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Reinforcement Learning

• Recall: an MDP consists of:
– Set of states 𝑆
– Start state s0
– Set of actions 𝐴
– Transitions and rewards 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (w. discount )

• But now the model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 is unknown
– Unknown reward 𝑟 and next state 𝑠′, denoted as state 

transition (𝑠, 𝑎, 𝑟, 𝑠′), if agent takes action 𝑎 in state 𝑠. 

– Agent must learn the optimal policy 𝜋(𝑎|𝑠) by trial-and-
error.

𝑝 𝑟, 𝑠′ 𝑠, 𝑎
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Characteristics of RL

• There is no supervisor, only a reward 

signal (may be sparse)

• Feedback is delayed, not instantaneous

• Sequential, non i.i.d (Independent and 

identically distributed) data

– Agent's actions affect the subsequent data it 

receives
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Model-Based vs. Model-Free

• Model-Based RL: MDP planning 

– Learn MDP 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (given current state 𝑠 and action 𝑎, returns 

prob distribution of current reward 𝑟 and next state 𝑠′), then plan 

with Value Iteration or Policy Iteration

• Model-Free RL: Value-based (our focus) and Policy-based

– Learn value function 𝑉 𝑠 or 𝑄(𝑠, 𝑎), or policy function 𝜋(𝑠) without 

learning MDP
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MDP

state 𝑠 action 𝑎

next

state 𝑠′
reward 𝑟

𝑉 𝑠 ,𝑄(𝑠, 𝑎)

state 𝑠 action 𝑎

Policy 𝜋(𝑠)

state 𝑠 action 𝑎

action 𝑎 = 𝜋(𝑠)

MDP-based RL Value-based RL Policy-based RL

action

a = argmaxa𝑄(𝑠, 𝑎)



Model-Based RL

• If MDP is not available, we can use Model-
Based RL:

• Step 1: Learn empirical MDP model
– Estimate the model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 by executing some 

policy 𝜋 (may be random), and keeping track of 
outcomes 𝑟, s′ for each 𝑠, 𝑎 in the observed 
episodes.

• Step 2: Do planning w. the learned MDP for 
the optimal policy
– Dynamic Programming w. Value Iteration or Policy 

Iteration 
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MiniGW: Model Learning
Input Policy  

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

(𝐵, 𝑟, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)
(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, 10)

(𝐵, 𝑟, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)

(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, +10)

(𝐸, 𝑢, 𝐶, −1)
(𝐶, 𝑟, 𝐴, −1)

(𝐴, 𝑒𝑥𝑖𝑡, 𝑥, −10)

Episode 1 Episode 2

Episode 3 Episode 4

(𝐸, 𝑢, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)
(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, 10)

𝑝 −1, 𝐶 𝐵, 𝑟 = 1.0
𝑝 −1,𝐷 𝐶, 𝑟 = 0.75
𝑝 −1, 𝐴 𝐶, 𝑟 = 0.25
𝑝 10, 𝑥 𝐷, 𝑒𝑥𝑖𝑡 = 1.0
𝑝 −10, 𝑥 𝐴, 𝑒𝑥𝑖𝑡 = 1.0

• In the 4 episodes, we see 4 transitions from 
(𝑠 = 𝐶, 𝑎 = 𝑟). 3 of them go to next state 𝑠′ =
𝐷, and one goes to next state 𝑠′ = 𝐴, each w. 
reward −1. Hence 𝑝 −1,𝐷 𝐶, 𝑟 =
0.75; 𝑝 −1, 𝐴 𝐶, 𝑟 = 0.25.

𝑝 𝑟, 𝑠′ 𝑠, 𝑎
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Value-based RL
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MDP

state 𝑠 action 𝑎

next

state 𝑠′
reward 𝑟

𝑄(𝑠, 𝑎)

state 𝑠 action 𝑎

Policy 𝜋(𝑠)

state 𝑠 action 𝑎

action 𝑎 = 𝜋(𝑠)

MDP Planning Value-based RL Policy-based RL

action

a = argmaxa𝑄(𝑠, 𝑎)



Outline

• Introduction to RL

• Q-Learning

• Deep Q Learning w. Function 

Approximation

9



• [BOA] Bellman Optimality Equation for Optimal Action Value Function:

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′

• Q Learning solves [BOA] by sampling:

– 𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 − 𝑄 𝑆𝑡, 𝐴𝑡 )

– 𝛾 is the discount factor in MDP; 𝛼 is the learning rate

– TD Target: 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 ; TD Error: 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 − 𝑄 𝑆𝑡, 𝐴𝑡

– (Note slight difference in notation: 𝑆𝑡 and 𝑆𝑡+1 above is the same as 𝑆 and 𝑆′ below)
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Q-Learning

Off-policy, Value Iteration: in state 𝑆, Q update w. one-step lookahead 

𝑄(𝑆′, 𝑎) by taking max
𝑎

𝑄(𝑆′, 𝑎) among all possible actions.



Q-Learning Update Equation

11



Q-Function

• 𝑄 𝑆, 𝐴 maps from state 𝑆 and action 𝐴 to 

a Q value.

• In Tabular QL, 𝑄 𝑆, 𝐴 is a Q-table, where 

each cell corresponds to a state-action 

value pair value. 

• In Deep QL, 𝑄 𝑆, 𝐴 is a Neural Network
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Q-Learning Steps

• During training: train a Q-Function 
(an action-value function), which is a 
Q-table that contains all the state-
action pair values.
– Given a state and an action, our Q-

Function will search into its Q-table the 
corresponding value.

– When the training is done, we have 
learned a Q-function

• During inference: given the learned  
Q-function, the optimal policy is to 
choose the greedy (best) action that 
results in the highest Q value a =
argmaxa𝑄(𝑠, 𝑎)
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𝑄(𝑠, 𝑎)

state 𝑠 action 𝑎

action

a = argmaxa𝑄(𝑠, 𝑎)



Exploration-Exploitation Dilemma

• The agent has to exploit what it has 

already experienced in order to obtain 

reward, but it also has to explore in order 

to make better action selections in the 

future

– Exploitation: to obtain high reward, the agent 

prefers actions that it has tried in the past and 

proven to give high reward

– Exploration: to discover such actions, it has to 

try actions that it has not selected before
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𝜖-Greedy Policy
• 𝜖-greedy policy: select a random action w. prob 𝜖

(exploration); select the greedy action argmax
𝑎

𝑄(𝑠, 𝑎) with 

prob 1 − 𝜖 (exploitation)
– With 𝒜(𝑠) possible actions in state 𝑠, select each non-greedy 

action w. prob 
𝜖

𝒜 𝑠
; the greedy action w. prob 1 − 𝜖 +

𝜖

𝒜 𝑠

– e.g., if 𝜖 = .1, select each non-greedy action w. prob 
.1

6
= .017; 

the greedy action w. prob 1 − .1 +
.1

6
= .917
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𝜖 is Gradually Reduced during Training

• At the beginning of the training, the agent knows very little. 
We set 𝜖 to be large (close to 1), so the agent is adventurous 
and explores a lot

• As the training goes on, the Q-Table gets better and better in 
its estimations, we progressively reduce 𝜖 since we will need 
less and less exploration and more exploitation

• During inference: 𝜖 = 0 (always take the greedy action)  
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Example: a Maze
• Agent (rat) always starts at the same starting point

• It has 4 possible actions in each grid position (Left, 
Right, Up, Down)

• Goal: eat the big pile of cheese (at the lower right-
hand corner) and avoid the poison

• The episode ends if rat eats the poison, eats the big 
pile of cheese, or if it spends more than 5 steps.

• Learning rate 𝛼 = .01, discount factor 𝛾 = .99
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Reward Function 

• +0: Going to a state with no cheese in it.

• +1: Going to a state with a small cheese in 

it.

• +10: Going to the state with the big pile of 

cheese.

• -10: Going to the state with the poison and 

thus die.

• +0 If it spends more than five steps.
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Initial Q-Table

• All values are 0. This table contains, for 

each state, the four state-action values.

– 𝑄 𝑆, 𝐿 , 𝑄 𝑆, 𝑅 , 𝑄 𝑆, 𝑈 , 𝑄 𝑆, 𝐷
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Step 1

• Agent takes a random action, and moves 

right

• It gets a small cheese with +1 reward
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Q-Table Update

• 𝑄 𝐼𝑛𝑖𝑡, 𝑅𝑖𝑔ℎ𝑡 = 0 + .1 1 + .99 ∗ 0 − 0 =
.1

21

Q-Learning



Step 2

• Agent takes a random action, and moves 

down

• It gets the poison with -10 reward 

• Episode ends
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Q-Table Update
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After Some Training Episodes
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Q Learning vs. Deep QL

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/



Function Approximations of Value 

Functions
• Upper:

– Left: state value function 
ො𝑣(𝑠,𝐰) with params 𝐰

– Middle: action value 
function ො𝑞(𝑠, 𝑎,𝐰) with 
params 𝐰

– Right: action value 
functions ො𝑞(𝑠, 𝑎𝑖 , 𝐰) with 
params 𝐰, since we need 
all Q-values for computing 
greedy policy 
argmaxa ො𝑞(𝑠, 𝑎,𝐰)

• Lower: 
– Use NN to approximate 

action value functions

– Optimized with Gradient 
descent 27



Deep QL Pros and Cons

• Pros:

– Compresses Q-table with a Neural Network

– Can handle states not seen during training

• Cons

– Deterministic: cannot learn stochastic policies

– Cannot be directly applied to continuous 

action spaces (need to discretize)

– Needs to separately add 𝜖-greedy algorithm 

to balance exploration vs. exploitation. 
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DQN Extensions

• Experience replay
– Save transitions (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1) to buffer

– Randomly sample from replay buffer and apply Q 
update

• Target network
– Use a separate Q-network to estimate TD-target

– Target network is synced infrequently with main 
network

– Reduce correlation between Q-value and TD-
target

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 +
𝛾max

𝑎
𝑄𝑡𝑎𝑟𝑔𝑒𝑡 𝑆𝑡+1, 𝑎 − 𝑄 𝑆𝑡 , 𝐴𝑡 )

292) Deep Q Network DQN https://www.youtube.com/watch?v=By6TYFSIFVE 

https://www.youtube.com/watch?v=By6TYFSIFVE
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