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Markov Decision Process (MDP)
• An MDP consists of:

– Set of states 𝑆
– Start state s0
– Set of actions 𝐴
– Transitions and rewards 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (w. discount )

• Policy maps from states to actions:
– Deterministic policy 𝑎 = 𝜋(𝑠) defines a deterministic action 𝑎 for 

state 𝑠.
– Stochastic policy 𝜋(𝑎|𝑠) defines a probability distribution over 

possible actions 𝑎 for state 𝑠.
• Markov means that next state only depends on current state

– 𝑃 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, 𝐴𝑡−1 = 𝑎𝑡−1,…,𝑆0 = 𝑠0, 𝐴0 = 𝑎0
– = 𝑃(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡)
– Given the present state, the future and the past are independent
– e.g., for driving task, current vehicle position 𝒙 as the state does not 

satisfy the Markov property, since the next state depends on not 
only 𝒙, but also velocity ሶ𝒙, acceleration ሷ𝒙. (assuming acceleration ሷ𝒙
stays constant within each step) If we redefine the state as vector 
𝒙, ሶ𝒙, ሷ𝒙 𝑇, then it satisfies the Markov property.

– Or, current snapshot of front camera view can be used as the state 
(e.g., NVIDIA’s PilotNet), but some works use past 𝑁 video frames 
as the state to capture more dynamics (e.g., Waymo’s 
ChauffeurNet).



MDP Quiz
• For this MDP with a single state 𝑠 and two possible actions 𝑙𝑒𝑓𝑡 and

𝑟𝑖𝑔ℎ𝑡. Are these valid policies?
– 1) 𝜋 𝑙𝑒𝑓𝑡 𝑠 = 𝜋 𝑟𝑖𝑔ℎ𝑡 𝑠 = 0.5 (goes left or right with equal probability. 

uniform random policy)

– 2) 𝜋 𝑙𝑒𝑓𝑡 𝑠 = 1.0, 𝜋 𝑟𝑖𝑔ℎ𝑡 𝑠 = 0 (always goes left)

– 3) Alternating left and right, i.e., if previous action is left, then current 
action must be right, next action must be left, and so on.

– ANS: 3) is not a valid policy, since it depends on the history of actions. 
To be a valid policy, the action must depend on the current state only

• We can redefine the MDP’ extended state to include the last action 
as part of it, then 3) is a valid policy for the new MDP
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(𝑠, 𝑙𝑒𝑓𝑡) (𝑠, 𝑟𝑖𝑔ℎ𝑡)



An Example MDP
• Green nodes denote 3 states 𝑠0, 𝑠1, 𝑠2; Red nodes denote 2 possible 

actions 𝑎0, 𝑎1 in each state. Each red node can also be denoted as 
(𝑠, 𝑎). 

• Agent taking action 𝑎 in state 𝑠 may get different reward 𝑟 and next 
state 𝑠′, denoted as state transition (𝑠, 𝑎, 𝑟, 𝑠′), due to environment 
uncertainty (all rewards are 0 expect +5 and −1 show in fig).
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RL Reward Function
• For the vehicle in left fig: 

– state: Pose of ego-car (𝑥, 𝑦, 𝜃) and environment map; action: Steering wheel/brake/acceleration

• Possible reward function: 𝑅𝑡 = 𝑤1𝑉𝑐𝑎𝑟 cos 𝜃 − 𝑤2 𝑐𝑡𝑒
– Weighted sum to maximum longitudinal velocity (first term), and minimize cross-track error (distance 

to lane center)

– This is an example of dense reward (e.g., at every time step), as opposed to sparse reward (e.g., 
only at the end of each episode)

• Compare with twiddle() :
– twiddle() can be viewed as an RL algorithm (policy gradient), that learns PID parameters with sparse 

reward (cost function is average cross-track error (cte), computed at the end of each simulation 
episode, as sum of squares of ctes for N timesteps divided by N. 

– It does not use the numeric value of cte, only its relative size (if err < best_err);

– Cost function does not include heading angle 𝜃; 

– if the track is very long and irregular, then we can make the reward denser, to adjust PID parameters 
every K timesteps instead of at the end of each episode.

5Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017

twiddle()



Amazon DeepRacer

• Amazon Web Services (AWS) launched 
DeepRacer in 2018 for training AD algorithms with 
RL

– https://aws.amazon.com/deepracer/

• You can train RL algorithm in the simulator on 
AWS cloud, but it costs money after some free 
time.

• They hold competitions, both online and in real-
world. 1/10th scale race car costs USD $349. 
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Example Reward Function
• def reward_function(params):

• '''Example of penalize steering, which helps mitigate zig-zag behaviors'''

• # Read input parameters

• distance_from_center = params['distance_from_center']

• track_width = params['track_width']

• steering = abs(params['steering_angle']) # Only need the absolute steering angle

• # Calculate 3 markers that are at varying distances away from the center line

• marker_1 = 0.1 * track_width

• marker_2 = 0.25 * track_width

• marker_3 = 0.5 * track_width

• # Give higher reward if the agent is closer to center line and vice versa

• if distance_from_center <= marker_1:

• reward = 1

• elif distance_from_center <= marker_2:

• reward = 0.5

• elif distance_from_center <= marker_3:

• reward = 0.1

• else:

• reward = 1e-3  # likely crashed/ close to off track

• # Steering penalty threshold, change the number based on your action space setting

• ABS_STEERING_THRESHOLD = 15

• # Penalize reward if the agent is steering too much

• if steering > ABS_STEERING_THRESHOLD:

• reward *= 0.8

• return float(reward)
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• A more realistic and complex reward function: https://www.middleware-

solutions.fr/2019/08/14/an-introduction-to-aws-deepracer

https://www.middleware-solutions.fr/2019/08/14/an-introduction-to-aws-deepracer
https://www.middleware-solutions.fr/2019/08/14/an-introduction-to-aws-deepracer


MDP Search Tree
• Each MDP state 𝑠 projects a search tree starting from it

• Both policy and environment may be stochastic
– Policy 𝜋 𝑎 𝑠 : probability distribution over possible actions 𝑎 from 

state 𝑠
• e.g., different actions may be taken for the same state

– Environment 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 : if the agent takes action 𝑎 in state 𝑠, env 
gives probability distribution over next state 𝑠′ and reward 𝑟

• e.g., due to non-determinism in the environment (sudden strong wind), or 
faulty steering wheels of the robot

a

s

s’

s, a

(𝑠, 𝑎, 𝑠′) called a 
transition

Reward 𝑅(𝑠, 𝑎, 𝑠′)

s,a,s’

s is a 
state

(s, a) is a 
q-state
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Preventing Infinite Rewards

• Problem: What if the game lasts forever? Do we get 
infinite rewards? No. Possible solutions:

• Finite horizon: (limit search tree depth)
– Terminate episodes after a fixed 𝑇 timesteps

• Discount factor: 0 < 𝛾 ≤ 1
– Think of it as a 1 − 𝛾 chance of ending the episode at 

every step. Effective horizon (expected episode length): 
σ𝑡=0
∞ 𝛾𝑡 =

1

1−𝛾

• σ𝑡=0
∞ .1𝑡 =

1

1−.1
= 1.1, σ𝑡=0

∞ .5𝑡 =
1

1−.5
= 2,σ𝑡=0

∞ .9𝑡 =
1

1−.9
= 10

– Smaller 𝛾 leads to shorter horizon, and preference of 
short-term to long-term rewards, and vice versa

• Absorbing state: the episode ends upon entering an 
absorbing state (terminal state)

• Some of all of the above can be combined
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Discount Factor Example

• Each time we descend 

a level in the search 

tree, we multiply in the 

discount once

• Example: 𝛾 = 0.5
– 𝑈([1, 2, 3]) = 1 ∗ 1
+ 0.5 ∗ 2 + 0.25 ∗ 3
< 𝑈([3, 2, 1]) = 1 ∗ 3
+ 0.5 ∗ 2 + 0.25 ∗ 1
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Discounting Example

• Given:

– Actions: East, West, and Exit (only available in exit states a, e)

– Transitions: deterministic

• For  = 1, optimal policy in each state is always moving West 

– From state d, reward of going West is 0 + 𝛾 ⋅ 0 + 𝛾2 ⋅ 0 + 𝛾3 ⋅ 10 = 10, larger 

than reward of going East 0 + 𝛾 ⋅ 1 = 1

• For  = 0.1, optimal policy in each state is shown below 

– From state d, reward from going West is 0 + 𝛾 ⋅ 0 + 𝛾2 ⋅ 0 + 𝛾3 ⋅ 10 = 0.01, less 

than reward from going East 0 + 𝛾 ⋅ 1 = 0.1.

• For which  are West and East equally good when in state d?

– 𝛾3 ⋅ 10 = 𝛾 ⋅ 1 ⟹ 𝛾 =
1

10
≈ .32

← ←← ← ← ← ← →

 = 1  = 0.1  =
1

10

←→
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Known MDP

• In this lecture, we assume known MDP, and 
use dynamic programming to solve Bellman 
Equations and find the optimal policy (no 
learning here).

13

known

known

want to optimize



Formal Definition of MDP

• Return (cumulative discounted reward) at time 𝑡: 𝐺𝑡 ≐ 𝑅𝑡+1
+ 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯+ 𝛾𝑇−1𝑅𝑇 = σ𝑘=0

𝑇−𝑡−1 𝛾𝑘 𝑅𝑡+𝑘+1
– At each step 𝑡 ∈ [0, 𝑇 − 1], agent takes an action 𝐴𝑡 in state 𝑆𝑡; at 

step 𝑡 + 1, agent receives a reward 𝑅𝑡+1 and transitions into the 
next state 𝑆𝑡+1 with the trace (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1)

– We assume episodic tasks, and this specific episode has length 
of 𝑇 steps. (𝑇 = ∞ for continuous tasks)

• State Value Function: expected return under policy 𝜋: 𝑣𝜋 𝑠
≐ 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

• Action Value Function: expected return from taking action 𝑎, then 
follow policy 𝜋: 𝑞𝜋 𝑠, 𝑎 ≐ 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• The RL problem: find the optimal policy 𝜋(𝑎|𝑠) that maximizes the 
expected return from each state
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Important

𝑝(𝑅𝑡+1, 𝑆𝑡+1|𝑆𝑡 , 𝐴𝑡)

Reward 𝑅𝑡+1
State 𝑆𝑡+1

Action 𝐴𝑡 

Environment

RL Agent

𝜋(𝐴𝑡|𝑆𝑡)



Example: Computing Returns 

for One Episode
• Working backward is more efficient than working 

forward as it avoids redundant computations.
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543210Step 𝑡

Reward 𝑅𝑡+1

𝑅1 𝑅2 𝑅3 𝑅4 𝑅5

Important



Bellman Expectation Equations

• Bellman Expectation Equation (BEE) for State 
Value Function:

• 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

– Expected value starting from state 𝑠 and following 
policy 𝜋.

• Bellman Expectation Equation for Action 
Value Function

• 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 [

]

𝑟 +

𝛾 σ𝑎′𝜋 𝑎′ 𝑠′ 𝑞𝜋 𝑠′, 𝑎′
– Expected value starting from state 𝑠, taking action 
𝑎, and thereafter following policy 𝜋.
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Bellman Optimality Equations
• Bellman Optimality Equation (BEE) for the Optimal State 

Value Function:

• 𝑣∗ 𝑠 = max
𝑎

σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠
′

– Max value starting from state 𝑠 and following the greedy policy 
𝜋 𝑠 = argmax

a
𝑞∗ 𝑠, 𝑎 (the optimal policy)

• Bellman Optimality Equation for the Optimal Action Value 
Function

• 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′

– Max value starting from state 𝑠, taking action 𝑎, and thereafter 
following the greedy policy 𝜋 𝑠 = argmax

a
𝑞∗ 𝑠, 𝑎 (the optimal 

policy)
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• Notations in left fig: 

• σ𝑠′ 𝑇(𝑠, 𝑎, 𝑠′) [… ] =
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 [… ]

• 𝑅 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟

Important



Bellman Equations written with 

Expectation Symbols
• BEE:

• 𝑣𝜋 𝑠 = 𝔼𝑎𝔼𝑟, 𝑠′[𝑟 + 𝛾𝑣𝜋 𝑠′ ]

• 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾𝔼𝑎𝑞𝜋 𝑠, 𝑎

• BOE:

• 𝑣∗ 𝑠 = max
𝑎

𝔼𝑟, 𝑠′[𝑟 + 𝛾𝑣∗ 𝑠′ ]

• 𝑞∗ 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾max
𝑎

𝑞∗ 𝑠, 𝑎

• Detailed derivations:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑎∼𝜋(𝑎|𝑠)𝑞𝜋 𝑠, 𝑎 =

𝔼𝑎∼𝜋(𝑎|𝑠) 𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎)[𝑟 + 𝛾𝑣𝜋 𝑠′ ]

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ = 𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎) 𝑟 + 𝛾𝑣𝜋 𝑠′ =

𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎) 𝑟 + 𝛾𝔼𝑎∼𝜋(𝑎|𝑠) 𝑞𝜋 𝑠, 𝑎

– 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎 = max
𝑎

𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎)[𝑟 + 𝛾𝑣∗ 𝑠′ ]

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′ = 𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎)[𝑟 + 𝛾𝑣∗ 𝑠′ ]
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𝜋 𝑎 𝑠 : agent 

takes action 𝑎 

𝑝 𝑟, 𝑠′ 𝑠, 𝑎 : env 

gives reward 𝑟 

and moves agent 

to 𝑠′

𝜋 𝑎 𝑠

𝑝 𝑟, 𝑠′ 𝑠, 𝑎

Backup Diagrams

Bellman Exp Eqn for 𝑞𝜋 𝑠, 𝑎 Bellman Opt Eqn for 𝑞∗ 𝑠, 𝑎

maxmax

Bellman Exp Eqn for 𝑣𝜋 𝑠 Bellman Opt Eqn for 𝑣∗ 𝑠

max

Important

(state, action) 

state

Agent chooses an 

action 𝑎

Env chooses 

the next state 𝑠′



Further Explanations

• Starting from state 𝑠, the agent and the env play a game:
– Agent chooses an action 𝑎 based on its policy 𝜋 𝑎 𝑠 , e.g., the 

car has 10% prob turning left, 10% prob turning right, 80% prob 
going straight

– Env chooses the next state 𝑠′ based on the MDP 𝑝(𝑟, 𝑠′|𝑠, 𝑎), 
e.g., if the agent (car) chose to turn left, 𝑝 𝑟, 𝐿 𝑠, 𝑇𝑢𝑟𝑛𝐿𝑒𝑓𝑡 =
90%, 𝑝 𝑟, 𝑅 𝑠, 𝑇𝑢𝑟𝑛𝐿𝑒𝑓𝑡 = 10%, e.g., there may be a sudden 
gust of wind that turns the car to the right with 10% prob

– Agent chooses an action 𝑎′ in 𝑠′
– Env chooses the next state 𝑠′′
– …

• For BEE, take the expectation over all possible actions 𝑎 in 
state 𝑠 (𝔼𝑎)

• For BOE, take the max (with the greedy action) over all 
possible actions 𝑎 in state 𝑠 (max

𝑎
)

• For both BEE and BOE, take the expectation over all possible 
next states 𝑠′ if agent takes action 𝑎 in state 𝑠 (𝔼𝑟, 𝑠′)
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𝑣(𝑠) vs. 𝑞(𝑠, 𝑎)

21

• State-action Value Function 𝑞(𝑠, 𝑎) contains more 
information than State value function 𝑣(𝑠). Given 𝑞∗ 𝑠, 𝑎 , 
optimal policy 𝜋∗ s = argmax

𝑎
𝑞∗ 𝑠, 𝑎 .

• Can always go from 𝑞𝜋(𝑠, 𝑎) to 𝑣𝜋(𝑠), or from 𝑞∗(𝑠, 𝑎) to 
𝑣∗(𝑠):

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 ; 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎

• With known MDP (𝑝 𝑟, 𝑠′ 𝑠, 𝑎 , i.e., model-based): can go 
from 𝑣𝜋(𝑠) to 𝑞𝜋(𝑠, 𝑎), or from 𝑣∗(𝑠) to 𝑞∗(𝑠, 𝑎):

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′

• With unknown MDP (unknown 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 , i.e., model-
free) : cannot go from 𝑣𝜋(𝑠) to 𝑞𝜋(𝑠, 𝑎), or from 𝑣∗(𝑠) to 
𝑞∗(𝑠, 𝑎)

• In short: From 𝑞 to 𝑣: always possible. From 𝑣 to 𝑞: only 
for known MDP



Simplified Bellman Equations for 

Deterministic Env

• Bellman Equations:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

– 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′

• For Deterministic Env: there is only one possible 
(𝑟, 𝑠′) for a given (𝑠, 𝑎) (we use 𝑅𝑠

𝑎 to 
emphasize that reward 𝑟 is specific to this 
(𝑠, 𝑎)):

– 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣𝜋 𝑠′

– 𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣∗ 𝑠

′
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Policy Evaluation

• The prediction problem: predict Value Function for 
given policy 𝜋 by solving Bellman Exp. Equation 
for State Value Function

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

= 𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]

• Can also be written as:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ denotes the 

State-Action Value Function for taking action 𝑎 in 
state 𝑠, then follow policy 𝜋 afterwards

• A set of linear equations that can be solved 
analytically for small system

– # unknowns = # equations = # states 
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Grid World1: Policy Evaluation
• Non-episodic MDP w. deterministic env: Agent in state 𝑠 ∈ 𝐴,𝐵, 𝐶, 𝐷 taking action 𝑎

∈ 𝑙, 𝑟, 𝑢, 𝑑 always moves to the next state in the movement direction, unless it is 
blocked by the walls. Discount factor 𝛾 = 0.7.

• Random policy: Agent in state 𝑠 ∈ 𝐴, 𝐵, 𝐶, 𝐷 takes a random action 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑 with 
equal probability of 0.25 each. 

• Bellman Exp. Equation for det env: 𝑣𝜋 𝑠 = σ𝑎𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣𝜋 𝑠′

• 𝑣𝜋 𝐴 = 0.25 𝑞𝜋 𝐴, 𝑙 + 𝑞𝜋 𝐴, 𝑟 + 𝑞𝜋 𝐴, 𝑢 + 𝑞𝜋(𝐴, 𝑑) = 0.5 ⋅ 0.7𝑣𝜋 𝐴 + 0.25 ⋅ ൫

൯

5

+ 0.7𝑣𝜋 𝐵 + 0.25 ⋅ 0.7𝑣𝜋 𝐶

– 𝑞𝜋 𝐴, 𝑙 = 𝑞𝜋 𝐴, 𝑢 = 0 + 0.7𝑣𝜋 𝐴

– 𝑞𝜋 𝐴, 𝑟 = 5 + 0.7𝑣𝜋 𝐵

– 𝑞𝜋 𝐴, 𝑑 = 0 + 0.7𝑣𝜋 𝐶

• 𝑣𝜋 𝐵 = 0.25 𝑞𝜋 𝐵, 𝑙 + 𝑞𝜋 𝐵, 𝑟 + 𝑞𝜋 𝐵, 𝑢 + 𝑞𝜋(𝐵, 𝑑) = 0.25 ⋅ 0.7𝑣𝜋 𝐴 + 0.5 ⋅ ൫

൯

5

+ 0.7𝑣𝜋 𝐵 + 0.25 ⋅ 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐵, 𝑙 = 0 + 0.7𝑣𝜋 𝐴

– 𝑞𝜋 𝐵, 𝑟 = 𝑞𝜋 𝐴, 𝑢 = 5 + 0.7𝑣𝜋 𝐵

– 𝑞𝜋 𝐵, 𝑑 = 0 + 0.7𝑣𝜋 𝐷

• 𝑣𝜋 𝐶 = 0.25 𝑞𝜋 𝐶, 𝑙 + 𝑞𝜋 𝐶, 𝑟 + 𝑞𝜋 𝐶, 𝑢 + 𝑞𝜋(𝐶, 𝑑) = 0.25 ⋅ 0.7𝑣𝜋 𝐴 + 0.5 ⋅ 0.7𝑣𝜋 𝐶
+ 0.25 ⋅ 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐶, 𝑙 = 𝑞𝜋 𝐶, 𝑑 = 0 + 0.7𝑣𝜋 𝐶

– 𝑞𝜋 𝐶, 𝑟 = 0 + 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐶, 𝑢 = 0 + 0.7𝑣𝜋 𝐴

• 𝑣𝜋 𝐷 = 0.25 𝑞𝜋 𝐷, 𝑙 + 𝑞𝜋 𝐷, 𝑟 + 𝑞𝜋 𝐷, 𝑢 + 𝑞𝜋(𝐷, 𝑑) = 0.25 ⋅ (5 + 0.7𝑣𝜋 𝐵 ) + 0.25
⋅ 0.7𝑣𝜋 𝐶 + 0.5 ⋅ 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐷, 𝑙 = 0 + 0.7𝑣𝜋 𝐶

– 𝑞𝜋 𝐷, 𝑟 = 𝑞𝜋 𝐷, 𝑑 = 0 + 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐷, 𝑢 = 5 + 0.7𝑣𝜋 𝐵

• Solution: 𝑣𝜋 𝐴 = 4.2, 𝑣𝜋 𝐵 = 6.1, 𝑣𝜋 𝐶 = 2.2, 𝑣𝜋 𝐷 = 4.2. 𝑞𝜋 𝑠, 𝑎 can also be 
obtained.
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