
L6 Control

Zonghua Gu, Umeå University

Nov. 2023

Control in the AD Pipeline

• The controller outputs
control commands
(brake, acceleration,
steering) to follow the
trajectory output from
motion planning

2

(Local
Planning)

Feedback Control Problem

• Given a system and a reference signal, find a control law such
that the closed loop system is stable and follows the reference
signal

• The most common control algorithms in automotive systems
are Proportional–Integral–Derivative (PID) and Model
Predictive Control (MPC)

3

Outline

• PID Control

• MPC Control

• Kinematic bicycle model

• Twiddle() for PID control tuning

4

PID Control

• Tracking Error: 𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

• Control input: 𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 0׬
𝑡
𝑒 𝜏 𝑑𝜏 + 𝐾𝑑 ሶ𝑒(𝑡)

• Ref: Controlling Self Driving Cars
• https://www.youtube.com/watch?v=4Y7zG48uHRo

5https://en.wikipedia.org/wiki/PID_controller

https://www.youtube.com/watch?v=4Y7zG48uHRo

Step Response Performance Metrics

• The control input (reference input) jumps
from 0 to a reference value (e.g., 1.0) at
time 0, and the controller aims to track it
closely
• Rise time: the time it takes the transient

response to move to 1.0 − 𝛿 of the steady
state response

• Maximum overshoot: the amount (or
percentage) by which the maximum value
of the transient response exceeds the
steady state value

• Peak time: the time at which the maximum
overshoot occurs

• Settling time: the time after which the
output is within a specified band around
the steady state value [1.0 − 𝛿, 1.0 + 𝛿]

6
https://www.newport.com/n/control-theory-terminology

Proportional Term 𝐾𝑝

• 𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 0׬
𝑡
𝑒 𝜏 𝑑𝜏 +

𝐾𝑑 ሶ𝑒(𝑡)

• 𝑢 𝑡 proportional to error 𝑒 𝑡
with factor 𝐾𝑝

• Increasing 𝐾𝑝 leads to:
• Faster response

• Bigger overshoot, oscillations
• System may become unstable

• Smaller but non-zero steady state
error

7

Integral Term 𝐾𝑖

• 𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 0׬
𝑡
𝑒 𝜏 𝑑𝜏 +

𝐾𝑑 ሶ𝑒(𝑡)

• 𝐾𝑖 takes into account history of
tracking error, and eliminates
steady state error

• Increasing 𝐾𝑖 leads to:
• Increased overshoot

• More robust to disturbances

8

Derivative Term 𝐾𝑑

• 𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 0׬
𝑡
𝑒 𝜏 𝑑𝜏 +

𝐾𝑑 ሶ𝑒(𝑡)

• 𝑢 𝑡 proportional to error
derivative ሶ𝑒(𝑡) by factor 𝐾𝑑

• Increasing 𝐾𝑑 leads to:
• Reduced overshoot

• Faster response

• Little effect on steady state

• More sensitive to measurement
noise

9

Effects of PID Gains

• 𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 0׬
𝑡
𝑒 𝜏 𝑑𝜏 + 𝐾𝑑 ሶ𝑒(𝑡)

10

Closed-Loop
Response

Rise Time Overshoot Settling Time Steady State
Error

Increase
𝐾𝑝

Decrease Increase Small
increase

Decrease

Increase
𝐾𝑖

Small
decrease

Increase Increase Large
decrease

Increase
𝐾𝑑

Small
decrease

Decrease Decrease Minor
change

Example: Vehicle Lateral Control
• State 𝑑, 𝜃

• 𝑑: distance to center of lane; 𝜃: heading angle.

• Reference trajectory: 𝑑𝑟𝑒𝑓, 𝜃𝑟𝑒𝑓 = 0,0
• The vehicle travels straight ahead at center of lane.

• Vehicle has constant speed 𝑣𝑟, so the only control input is 𝑢 𝑡 = ሶ𝜃(𝑡), the angular velocity.

• Assume perfect sensor state estimation: (መ𝑑, መ𝜃) = (𝑑, 𝜃)
• Ref. Control Algorithms for Autonomous Vehicles https://www.icloud.com/keynote/035Qivaw_FXYD70xCbD5R9lDA#control_AV

11

https://www.icloud.com/keynote/035Qivaw_FXYD70xCbD5R9lDA#control_AV

System and P Control Modeling
• Linear system dynamics:

•
ሶ𝑑(𝑡)
ሶ𝜃(𝑡)

=
0 𝑣𝑟
0 0

𝑑(𝑡)

𝜃(𝑡)
+

0
1
𝑢(𝑡)

• ሶ𝑑(𝑡) = 𝑣𝑟 sin 𝜃(𝑡) ≈ 𝑣𝑟𝜃(𝑡) assuming 𝜃(𝑡) is small (linearized
kinematic model)

• ሶ𝜃 𝑡 = 𝑢(𝑡)

• P Controller:

• 𝑢 𝑡 = 𝐾𝑑 𝐾𝜃
𝑑(𝑡)

𝜃(𝑡)

• Closed-loop dynamics is obtained by plugging 𝑢 𝑡 into system
dynamics:

•
ሶ𝑑(𝑡)
ሶ𝜃(𝑡)

=
0 𝑣𝑟
𝐾𝑑 𝐾𝜃

𝑑(𝑡)

𝜃(𝑡)

12

• Ref trajectory:
𝑑𝑟𝑒𝑓
𝜃𝑟𝑒𝑓

=
0
0

• Error signal:

•
𝑒𝑑(𝑡)
𝑒𝜃(𝑡)

=
𝑑𝑟𝑒𝑓
𝜃𝑟𝑒𝑓

−
𝑑 𝑡
𝜃 𝑡

= −
𝑑 𝑡
𝜃 𝑡

• Error dynamics:

•
ሶ𝑒𝑑(𝑡)
ሶ𝑒𝜃(𝑡)

= −
ሶ𝑑 𝑡
ሶ𝜃 𝑡

=
0 −𝑣𝑟

−𝐾𝑑 −𝐾𝜃

𝑑(𝑡)
𝜃(𝑡)

• Control objective: design 𝐾𝑑 , 𝐾𝜃 to drive error
𝑒𝑑(𝑡)
𝑒𝜃(𝑡)

to
0
0

P Control Design with Pole Placement (not
covered in this course)
• Closed-loop poles:

• 0 = det(𝜆𝐼 −
0 −𝑣𝑟

−𝐾𝑑 −𝐾𝜃
) = 𝜆2 + 𝐾𝜃𝜆 − 𝑣𝑟𝐾𝑑

• Solution 𝜆1,2 = −
𝐾𝜃

2
±

1

2
𝐾𝜃
2 + 4𝑣𝑟𝑘𝑑

• Critically-damped dynamics (repeated real roots):

• 𝐾𝜃
2 + 4𝑣𝑟𝐾𝑑 = 0 ⇒ 𝐾𝑑 = −

𝐾𝜃
2

4𝑣𝑟

• 𝐾𝜃 chosen empirically

13

P Control Design Cont’d
• Linear systems dynamics relies on the small angle approximation sin 𝜃(𝑡) ≈ 𝜃(𝑡),

assuming 𝜃(𝑡) < 𝜃𝑡ℎ, ∀𝑑 0

• Closed-loop dynamics ሶ𝜃 𝑡 = 𝐾𝑑𝑑 𝑡 + 𝐾𝜃𝜃 𝑡

• Set ሶ𝜃 𝑡 = −
𝐾𝜃
2

4𝑣𝑟
sat 𝑑 𝑡 , 𝑑𝑡ℎ + 𝐾𝜃𝜃 𝑡 ,

• where: sat 𝑑 𝑡 , 𝑑𝑡ℎ = ൞

−𝑑𝑡ℎ if 𝑑(𝑡) < −𝑑𝑡ℎ
𝑑(𝑡) if 𝑑 𝑡 ∈ [−𝑑𝑡ℎ , 𝑑𝑡ℎ]

𝑑𝑡ℎ if 𝑑 𝑡 > 𝑑𝑡ℎ

• Empirical param settings: 𝜃𝑡ℎ =
𝜋

6
, 𝑑𝑡ℎ =

𝐾𝜃𝜃𝑡ℎ

𝐾𝑑

14

Simplifying Assumptions

• Did not consider:
• Estimation uncertainty due to measurement noise

• We assume perfect state estimation (መ𝑑, ෠𝜃) = (𝑑, 𝜃)

• Estimation latency:
• Time from measurements (𝑑, 𝜃) to state estimation (መ𝑑, ෠𝜃) availability to the

controller

• Constraints (e.g., actuator limits)
• Need to impose a maximum curvature radius to simulate a real car.

• Discrete time (multi-rate), non-uniform sampling:
• Our controller is continuous time, but the actual implementation runs in

discrete time.
• Sampling rate of the estimator (slower) may be different than that of

actuation (faster), or may be variable

15

Outline

• PID Control

• MPC Control

• Kinematic bicycle model

• Twiddle() for PID control tuning

16

MPC (Model-Predictive Control)
• Also called Receding Horizon Control

• Choose prediction horizon 𝑚 and control horizon
𝑝

• At each time step 𝑘:
• Set initial state to predicted state 𝑥[𝑘]
• Solve a constrained optimization problem over

lookahead window [𝑘, 𝑘 + 𝑚], to get a sequence
of control inputs 𝑢, while in the time interval
𝑘 − 1, 𝑘

• Apply 1st control command 𝑢[𝑘] at time step 𝑘

• Control horizon 𝑝 and prediction horizon 𝑚 may
be different, but often the same
• denoted as lookahead horizon 𝑇 in the next

slides (current time is denoted as 𝑡)

17

MPC Example

18

Solve for opt
control inputs
U =
ut, … , ut+T−1

within lookahead
horizon 𝑇 to track
the blue desired
traj

Execute
control
input 𝑢𝑡
at 1st

timestep

Replan a new
set of control
inputs U =
ut, … , ut+T−1

at next time
step 𝑡

Execute
control
input 𝑢𝑡 at
1st

timestep …

MPC Illustration Con’t

• Yellow: reference trajectory
from planner

• Green: trajectory from
running control inputs
𝑢[0,… , 𝑇 − 1] computed by
MPC based on system model
for lookahead horizon 𝑇

19

https://medium.com/@david010/vehicle-mpc-controller-33ae813cf3be

Linear vs. Nonlinear MPC
• Linear MPC (no constraints)

• min
U= ut,…,ut+T−1

𝐽 𝑥 𝑡 , 𝑈 =𝑥𝑡+𝑇
𝑇 𝑄𝑓𝑥𝑡+𝑇 + σ𝑗=𝑡

𝑡+𝑇−1(𝑥𝑗
𝑇𝑄𝑥𝑗 + 𝑢𝑗

𝑇𝑅𝑢𝑗)

• s.t. for 𝑡 ≤ 𝑗 ≤ 𝑡 + 𝑇 − 1

• 𝑥𝑗+1 = 𝐴𝑥𝑗 + 𝐵𝑢𝑗
• 𝑥𝑗 is the difference between actual state and ref state (assumed to be 0 here), which should be minimized with the term

𝑥𝑡+𝑇
𝑇 𝑄𝑓𝑥𝑡+𝑇

• 𝑢𝑗 is control input, which should be minimized with the term 𝑢𝑗
𝑇𝑅𝑢𝑗 (to reduce control effort)

• Relative magnitudes of 𝑄 and 𝑅 encode relative importance of the two objectives
• Can be solved analytically at each time step 𝑢𝑡 = −𝐾𝑡𝑥𝑡

• Nonlinear MPC (with constraints)
• min

U= ut,…,ut+T−1
𝐽 𝑥 𝑡 , 𝑈 =σ𝑗=𝑡

𝑡+𝑇 𝐶(𝑥𝑗 , 𝑢𝑗)

• s.t. for 𝑡 ≤ 𝑗 ≤ 𝑡 + 𝑇 − 1

• 𝑥𝑗+1 = 𝑓 𝑥𝑗 , 𝑢𝑗

• 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑗+1 ≤ 𝑥𝑚𝑎𝑥

• 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑗 ≤ 𝑢𝑚𝑎𝑥

• 𝑔 𝑥𝑗 , 𝑢𝑗 ≤ 0

• ℎ 𝑥𝑗 , 𝑢𝑗 = 0

• Both objective 𝐽 𝑥 𝑡 , 𝑈 and system dynamics 𝑓 𝑥𝑗 , 𝑢𝑗 may be nonlinear
• Cannot be solved analytically; must solve numerically with optimizers, e.g., CasADi

• (Note: in 𝑥𝑡+𝑇
𝑇 , superscript 𝑇 denotes “vector transpose”; subscript 𝑇 denotes “lookahead horizon”)

20

MPC Pros and Cons

• Pros
• Predictive control with lookahead

• PID is reactive control, like driving your car by looking in the rearview mirror

• Handles constraints explicitly
• PID control cannot handle constraints

• Applicable to both linear and nonlinear systems
• Pole placement for PID control design is applicable to linear systems only
• Empirical PID param tuning is model-free and applicable to any system (blackbox)

• Cons
• Requires accurate yet efficient system model (whitebox)
• Optimizer computation may be expensive, esp. for non-linear MPC

• Select lookahead horizon 𝑇 to tradeoff between control performance and
computation overhead

• Small 𝑇 → myopic behavior, lower overhead; Larger 𝑇 → better control performance
but higher overhead

21

PID Control Example (No Look-Ahead)
• Vehicle accelerates to track setpoint speed of 70 km/h
• Then decelerates upon encountering a sharp turn, but it is too late

and cannot track the lane

22https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/self-driving-cars/

https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/self-driving-cars/

MPC Control Example (Look-Ahead)
• MPC computes control actions based on a lookahead window into

the future
• Vehicle decelerates early in anticipation of the sharp turn

23https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/self-driving-cars/

https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/self-driving-cars/

MPC Quiz

• Which from the below statement about MPC are true?
• 1) Horizon is a finite window of time

• 2) Prediction horizon keeps being shifted at each time step

• 3) Full optimization over the time horizon is performed at each
iteration

• 4) Only the first control action from the optimization is applied at
time 𝑡

• 5) All of the above

• ANS: 5

24

Outline

• PID Control

• MPC Control

• Kinematic bicycle model

• Twiddle() for PID control tuning

25

Kinematics vs. Dynamics
• Kinematics is study of motion without considering the forces that affect the motion. It deals with the

geometric relationships that govern the system
• A kinematic model: ሶ𝑥 = 𝑣, ሶ𝑣 = ሷ𝑥 = 𝑎
• Uses position, velocity, acceleration (and/or further derivatives) as control input (e.g. the kinematic bicycle

model)

• Dynamics is the study of motion taking into account the forces that affect it. It is described by the
equations of motion.
• A dynamic model: 𝐹 = 𝑀 ሷ𝑥 + 𝐵 ሶ𝑥 = 𝑀𝑎 + 𝐵𝑣 (Newton’s law with friction)
• Uses force and torque as control input, and takes mass and inertia into consideration.
• e.g., vehicle dynamics model (longitudinal and lateral)

• Consider two vehicles with the same geometry but different mass/weight turning a tight corner
• They may have the same kinematic model, but different dynamic model due to different mass 𝑀.
• Both may be controllable kinematically by control input 𝑎

• The light vehicle may be controllable dynamically by control input 𝐹.
• The heavy vehicle may not be controllable dynamically by control input 𝐹. Due to large 𝑀, 𝐹 may exceed the max actuator

limit.

• Orthogonal issue from control algorithm
• Control algorithms, e.g., PID or MPC, may be either kinematic or dynamic control

26

Kinematic vs. Dynamic Control

27

PID controller for kinematic bicycle model with heading angle rate (ሶ𝜃) and velocity (𝑣𝑟,

constant here) as control input. (ሶ𝜃 should be controlled indirectly by controlling steering

angle 𝛿, with ሶ𝜃 =
𝑣 tan 𝛿

𝐿
.)

MPC for dynamic vehicle model (high-level controller) with forces (longitudinal and
lateral) as control input.

Kinematic Bicycle Model
• Front wheel steering. Assuming here rear wheel as

reference point (may also use front wheel or center of
gravity).

• State vector: 𝑥 𝑦 𝜃 𝑇: vehicle pose includes its
position (𝑥, 𝑦) and heading angle 𝜃.

• Control inputs: 𝛿 𝑣 𝑇: steering angle 𝛿 and vehicle
speed 𝑣 (assumed to be constant).

• tan 𝛿 =
𝐿

𝑅
• 𝐿: vehicle length (distance between 2 wheels); 𝑅: rotation

radius of Instantaneous Center of Rotation (ICR), equal to
distance between ICR and rear wheel. Curvature 𝜅 =

1

𝑅
.

• Line from ICR to each wheel is perpendicular to it.

• ሶ𝜃 = 𝜔 =
𝑣

𝑅
=

𝑣 tan 𝛿

𝐿
• Angular velocity is speed 𝑣 divided by rotation radius 𝑅

• Typically, angles 𝛿, 𝜃 are based on counter-clockwise
convention w.r.t reference direction.
• In the fig, 𝛿 ≈

𝜋

6
w.r.t ref direction 𝑣; 𝜃 ≈

𝜋

6
w.r.t ref

direction east (horizontal); ሶ𝜃 > 0 for counter-clockwise
rotation.

28

𝜋/2

𝜋/2

(𝑥, 𝑦)

(Non-linear in 𝛿;
Linear in 𝑣)

ሶ𝑥
ሶ𝑦
ሶ𝜃
= 𝑣

cos 𝜃
sin 𝜃
tan 𝛿

𝐿

State Update in Python Code

29

• # apply noise

• steering2 = random.gauss(steering, self.steering_noise)

• distance2 = random.gauss(distance, self.distance_noise)

• # apply steering drift

• steering2 += self.steering_drift

• # noise and drift are all set to 0, so steering2 is steering angle 𝛿,
distance2 is distance traveled per time step 𝑣𝑑𝑡

• # Execute motion

• turn = np.tan(steering2) * distance2 / self.length (ሶ𝜃𝑑𝑡 =
𝑣dt tan 𝛿

𝐿
)

• if abs(turn) < tolerance: (with small ሶ𝜃𝑑𝑡)

• # approximate by straight line motion

• self.x += distance2 * np.cos(self.orientation) (𝑥 += 𝑣𝑑𝑡 cos 𝜃)

• self.y += distance2 * np.sin(self.orientation) (𝑦 += 𝑣𝑑𝑡 sin 𝜃)

• self.orientation = (self.orientation + turn) % (2.0 * np.pi) (𝜃 = (𝜃 +
ሶ𝜃𝑑𝑡)%(2𝜋))

• else: (with large ሶ𝜃𝑑𝑡)
• # Circular motion around ICR

• radius = distance2 / turn (𝑅 =
𝑣

ሶ𝜃
; can also use 𝑅 =

𝐿

tan 𝛿
)

• # compute ICR’s coordinates (cx, cy)
• cx = self.x - (np.sin(self.orientation) * radius) (c𝑥 = 𝑥 − 𝑅 sin 𝜃)
• cy = self.y + (np.cos(self.orientation) * radius) (c𝑦 = 𝑦 + 𝑅 cos 𝜃)
• self.orientation = (self.orientation + turn) % (2.0 * np.pi) (𝜃 = (𝜃 +

ሶ𝜃𝑑𝑡)%(2𝜋))
• # compute vehicle’s x, y coordinate after rotation around ICR
• self.x = cx + (np.sin(self.orientation) * radius) (𝑥 = 𝑐𝑥 + 𝑅 sin 𝜃)
• self.y = cy - (np.cos(self.orientation) * radius) (𝑦 = 𝑐𝑦 − 𝑅 cos 𝜃)

(𝑥, 𝑦)

𝜃

−𝑅 sin 𝜃

𝑅 cos𝜃

(𝑐𝑥, 𝑐𝑦)

%(2𝜋) (modulo 2𝜋) keeps angles to be within 2𝜋; It can be
omitted since it does not affect results of cos, sin functions
(assuming no numeric overflow).

State Update Equation

• Circular motion around ICR (accurate):

•

𝑥(𝑡 + 𝑑𝑡)

𝑦 𝑡 + 𝑑𝑡
𝜃(𝑡 + 𝑑𝑡)

=

𝑥(𝑡) − 𝑅 sin 𝜃 + 𝑅 sin(𝜃 + ሶ𝜃𝑑𝑡)

𝑦 𝑡 + 𝑅 cos 𝜃 − 𝑅 cos(𝜃 + ሶ𝜃𝑑𝑡)

𝜃 + ሶ𝜃𝑑𝑡
• 𝑅 =

𝐿

tan 𝛿
=

𝑣

ሶ𝜃

• Straight-line motion for small ሶ𝜃𝑑𝑡 (approximate):

•

𝑥(𝑡 + 𝑑𝑡)

𝑦 𝑡 + 𝑑𝑡
𝜃(𝑡 + 𝑑𝑡)

=

𝑥 𝑡 + 𝑣𝑑𝑡 cos 𝜃
𝑦 𝑡 + 𝑣𝑑𝑡 sin 𝜃

𝜃 + ሶ𝜃𝑑𝑡
• 𝛿 → 0, ሶ𝜃𝑑𝑡 → 0

30

Straight Line vs. Circular Motion
• Straight line motion (with steering angle 𝛿 = 0) is a special case of circular motion with radius ∞.

• 𝛿 → 0 ⇒ 𝑅 =
𝐿

tan 𝛿
→ ∞, ሶ𝜃 =

𝑣

𝑅
→ 0 (small steering angle 𝛿 leads to slow angular velocity ሶ𝜃.)

• We use this special case to improve computational efficiency for small 𝛿, ሶ𝜃, and avoid division by
0.

• 𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) − 𝑅 sin 𝜃 + 𝑅 sin(𝜃 + ሶ𝜃𝑑𝑡) = 𝑥 + 𝑅(sin(𝜃 + ሶ𝜃𝑑𝑡) − sin 𝜃) = 𝑥 +
𝑣

ሶ𝜃
∗ cos 𝜃 ∗

ሶ𝜃𝑑𝑡 = 𝑥 + 𝑣𝑑𝑡 cos 𝜃

• sin(𝜃 + ሶ𝜃𝑑𝑡) − sin 𝜃 ≈
𝑑

𝑑𝑡
sin 𝜃 ∗ ሶ𝜃𝑑𝑡 = cos 𝜃 ∗ ሶ𝜃𝑑𝑡, for small ሶ𝜃𝑑𝑡.

• 𝑦 𝑡 + 𝑑𝑡 = 𝑦 𝑡 + 𝑅 cos 𝜃 − 𝑅 cos(𝜃 + ሶ𝜃𝑑𝑡) = 𝑦 − 𝑅(cos(𝜃 + ሶ𝜃𝑑𝑡) − cos 𝜃) = 𝑦 +
𝑣

ሶ𝜃
∗ sin 𝜃 ∗

ሶ𝜃𝑑𝑡 = 𝑦 + 𝑣𝑑𝑡 sin 𝜃

• cos(𝜃 + ሶ𝜃𝑑𝑡) − cos 𝜃 ≈
𝑑

𝑑𝑡
cos 𝜃 ∗ ሶ𝜃𝑑𝑡 = − sin 𝜃 ∗ ሶ𝜃𝑑𝑡, for small ሶ𝜃𝑑𝑡.

• Four special cases of straight line motion:
• 𝜃 = 0 ⇒ 𝑥′ = 𝑥 + 𝑣𝑑𝑡, 𝑦′ = 𝑦 (east)
• 𝜃 = 𝜋 ⇒ 𝑥′ = 𝑥 − 𝑣𝑑𝑡, 𝑦′ = 𝑦 (west)
• 𝜃 =

𝜋

2
⇒ 𝑥′ = 𝑥, 𝑦′ = 𝑦 + 𝑣𝑑𝑡 (north)

• 𝜃 =
3𝜋

2
⇒ 𝑥′ = 𝑥, 𝑦′ = 𝑦 − 𝑣𝑑𝑡 (south)

31

PID Control Lab Setup

• Based on Udacity course Lesson AI for Robotics, Lesson 15: PID
Control
• https://classroom.udacity.com/courses/cs373/

• Lateral control of a car to run along a race track (either straight
line or circular) with fixed speed.

32

https://classroom.udacity.com/courses/cs373/

Outline

• PID Control

• MPC Control

• Kinematic bicycle model

• Twiddle() for PID control tuning

33

Udacity: Racetrack Control
• Lesson 16: Problem Set 5, 4.

Quiz: Racetrack control.
• Cross-track error (cte): lateral

distance (of rear wheel) to
desired trajectory, defined as:
• if 𝑥 ∈ [𝑟𝑎𝑑𝑖𝑢𝑠, 3 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠]:

deviation from the straight
horizontal track (with the implicit
assumption that the car will not
deviate from the track for more
than 𝑟𝑎𝑑𝑖𝑢𝑠.)

• Otherwise: deviation from each
semi-circle track.

• For clockwise traversal, cte>0 if
car is outside of the track region;
cte<0 if inside.

34

cte>0
cte>0

cte<0
cte<0

Initial pose

run()
• Implements the PID controller for with

PID gains
• params[0] as 𝐾𝑝; params[1] as 𝐾𝑑;

params[2] as 𝐾𝑖.
• Returns actual trajectory as arrays of

x_trajectory[], y_trajectory[]; and
average error, defined as sum of
squared cte

• For clockwise travel direction:
• If cte>0, car is outside of track region;

steering angle 𝛿 should decrease (turn
right according to the counter-clockwise
convention)

• If cte<0, car is inside of track region;
steering angle 𝛿 should increase (turn
left)

• Based on the above, 𝐾𝑝 should be
positive (this can be a sanity check for
your final solution)

35

This is for straight line track; need to call myrobot.cte() for circular track.

PID control law

For General 𝑑𝑡

• The Python code assumes controller time step size 𝑑𝑡 = 1.
• Also, 𝑣 is constant. 𝛿’s range is unconstrained (steering wheel can be

turned to arbitrary angle).

• For general 𝑑𝑡, the following needs to be modified:
• Call myrobot.move(steer, speed*dt), to match its definition

move(self, steering, distance,…)

• In the PID control law:

• Differential of error 𝑑𝑖𝑓𝑓𝑐𝑡𝑒 =
𝑐𝑡𝑒−𝑝𝑟𝑒𝑣𝑐𝑡𝑒

𝑑𝑡

• Integral of error 𝑖𝑛𝑡𝑐𝑡𝑒 += 𝑐𝑡𝑒 ∗ 𝑑𝑡

36

twiddle()
• twiddle: “twist, move, or fiddle with

(something), typically in a purposeless
or nervous way” –Encyclopedia.

37

Update 𝑝 𝑖 to 𝑝 𝑖 + 𝑑𝑝[𝑖] and run(). If error decreases, then 𝑝 𝑖
was updated in the right direction. Keep the update +𝑑𝑝[𝑖] to get
𝑝 𝑖 + 𝑑𝑝[𝑖], and increase step size to 1.1 ∗ 𝑑𝑝 𝑖 .

If error increases, then 𝑝 𝑖 was updated in the wrong direction.
Update in the opposite direction by −2 ∗ 𝑑𝑝[𝑖] to get 𝑝 𝑖 − 𝑑𝑝[𝑖].
Run again.

If error decreases, then 𝑝 𝑖 was updated in the right direction.
Keep the current 𝑝 𝑖 − 𝑑𝑝[𝑖], and increase step size to 1.1 ∗ 𝑑𝑝 𝑖 .

If error increases, then 𝑝 𝑖 was updated in the wrong direction.
Update in the opposite direction by +𝑑𝑝[𝑖] to get back the original
𝑝 𝑖 . Reduce step size to .9 ∗ 𝑑𝑝 𝑖 .

Adjust each 𝑝 𝑖 in turn.

Changing to P Control

• Setting 𝑑𝑝𝑎𝑟𝑎𝑚𝑠 1 = 𝑑𝑝𝑎𝑟𝑎𝑚𝑠 2 = 0 turns it into a P controller, since
𝐾𝑑 , 𝐾𝑖 are initialized to 0 and never changed. 𝐾𝑝 is adjusted in twiddle()

• twiddle() is a local optimization algorithm, so perf is dependent on
parameter initialization. Here are initialized to 0 for simplicity.
• https://classroom.udacity.com/courses/cs373/lessons/91f48b5b-a063-41f9-ace6-

5fb9e7508941/concepts/b740218e-b0eb-40dc-80af-343912305293

38

https://classroom.udacity.com/courses/cs373/lessons/91f48b5b-a063-41f9-ace6-5fb9e7508941/concepts/b740218e-b0eb-40dc-80af-343912305293
https://classroom.udacity.com/courses/cs373/lessons/91f48b5b-a063-41f9-ace6-5fb9e7508941/concepts/b740218e-b0eb-40dc-80af-343912305293

twiddle() vs. Pole Placement

• twiddle() is a model-free approach to tuning PID controller by
Gradient descent. It adjusts each PID gain parameter systematically,
gradually decreasing or increasing step of adjustment 𝑑𝑝[𝑖] (the
gradient) until convergence to minimum best_err.

• Pole placement for PID controller design is model-based, but
requires a linear model

•

ሶ𝑥
ሶ𝑦
ሶ𝜃
= 𝑣

cos 𝜃
sin 𝜃
tan 𝛿

𝐿

≈
𝑣
𝑣𝜃
𝑢

• With simplifying assumptions:
• 𝜃 is small

• Simplified kinematic model: 𝑢 = ሶ𝜃 as control input instead of 𝛿

39

	Default Section
	Slide 1: L6 Control
	Slide 2: Control in the AD Pipeline
	Slide 3: Feedback Control Problem
	Slide 4: Outline
	Slide 5: PID Control
	Slide 6: Step Response Performance Metrics
	Slide 7: Proportional Term cap K sub p
	Slide 8: Integral Term cap K sub i.
	Slide 9: Derivative Term cap K sub d
	Slide 10: Effects of PID Gains
	Slide 11: Example: Vehicle Lateral Control
	Slide 12: System and P Control Modeling
	Slide 13: P Control Design with Pole Placement (not covered in this course)
	Slide 14: P Control Design Cont’d
	Slide 15: Simplifying Assumptions
	Slide 16: Outline
	Slide 17: MPC (Model-Predictive Control)
	Slide 18: MPC Example
	Slide 19: MPC Illustration Con’t
	Slide 20: Linear vs. Nonlinear MPC
	Slide 21: MPC Pros and Cons
	Slide 22: PID Control Example (No Look-Ahead)
	Slide 23: MPC Control Example (Look-Ahead)
	Slide 24: MPC Quiz
	Slide 25: Outline
	Slide 26: Kinematics vs. Dynamics
	Slide 27: Kinematic vs. Dynamic Control
	Slide 28: Kinematic Bicycle Model
	Slide 29: State Update in Python Code
	Slide 30: State Update Equation
	Slide 31: Straight Line vs. Circular Motion
	Slide 32: PID Control Lab Setup
	Slide 33: Outline
	Slide 34: Udacity: Racetrack Control
	Slide 35: run()
	Slide 36: For General d t
	Slide 37: twiddle()
	Slide 38: Changing to P Control
	Slide 39: twiddle() vs. Pole Placement

