	Slide 7: BFS
	Slide 8: DFS
	Slide 9: Dijkstra’s Algorithm
	Slide 10: Dijkstra Example
	Slide 11: Dijkstra Example cont’
	Slide 12: A* Algorithm (Compare to Dijkstra)
	Slide 13: A* Example
	Slide 14: How to Design an Admissible Heuristic?
	Slide 15: Exercise
	Slide 16: A* vs. Dijkstra
	Slide 17: A* vs. Dijkstra (Animation)

	Behavior planning
	Slide 18: Outline
	Slide 19: Behavior Planner
	Slide 20: Driving Maneuvers
	Slide 21: Behavior Planning Approaches
	Slide 22: An Intersection Scenario without Dynamic Objects
	Slide 23
	Slide 24
	Slide 25: An Intersection Scenario with Dynamic Objects
	Slide 26: Handling Multiple Scenarios with Hierarchical FSM
	Slide 27: Handling Multiple Scenarios with Hierarchical FSM
	Slide 28: Limitations of FSM-based Behavior Planning

	Local Planning
	Slide 29: Outline
	Slide 30: Vehicle Control Architecture
	Slide 31: Motion Planning
	Slide 32: Motion Planning Methods
	Slide 33: Occupancy Grid
	Slide 34: Rapidly-exploring Random Tree (RRT)
	Slide 35: Path Smoothing
	Slide 36: RRT Animation
	Slide 37: Probabilistic Roadmap (PRM)
	Slide 38: RRT vs. PRM
	Slide 39: RRT & PRM
	Slide 40: Quiz
	Slide 41: Parametric Curve-based Planning
	Slide 42: Quintic Splines
	Slide 43: Polynomial Spirals
	Slide 44: Bending Energy Optimization Objective
	Slide 45: Soft Constraints
	Slide 46: Example Spline vs. Spiral
	Slide 47: Speed Profile Generation
	Slide 48: Curvature and Lateral Acceleration
	Slide 49: Speed Profile Examples
	Slide 50: Linear Ramp vs. Trapezoidal Profile
	Slide 51: Linear Ramp Profile
	Slide 52: Trapezoidal Profile

	Intel RSS
	Slide 53: Outline
	Slide 54: Avoid collisions at all cost?
	Slide 55: Explicit Traffic Rules
	Slide 56: Implicit Traffic Rules
	Slide 57: Responsibility-Sensitive Safety (RSS)
	Slide 58: Five Rules of RSS
	Slide 59: RSS: High-Level Description
	Slide 60: Non-safe Lateral Maneuver
	Slide 61: Non-Safe Longitudinal Maneuver
	Slide 62: Responsibility
	Slide 63: Keep Safe Distances
	Slide 64: Rule 1: Safe Longitudinal Distance
	Slide 65: Safe Longitudinal Distance: the Proof
	Slide 66: Safety vs. Efficiency
	Slide 67: Proper Response
	Slide 68: Other RSS Rules
	Slide 69: Integration into Apollo and CARLA
	Slide 70: Summary

