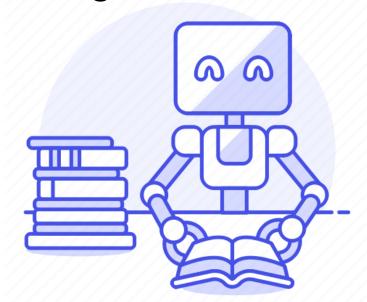
L3 Introduction to Machine Learning

Zonghua Gu 2021

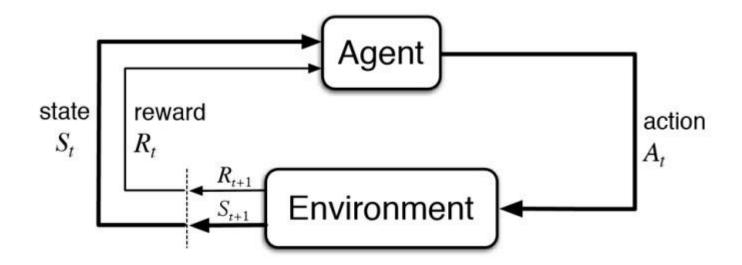


ML Taxonomy

- Supervised Learning:
 - The system is presented with example inputs and their desired outputs, given by a "teacher", and the goal is to learn a general rule that maps inputs to outputs.
 - Classification (cat or dog?)
 - Regression (housing price next year?)
- Unsupervised Learning:
 - No labels are given to the learning algorithm, leaving it on its own to find structure in its input. Unsupervised learning can be a goal in itself (discovering hidden patterns in data) or a means towards an end (feature learning).
 - Parametric UL (e.g., Gaussian Mixture Models)
 - Non-parametric UL

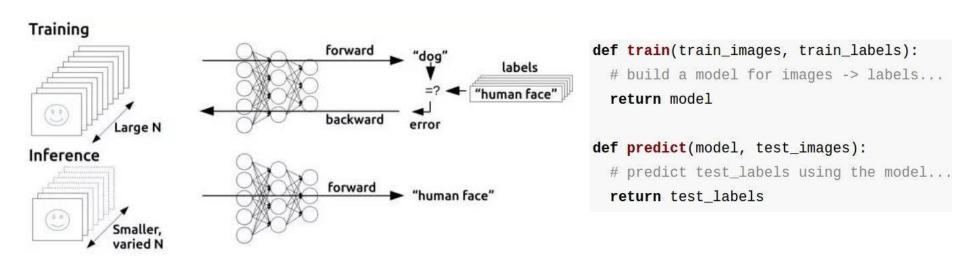
ML Taxonomy

- Reinforcement Learning:
 - An agent interacts with a dynamic environment in which it must perform a certain goal. The agent is provided feedback in terms of rewards and it tries to learn an optimal policy that maximizes its cumulative rewards.
 - Algorithms: Model-based; Model-free (Value-based, Policy-based)
 - Applications: Game playing (AlphaGo); Robotics; AD...



Training vs. Inference

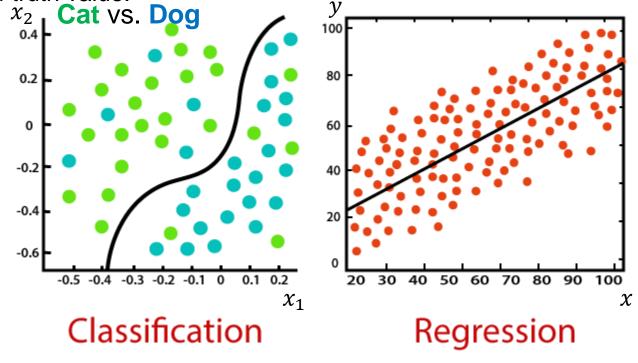
- Training: millions of iterations of forward pass + back propagation to adjust model params (e.g., NN weights); requires large CPU/GPU clusters and days/weeks of training time
- Inference (also called prediction): a single forward pass; can be run on edge devices



Supervised Learning: Classification and Regression

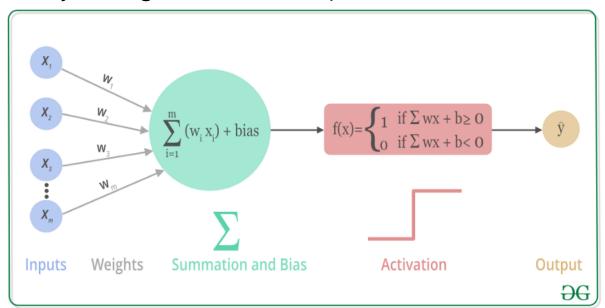
- Classification is used to predict/classify discrete labels such as Male or Female, True or False, Spam or Not Spam, etc.
- Regression is used to predict continuous values such as price, salary, age, etc.
- Both are Supervised Learning algorithms that require ground-truth values as labels.

 Both need loss functions to measure how the predicted value differs from ground-truth value.



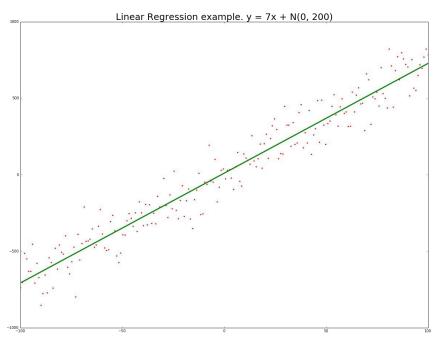
A Neuron and its Activation Function

- The activation function is a nonlinear monotonic function that acts like a "gate": the output is larger for larger input activation
 - Perceptron $y = \sigma(z) = \text{step}(wx + b)$ (activation function f = step function, shown below)
 - Linear Regression if y = z = wx + b (activation function f = identity function)
 - Logistic Regression if $y = \sigma(z) = \sigma(wx + b)$ (activation function f = sigmoid function)



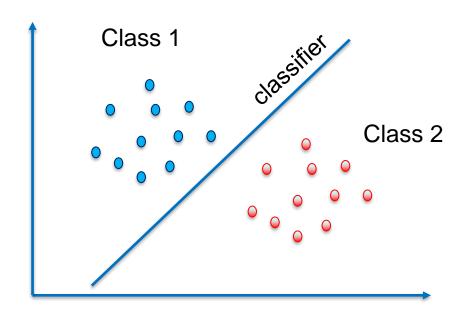
Linear Regression for Regression

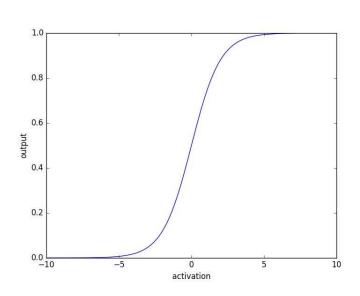
- Function approximation y = wx + b, with learnable parameters $\theta = \{w, b\}$, where x, y, b are vectors, and w is a weight matrix
 - e.g., we want to predict price of a house based on its feature vector $\mathbf{x} = [x_1 \ x_2 \ x_3]^T$, where x_1 is area in square meters (sqm), x_2 is location ranking (loc), x_3 is year of construction (yoc)
 - Predicted price $y = wx + b = w_1x_1 + w_2x_2 + w_3x_3 + b$
 - Fig shows an example for scalar x and y



Logistic Regression for Binary Classification

- Consider a binary classification problem: an input image x may be classified as a dog with probability P(y = dog|x), a cat with probability P(y = cat|x), with P(y = dog|x) + P(y = cat|x) = 1.0
- Logistic Regression: use sigmoid function $\sigma(z_i) = \frac{1}{1+e^{-z_i}}$ to map from the activation (also called the logit) to the output probability
- In addition to binary classification at the output layer, sigmoid may also be used as the non-linear activation function in the hidden layers of a NN

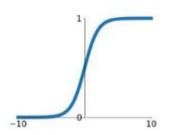




Common Activation Functions used in DL

Sigmoid

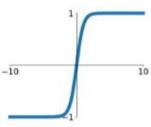
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

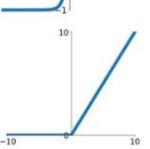


Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

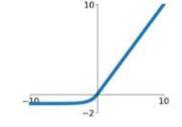
ReLU

 $\max(0,x)$



ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

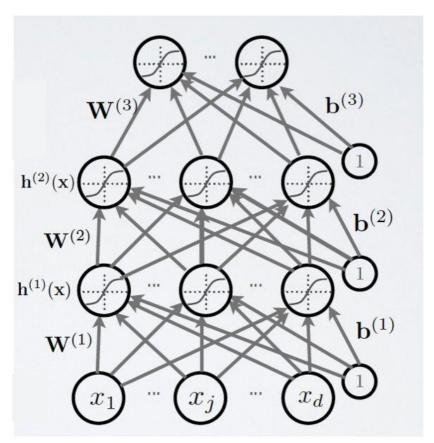


Deep Neural Networks

- We can stack many hidden layers to form a DNN if we have enough data and computing power to train it
- The high model capacity of DNN comes from non-linear mappings: hidden units must be followed by a non-linear activation function
 - Without non-linear activation functions, a DNN with many layers can be collapsed into an equivalent single-layer NN

Fully-Connected NNs

- Number of params at the i-th layer is $(N_{i-1} + 1) * N_i$, where N_i is the number of neurons at the i-th layer. Can grow very large
 - (We will discuss CNNs with much fewer params in the next lecture)

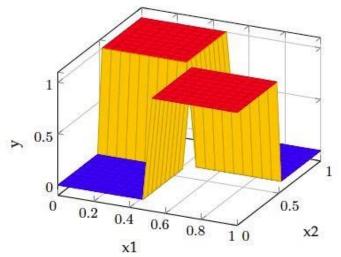


Slide Credit: Hugo Laroche NN course

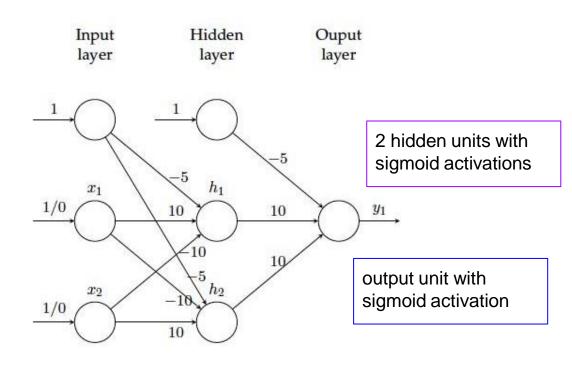
A 3-layer NN

Example: Two-Layer Fully-Connected NN for Solving XOR

 The NN consists of one input, one hidden, and one output layer, with sigmoid activations

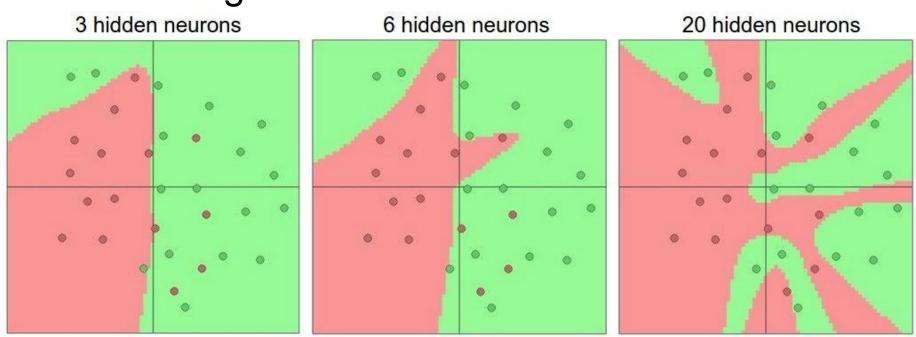


x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0



Setting # Layers and Their Sizes

- An example illustrating adding more hidden neurons increases model capacity and reduces training error
- But too many layers and neurons may lead to overfitting



Loss Functions

- Classification
 - Cross-Entropy Loss, Log Loss, Focal Loss, Exponential Loss, Hinge Loss...
- Regression
 - MSE (Mean Squared Error)/L2
 Loss/Quadratic Loss, MAE (Mean Absolute Error)/L1 Loss, Huber Loss, Log Cosh Loss, Quantile Loss...

NN for Multi-Class Classification

- Consider a NN defining the model $h_{\theta}: \mathcal{X} \to \mathbb{R}^k$, as the mapping from input x to output $h_{\theta}(x)$, a k-dim vector of logits, where k is the number of classes
 - $-\theta$ is the set of params (weights and biases)
 - y is the correct label for input x
 - Note that h_{θ} does not include the last SoftMax layer
- e.g., a 3-layer NN consisting of 2 layers with ReLU activation functions and a last linear layer is
 - $-h_{\theta}(x) = W_3 \max(0, W_2 \max(0, W_1 x + b_1) + b_2) + b_3$

Cross-Entropy Loss for Multi-Class Classification

• The SoftMax operator $\sigma: \mathbb{R}^k \to \mathbb{R}^k$ computes a vector of predicted probabilities $\sigma(z): \mathbb{R}^k$ from a vector of logits $z: \mathbb{R}^k$, where k is the number of classes:

$$- \sigma(z)_i = \frac{\exp(z_i)}{\sum_{j=1}^k \exp(z_j)}$$

 The loss function is defined as the negative log likelihood of the predicted probability corresponding to the correct label y:

- Loss
$$(h_{\theta}(x), y) = -\log \sigma (h_{\theta}(x))_y = -\log \left(\frac{\exp(h_{\theta}(x)_y)}{\sum_{j=1}^k \exp(h_{\theta}(x)_j)}\right) = \log \left(\sum_{j=1}^k \exp(h_{\theta}(x)_j)\right) - h_{\theta}(x)_y$$

• Minimizing $\operatorname{Loss}(h_{\theta}(x),y)$ amounts to maximizing the logit $(h_{\theta}(x))_y$ corresponding to the correct label y

Cross-Entropy Loss Example

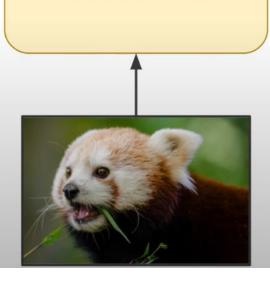
True distribution:	0%	0%	0%	0%	100%	0%	0%
	Cat	Dog	Fox	Cow	Red Panda	Bear	Dolphin
Predicted distribution:	2%	30%	45%	0%	25%	5%	0%
				A			

Cross-Entropy Loss:

$$H(\mathbf{p}, \mathbf{q}) = -\Sigma_i p_i \log(q_i)$$

= $-\log(0.25) = 1.386$

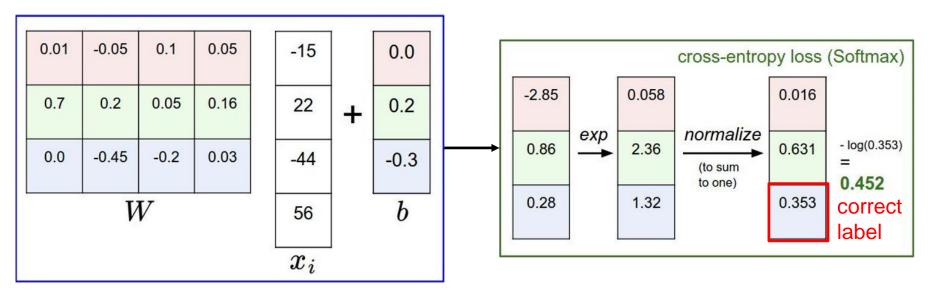
 $\log_2(x) = \log(x) / \log(2)$



Classifier

Cross-Entropy Loss Example

- Consider a NN for 3-class classification. Fig shows the last linear layer and the SoftMax layer
- The last linear layer computes the vector of logits $h_{\theta}(x) = Wx_i + b = [-2.85 .86 .28]^T(x)$ is the intermediate input to the last layer)
- The SoftMax layer computes the vector of predicted probabilities $[.016 \ .631 \ .353]^T$ for labels $[1 \ 2 \ 3]^T$, and the loss $-\log.353$, assuming correct label $y_i = 3$

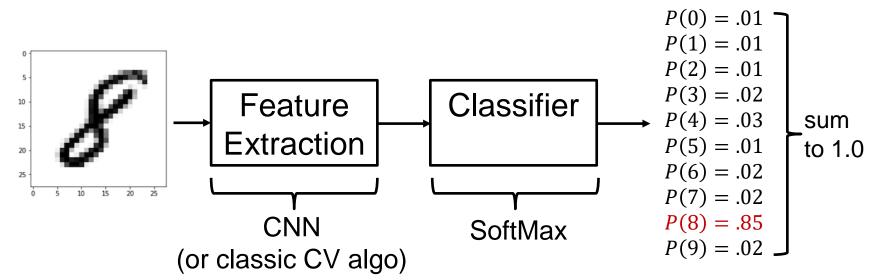


Last Linear Layer

SoftMax Layer

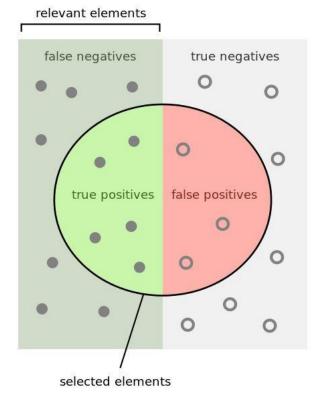
Example CV Task: Multi-Class Image Classification

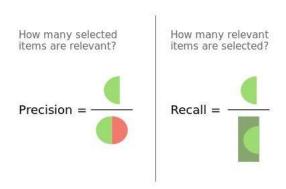
- Two stages: feature extraction from input, and classification based on extracted features
- Classifier returns output as a list of probabilities with size equal to the number of classes, but it may also return the top-1 or top-5 results with highest probability ranking



Binary Classification Metrics

- The relevant class is considered "positive" in a binary classifier
- e.g., for a medical test that aims to diagnose people with a certain disease. "Positive" denotes sick (has disease), and "negative" denotes healthy (no disease)
 - TP: a sick person is diagnosed as sick
 - TN: a healthy person is diagnosed as healthy
 - FP: a healthy person is misdiagnosed as sick
 - FN: a sick person is misdiagnosed as healthy





Example Confusion Matrix 1

- Precision = $\frac{TP}{TP+FP} = \frac{1}{1+7} = .125$
 - When the classifier predicts positive, it is correct 12.5% of the time
- Recall (TPR) = $\frac{TP}{TP+FN} = \frac{1}{1+2} \approx .333$
 - The classier catches 33.3% of all the positive cases.

•
$$F1 = 2 * \frac{\text{Precision*Recall}}{(\text{Precision+Recall})} = 2 * \frac{.333*.125}{.333+.125} = .182$$

- False Positive Rate (FPR) = $\frac{FP}{FP+TN} = \frac{7}{7+90} \approx .072$
 - The classier misclassifies 7.2% of the negative cases as positive
- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN} = \frac{1+90}{1+90+7+2} = .91$
 - The classier makes the correct prediction 91% percent of the time
- Positive correlation between TPR vs. FPR; Unpredictable correlation between precision vs. recall

		Ground Truth		
		Positive	Negative	
Predicted	Neg	False Negative (FN)=2	True Negative (TN)=90	
	Pos	True Positive (TP)=1	False Positive (FP)=7	

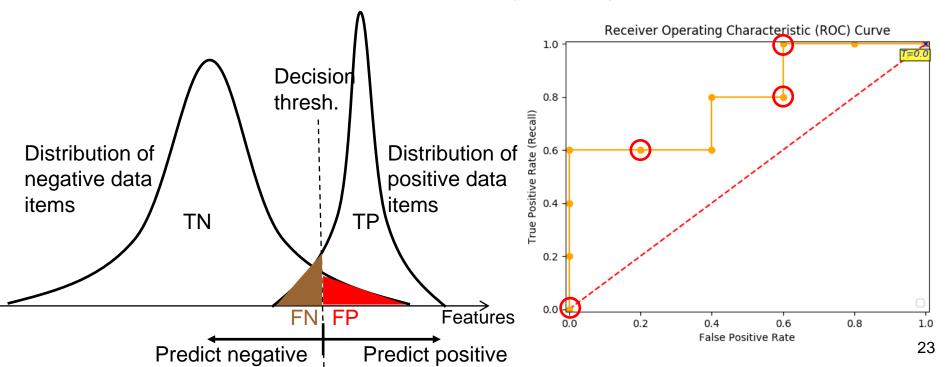
Example Confusion Matrix 2

- Precision = $\frac{TP}{TP+FP} = \frac{0}{0+0}$ (ill-defined)
 - When the classifier predicts positive, it is correct ?% of the time (since it never predicts positive, the question is ill-defined)
- Recall (TPR) = $\frac{TP}{TP+FN} = \frac{0}{0+3} = 0$
 - The classier catches 0% of all the positive cases.
- False Positive Rate (FPR) = $\frac{FP}{FP+TN} = \frac{0}{0+97} = 0$
 - The classier misclassifies 0% of the negative cases as positive
- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN} = \frac{0+97}{0+97+0+3} = .97$
 - The classier makes the correct prediction 97% percent of the time
- A medical test that never makes any positive diagnoses is very accurate for a rare disease (diagnose everyone to be healthy), but not very useful

		Ground Truth		
		Positive	Negative	
Predicted	Neg	False Negative (FN)=3	True Negative (TN)=97	
	Pos	True Positive (TP)=0	False Positive (FP)=0	

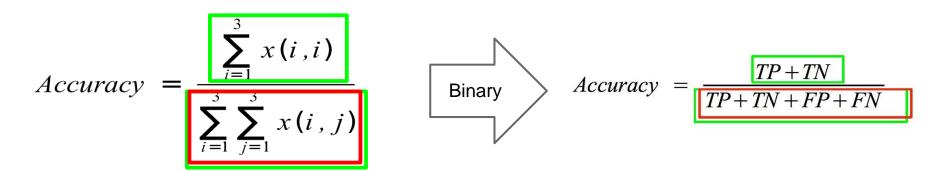
ROC and AUC

- Binary classification is typically based on a decision threshold parameter.
 Moving the decision threshold will cause FPR and TPR to move in the same direction
 - e.g., a medical test that sets a lower threshold for positive diagnosis will have both higher FPR and higher TPR, and vice versa
- Receiver Operating Characteristic (ROC) Curve plots FPR (x-axis) vs. TPR (y-axis); Area Under the Curve (AUC) is the area under ROC ($.5 \le ROC \le 1$, since $FPR \le TPR$)
 - Fig shows an example with 4 points (FPR, TPR) highlighted: (0,0), (.2, .6), (.6, .8),
 (.6,1.0)
 - The ideal ROC curve: $FPR \equiv 0$, $TPR \equiv 1$, AUC = 1, with FP = FN = 0,
 - The worst ROC curve; $FPR \equiv TPR$, AUC = .5 (dotted line)



Confusion Matrix for Multi-Class Classification

 Binary classification is a special case of multi-class classification:

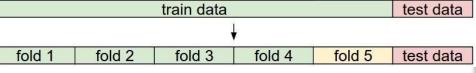


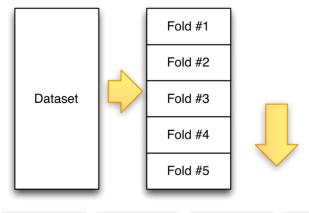
		Ground Truth			
		Cls1	Cls2	Cls3	
Pred.	Cls3				
	Cls2				
	Cls1				

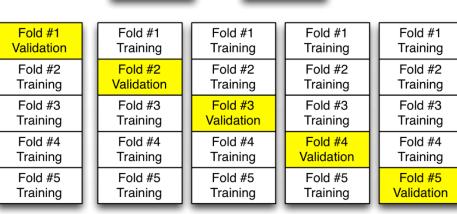
		Ground Truth		
		Pos	Neg	
Pred.	Pos	FN	TN	
	Neg	TP	FP	

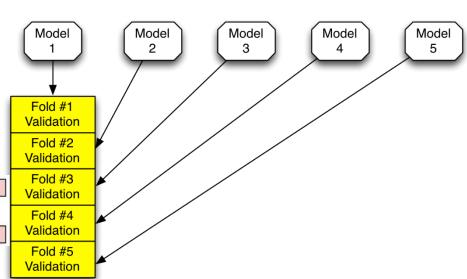
K-Fold Cross-Validation

- Divide data into train data and test data
- Since we cannot peek at the test data during training time, we use part of the train data for Cross-Validation:
- e.g., Divide training data into K=5 parts (folds). Use each fold as validation data, and the other 4 folds as training data. Cycle through the choice of which fold used for validation and average results.



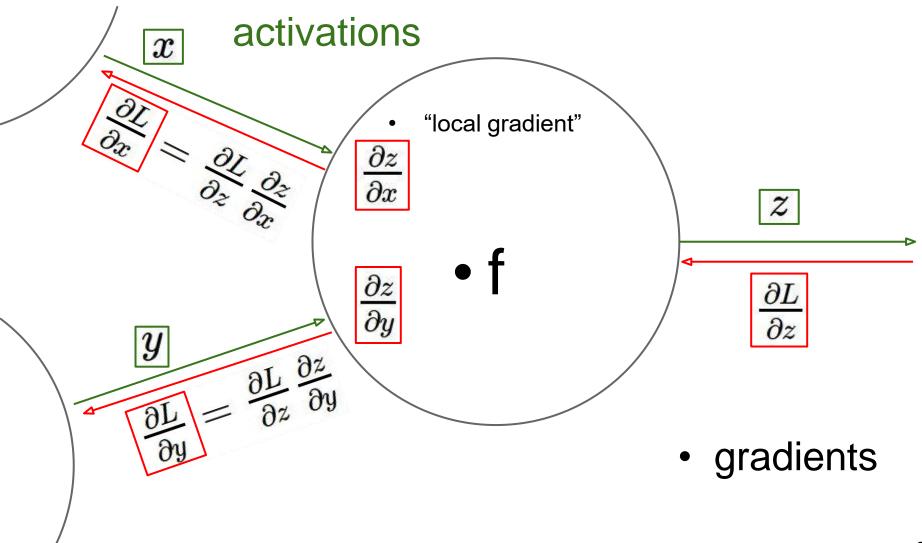






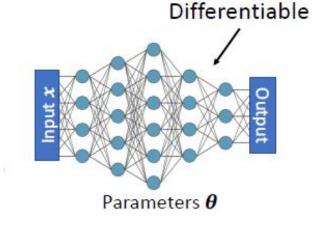
Training Neural Networks

Local Gradient at One Neuron

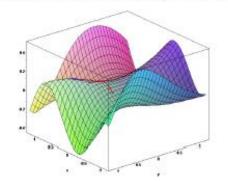


Gradient Descent

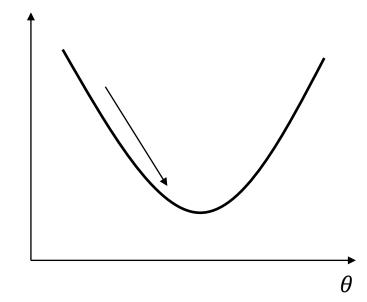
- Gradient descent $\theta \leftarrow \theta \alpha \nabla_{\theta} \text{Loss}(x, y; \theta)$
- Loss surface of a DNN is highly non-convex; can only hope to find "reasonably good" local minima



Can use gradient descent method to find good θ

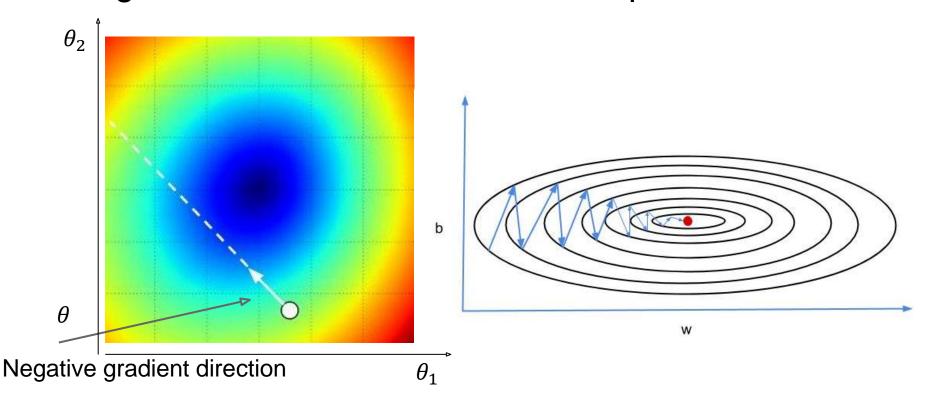


 $\mathbb{E}_{(x,y)\sim D} \text{Loss}(x,y;\theta)$



Gradient Descent Algorithms

- Steepest descent may result in in efficient zig-zag path
- More advanced GD methods exploit momentum, e.g., Nesterov, AdaGrad, RMSProp, Adam...



Mini-batch Stochastic Gradient Descent

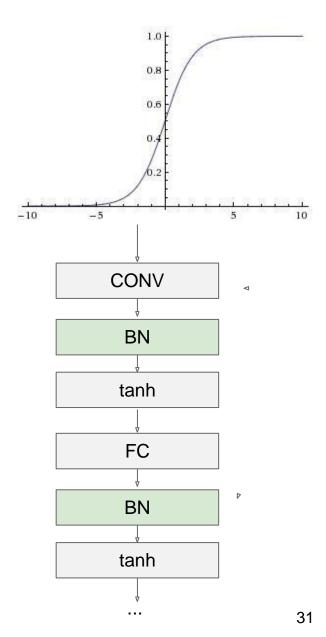
- Only use a small portion (a mini-batch) of the training data to compute the gradient
- Common mini-batch sizes are 32/64/128 examples
- Loop:
 - Sample a mini-batch of data
 - Forward prop it through the graph, get loss
 - Backprop to calculate the gradients
 - Update the parameters using gradient descent

Batch Normalization

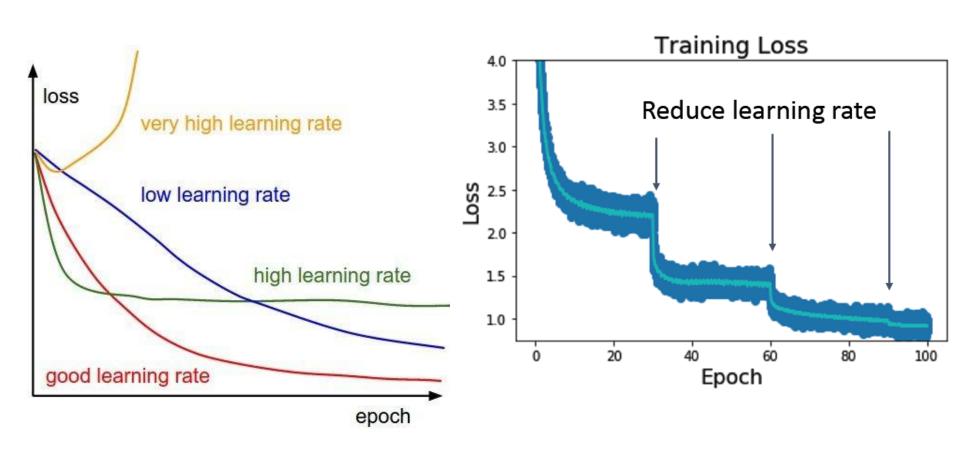
- For each mini-batch:
 - 1. Compute the empirical mean and variance independently for each dimension i = 1, ... m
 - 2. Normalize to a unit Gaussian with 0 mean and unit variance
- BN layers inserted before nonlinear activation function, and it keeps x's average value around 0 for maximum gradient during learning
- Scale and shift params γ , β gives more flexibility during training
- Benefits:
 - Improves gradient flow through the network; Allows higher learning rates; Reduces the strong dependence on initialization; Acts as a form of regularization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$

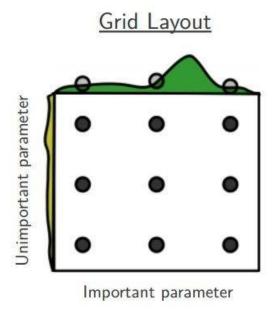


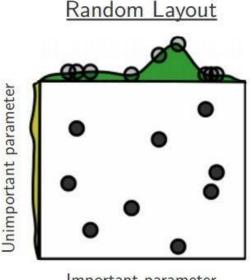
Learning Rate Schedule during Training



Hyperparameter Optimization

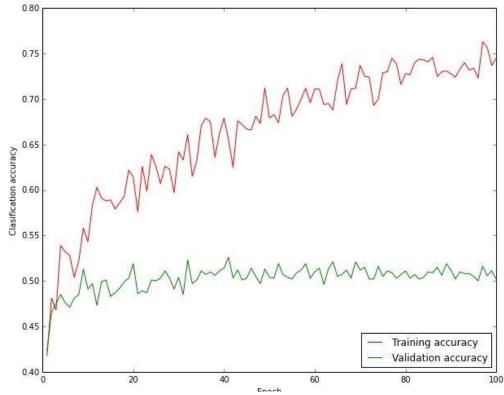
- Example hyperparams
 - Network architecture
 - Learning rate, its decay schedule, update type
 - Regularization (L2/Dropout strength)
- Grid search vs. random search





Classification Accuracy

- Big gap between training accuracy and validation accuracy may imply overfitting => decrease model capacity?
- No gap may imply underfitting => increase model capacity?



Data Augmentation for Enlarging Training Dataset

 Mirroring, random cropping, color shifting, rotation, shearing, local warping...

