
L7.2 Q-Learning

Zonghua Gu 2023
1Acknowledgement: slides based on https://www.coursera.org/specializations/reinforcement-learning

And Hugging Face Deep RL Course https://huggingface.co/deep-rl-course

Outline

• Introduction to RL

• Q-Learning

• Deep Q Learning w. Function

Approximation

2

Reinforcement Learning

• Recall: an MDP consists of:
– Set of states 𝑆
– Start state s0
– Set of actions 𝐴
– Transitions and rewards 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (w. discount )

• But now the model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 is unknown
– Unknown reward 𝑟 and next state 𝑠′, denoted as state

transition (𝑠, 𝑎, 𝑟, 𝑠′), if agent takes action 𝑎 in state 𝑠.

– Agent must learn the optimal policy 𝜋(𝑎|𝑠) by trial-and-
error.

𝑝 𝑟, 𝑠′ 𝑠, 𝑎

3

Characteristics of RL

• There is no supervisor, only a reward

signal (may be sparse)

• Feedback is delayed, not instantaneous

• Sequential, non i.i.d (Independent and

identically distributed) data

– Agent's actions affect the subsequent data it

receives

4

Model-Based vs. Model-Free

• Model-Based RL: MDP planning

– Learn MDP 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (given current state 𝑠 and action 𝑎, returns

prob distribution of current reward 𝑟 and next state 𝑠′), then plan

with Value Iteration or Policy Iteration

• Model-Free RL: Value-based (our focus) and Policy-based

– Learn value function 𝑉 𝑠 or 𝑄(𝑠, 𝑎), or policy function 𝜋(𝑠) without

learning MDP

5

MDP

state 𝑠 action 𝑎

next

state 𝑠′
reward 𝑟

𝑉 𝑠 ,𝑄(𝑠, 𝑎)

state 𝑠 action 𝑎

Policy 𝜋(𝑠)

state 𝑠 action 𝑎

action 𝑎 = 𝜋(𝑠)

MDP-based RL Value-based RL Policy-based RL

action

a = argmaxa𝑄(𝑠, 𝑎)

Model-Based RL

• If MDP is not available, we can use Model-
Based RL:

• Step 1: Learn empirical MDP model
– Estimate the model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 by executing some

policy 𝜋 (may be random), and keeping track of
outcomes 𝑟, s′ for each 𝑠, 𝑎 in the observed
episodes.

• Step 2: Do planning w. the learned MDP for
the optimal policy
– Dynamic Programming w. Value Iteration or Policy

Iteration

6

MiniGW: Model Learning
Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

(𝐵, 𝑟, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)
(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, 10)

(𝐵, 𝑟, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)

(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, +10)

(𝐸, 𝑢, 𝐶, −1)
(𝐶, 𝑟, 𝐴, −1)

(𝐴, 𝑒𝑥𝑖𝑡, 𝑥, −10)

Episode 1 Episode 2

Episode 3 Episode 4

(𝐸, 𝑢, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)
(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, 10)

𝑝 −1, 𝐶 𝐵, 𝑟 = 1.0
𝑝 −1,𝐷 𝐶, 𝑟 = 0.75
𝑝 −1, 𝐴 𝐶, 𝑟 = 0.25
𝑝 10, 𝑥 𝐷, 𝑒𝑥𝑖𝑡 = 1.0
𝑝 −10, 𝑥 𝐴, 𝑒𝑥𝑖𝑡 = 1.0

• In the 4 episodes, we see 4 transitions from
(𝑠 = 𝐶, 𝑎 = 𝑟). 3 of them go to next state 𝑠′ =
𝐷, and one goes to next state 𝑠′ = 𝐴, each w.
reward −1. Hence 𝑝 −1,𝐷 𝐶, 𝑟 =
0.75; 𝑝 −1, 𝐴 𝐶, 𝑟 = 0.25.

𝑝 𝑟, 𝑠′ 𝑠, 𝑎

7

Value-based RL

8

MDP

state 𝑠 action 𝑎

next

state 𝑠′
reward 𝑟

𝑄(𝑠, 𝑎)

state 𝑠 action 𝑎

Policy 𝜋(𝑠)

state 𝑠 action 𝑎

action 𝑎 = 𝜋(𝑠)

MDP Planning Value-based RL Policy-based RL

action

a = argmaxa𝑄(𝑠, 𝑎)

Outline

• Introduction to RL

• Q-Learning

• Deep Q Learning w. Function

Approximation

9

• [BOA] Bellman Optimality Equation for Optimal Action Value Function:

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′

• Q Learning solves [BOA] by sampling:

– 𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 − 𝑄 𝑆𝑡, 𝐴𝑡)

– 𝛾 is the discount factor in MDP; 𝛼 is the learning rate

– TD Target: 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 ; TD Error: 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 − 𝑄 𝑆𝑡, 𝐴𝑡

– (Note slight difference in notation: 𝑆𝑡 and 𝑆𝑡+1 above is the same as 𝑆 and 𝑆′ below)

10

Q-Learning

Off-policy, Value Iteration: in state 𝑆, Q update w. one-step lookahead

𝑄(𝑆′, 𝑎) by taking max
𝑎

𝑄(𝑆′, 𝑎) among all possible actions.

Q-Learning Update Equation

11

Q-Function

• 𝑄 𝑆, 𝐴 maps from state 𝑆 and action 𝐴 to

a Q value.

• In Tabular QL, 𝑄 𝑆, 𝐴 is a Q-table, where

each cell corresponds to a state-action

value pair value.

• In Deep QL, 𝑄 𝑆, 𝐴 is a Neural Network

12

Q-Learning Steps

• During training: train a Q-Function
(an action-value function), which is a
Q-table that contains all the state-
action pair values.
– Given a state and an action, our Q-

Function will search into its Q-table the
corresponding value.

– When the training is done, we have
learned a Q-function

• During inference: given the learned
Q-function, the optimal policy is to
choose the greedy (best) action that
results in the highest Q value a =
argmaxa𝑄(𝑠, 𝑎)

13

𝑄(𝑠, 𝑎)

state 𝑠 action 𝑎

action

a = argmaxa𝑄(𝑠, 𝑎)

Exploration-Exploitation Dilemma

• The agent has to exploit what it has

already experienced in order to obtain

reward, but it also has to explore in order

to make better action selections in the

future

– Exploitation: to obtain high reward, the agent

prefers actions that it has tried in the past and

proven to give high reward

– Exploration: to discover such actions, it has to

try actions that it has not selected before

14

𝜖-Greedy Policy
• 𝜖-greedy policy: select a random action w. prob 𝜖

(exploration); select the greedy action argmax
𝑎

𝑄(𝑠, 𝑎) with

prob 1 − 𝜖 (exploitation)
– With 𝒜(𝑠) possible actions in state 𝑠, select each non-greedy

action w. prob
𝜖

𝒜 𝑠
; the greedy action w. prob 1 − 𝜖 +

𝜖

𝒜 𝑠

– e.g., if 𝜖 = .1, select each non-greedy action w. prob
.1

6
= .017;

the greedy action w. prob 1 − .1 +
.1

6
= .917

15

𝜖 is Gradually Reduced during Training

• At the beginning of the training, the agent knows very little.
We set 𝜖 to be large (close to 1), so the agent is adventurous
and explores a lot

• As the training goes on, the Q-Table gets better and better in
its estimations, we progressively reduce 𝜖 since we will need
less and less exploration and more exploitation

• During inference: 𝜖 = 0 (always take the greedy action)

16

Example: a Maze
• Agent (rat) always starts at the same starting point

• It has 4 possible actions in each grid position (Left,
Right, Up, Down)

• Goal: eat the big pile of cheese (at the lower right-
hand corner) and avoid the poison

• The episode ends if rat eats the poison, eats the big
pile of cheese, or if it spends more than 5 steps.

• Learning rate 𝛼 = .01, discount factor 𝛾 = .99

17

Reward Function

• +0: Going to a state with no cheese in it.

• +1: Going to a state with a small cheese in

it.

• +10: Going to the state with the big pile of

cheese.

• -10: Going to the state with the poison and

thus die.

• +0 If it spends more than five steps.

18

Initial Q-Table

• All values are 0. This table contains, for

each state, the four state-action values.

– 𝑄 𝑆, 𝐿 , 𝑄 𝑆, 𝑅 , 𝑄 𝑆, 𝑈 , 𝑄 𝑆, 𝐷

19

Step 1

• Agent takes a random action, and moves

right

• It gets a small cheese with +1 reward

20

Q-Table Update

• 𝑄 𝐼𝑛𝑖𝑡, 𝑅𝑖𝑔ℎ𝑡 = 0 + .1 1 + .99 ∗ 0 − 0 =
.1

21

Q-Learning

Step 2

• Agent takes a random action, and moves

down

• It gets the poison with -10 reward

• Episode ends

22

Q-Table Update

23

After Some Training Episodes

24

-100

Outline

• Introduction to RL

• Q-Learning

• Deep Q Learning w. Function

Approximation

25

Q Learning vs. Deep QL

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/

Function Approximations of Value

Functions
• Upper:

– Left: state value function
ො𝑣(𝑠,𝐰) with params 𝐰

– Middle: action value
function ො𝑞(𝑠, 𝑎,𝐰) with
params 𝐰

– Right: action value
functions ො𝑞(𝑠, 𝑎𝑖 , 𝐰) with
params 𝐰, since we need
all Q-values for computing
greedy policy
argmaxa ො𝑞(𝑠, 𝑎,𝐰)

• Lower:
– Use NN to approximate

action value functions

– Optimized with Gradient
descent 27

Deep QL Pros and Cons

• Pros:

– Compresses Q-table with a Neural Network

– Can handle states not seen during training

• Cons

– Deterministic: cannot learn stochastic policies

– Cannot be directly applied to continuous

action spaces (need to discretize)

– Needs to separately add 𝜖-greedy algorithm

to balance exploration vs. exploitation.

28

DQN Extensions

• Experience replay
– Save transitions (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1) to buffer

– Randomly sample from replay buffer and apply Q
update

• Target network
– Use a separate Q-network to estimate TD-target

– Target network is synced infrequently with main
network

– Reduce correlation between Q-value and TD-
target

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 +
𝛾max

𝑎
𝑄𝑡𝑎𝑟𝑔𝑒𝑡 𝑆𝑡+1, 𝑎 − 𝑄 𝑆𝑡 , 𝐴𝑡)

292) Deep Q Network DQN https://www.youtube.com/watch?v=By6TYFSIFVE

https://www.youtube.com/watch?v=By6TYFSIFVE

	Default Section
	Slide 1: L7.2 Q-Learning
	Slide 2: Outline
	Slide 3: Reinforcement Learning
	Slide 4: Characteristics of RL
	Slide 5: Model-Based vs. Model-Free
	Slide 6: Model-Based RL
	Slide 7: MiniGW: Model Learning
	Slide 8: Value-based RL
	Slide 9: Outline
	Slide 10: Q-Learning
	Slide 11: Q-Learning Update Equation
	Slide 12: Q-Function
	Slide 13: Q-Learning Steps
	Slide 14: Exploration-Exploitation Dilemma
	Slide 15: script epsilon-Greedy Policy
	Slide 16: script epsilon is Gradually Reduced during Training
	Slide 17: Example: a Maze
	Slide 18: Reward Function
	Slide 19: Initial Q-Table
	Slide 20: Step 1
	Slide 21: Q-Table Update
	Slide 22: Step 2
	Slide 23: Q-Table Update
	Slide 24: After Some Training Episodes
	Slide 25: Outline
	Slide 26: Q Learning vs. Deep QL
	Slide 27: Function Approximations of Value Functions
	Slide 28: Deep QL Pros and Cons
	Slide 29: DQN Extensions

