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ML Taxonomy

* Supervised Learning:

— The system is presented with example inputs and
their desired outputs, given by a “teacher”, and
the goal is to learn a general rule that maps
Inputs to outputs.

 Classification (cat or dog?)

« Regression (housing price next year?)

» Unsupervised Learning:

— No labels are given to the learning algorithm,
leaving it on its own to find structure in its input.
Unsupervised learning can be a goal in itself
(discovering hidden patterns in data) or a means
towards an end (feature learning).

« Parametric UL (e.g., Gaussian Mixture Models)
« Non-parametric UL




ML Taxonomy

Reinforcement Learning:

— An agent interacts with a dynamic environment in which it
must perform a certain goal. The agent is provided
feedback in terms of rewards and it tries to learn an
optimal policy that maximizes its cumulative rewards.

— Algorithms: Model-based; Model-free (Value-based,
Policy-based)

— Applications: Game playing (AlphaGo); Robotics; AD...
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Training vs. Inference

* Training: millions of iterations of forward pass + back
propagation to adjust model params (e.g., NN
weights); requires large CPU/GPU clusters and
days/weeks of training time

* Inference (also called prediction): a single forward
pass; can be run on edge devices
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Supervised Learning: Classification and
Regression

« Classification is used to predict/classify discrete labels such as Male or
Female, True or False, Spam or Not Spam, etc.

* Regression is used to predict continuous values such as price, salary, age,
etc.

« Both are Supervised Learning algorithms that require ground-truth values as
labels.

« Both need loss functions to measure how the predicted value differs from
ground-truth value.
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A Neuron and its Activation Function

* The activation function is a nonlinear monotonic
function that acts like a “gate”: the output is larger for
larger input activation

— Perceptron y = a(z) = step(wx + b) (activation function f =
step function, shown below)

— Linear Regression if y = z = wx + b (activation function f =
identity function)

— Logistic Regression if y = o(z) = o(wx + b) (activation
function f = sigmoid function)
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Linear Regression for Regression

* Function approximation y = wx + b, with learnable

parameters 8 = {w, b}, where x,y, b are vectors, and w is a
weight matrix

— e.g., we want to predict price of a house based on its feature vector
X = [x1 x, x3]T, where x,is area in square meters (sgm), x, is
location ranklng (loc), x5 is year of construction (yoc)

— Predicted price y =wx + b = w1X{ + wyx, + Wwyx3 + b
— Fig shows an example for scalar x and y

Linear Regression exam ple. y = 7x + N(0, 200)

-----
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Logistic Regression for Binary
Classification

Consider a binary classification problem an input image x may be
classified as a dog with probability P(y = dog|x), a cat with probability
P(y = cat|x), with P(y = dog|x) + P(y = Catlx) = 1.0

Logistic Regression: use sigmoid function a(z;) = to map from

the activation (also called the logit) to the output probablllty

In addition to binary classification at the output layer, sigmoid may also
be used as the non-linear activation function in the hidden layers of a
NN
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Common Activation Functions used
In DL

Sigmoid l‘ Leaky ReLU )
— 1 max (0.1, x)
O'(Qj) T 14e—=
tanh Maxout
tanh(m) - ’ max(wi = + by, w3 x + by)
RelLU ELU
= : 5 ae®—1) z<0 - - o

https://laptrinhx.com/complete-guide-of-activation-functions-574622854/



Deep Neural Networks

* We can stack many hidden layers to form
a DNN If we have enough data and
computing power to train it

* The high model capacity of DNN comes
from non-linear mappings: hidden units
must be followed by a non-linear activation
function
— Without non-linear activation functions, a DNN

with many layers can be collapsed into an
equivalent single-layer NN
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Fully-Connected NNs

 Number of params at
the I-th layer Is
(Ni—l + 1) * Nj, where
N; Is the number of
neurons at the I-th
layer. Can grow very
large
— (We will discuss CNNs

with much fewer

paramS | n th e n EXt Slide Credit: Hugo Laroche NN course
Iectu re) A 3-layer NN
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Example: Two-Layer Fully-Connected

NN for Solving XOR

« The NN consists of one input, one hidden,
and one output layer, with sigmoid activations

Input Hidden Ouput
layer layer layer

2 hidden units with
sigmoid activations

output unit with
sigmoid activation
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Setting # Layers and Their Sizes

* An example illustrating adding more hidden
neurons increases model capacity and
reduces training error

* But too many layers and neurons may lead to
overfitting
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| 0oss Functions

* Classification

— Cross-Entropy Loss, Log Loss, Focal Loss,
Exponential Loss, Hinge Loss...

* Regression

— MSE (Mean Squared Error)/L2
Loss/Quadratic Loss, MAE (Mean Absolute
Error)/L1 Loss, Huber Loss, Log Cosh Loss,
Quantile Loss...

https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
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NN for Multi-Class Classification

* Consider a NN defining the model hg: X —
R¥, as the mapping from input x to output
hg(x), a k-dim vector of logits, where k is the
number of classes
- 6 Is the set of params (weights and biases)

- y is the correct label for input x
— Note that hy does not include the last SoftMax
layer

* e.g., a 3-layer NN consisting of 2 layers with
RelLU activation functions and a last linear
layer Is
- hg(x) = W3 max(0, W, max(0, Wyx + by) + b,) + bs
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Important

Cross-Entropy Loss for Multi-

Class Classification

» The SoftMax operator ¢: R¥ - R*computes a vector of
predicted probabilities o(z): R* from a vector of logits
z: R¥, where k is the number of classes:

exp(z;)
Yy-1 exp(z))
* The loss function is defined as the negative log

likelihood of the predicted probability corresponding to
the correct label y:

- Loss(hg(x),y) = —loga(hg (x))y = _
ex (x)
log (Zﬁl‘;i’;ihegj)]_)) = log(2%_, exp(he ();)) — he (1),

* Minimizing Loss(hg(x), y) amounts to maximizing the
logit (kg (x))y corresponding to the correct label y

- 0(z); =




Cross-Entropy Loss Example

True distribution: 0% 0% 0% 0% 100% 0% 0%
Cat Dog Fox Cow RedPanda Bear Dolphin
Predicted distribution: | 2% 30% 45% 0% 25% 5% 0%
// T N
Classifier
Cross-Entropy Loss:

H(p, q) = -2 p.log(q)
= -log(0.25) = 1.386

log,(x) = log(x) / log(2)

17
Aurélien Géron A Short Introduction to Entropy, Cross-Entropy and KL-Divergence



Cross-Entropy Loss Example

Consider a NN for 3-class classification. Fig shows the last

linear layer and the SoftMax layer
The last linear layer computes the vector of logits hg(x) =

Wx; + b =[-285 .86 .28]7(x is the inputimage to the NN,
x; 1S the intermediate input to the last layer)

The SoftMax layer computes the vector of predicted

probabilities [.016 .631
the loss —log.353, assuming correct label y; = 3

0.0

353]7 for labels[1 2 3]7, and
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0.452
correct
label

Last Linear Layer

SoftMax Layer




Example CV Task: Multi-Class Image

Classification

* Two stages: feature extraction from input,
and classification based on extracted
features

» Classifier returns output as a list of

probabilities with size equal to t
classes, but it may also return t
top-5 results with highest proba
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| Classifier

P(0) =.01 7
P(1) = .01
P(2) = .01
P(3) = .02

> P(4) =.03

\

Y
SoftMax

P(5) = .01
P(6) = .02
P(7) = .02
P(8) = .85

ne number of
ne top-1 or
nility ranking

| sum
to 1.0

P(9) =.02
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Binary Classification Metrics

relevant elements
1

* The relevant class Is considered
“positive” in a binary classifier

* e.g., for a medical test that aims to
dlagnose people with a certain
disease. "Positive” denotes sick
(has disease), and "negative”
denotes healthy (no disease)

— TP: a sick person is diagnosed as
sick

— TN: a healthy person is diagnosed
as healthy

— FP: a healthy person is
misdiagnosed as sick

— FN: a sick person is misdiagnosed
as healthy

false negatives true negatives

selected elements

Recall = —

20



Example Confusion Matrix 1

Precision = =.125
TP+FP 1+7

— When the classifier predicts positive, it is correct 12.5% of the time

TP 1

Recall (TPR) = T 333

— The classier catches 33.3% of all the positive cases.

Fl=2x Prec-is.ion*Recall — 2 .333%.125 — 182
(Precision+Recall) .333+.125
. FP 7
False Positive Rate (FPR) = = ~ .072
_ _ - FP+TN 7490 N
— The classier misclassifies 7.2% of the negative cases as positive
TP+TN 1+90
Accuracy = = = .91

TP+TN+FP+FN  1490+7+2 _
— The classier makes the correct prediction 91% percent of the time

Positive correlation between TPR vs. FPR; Unpredictable correlation

between precision vs. recall

Ground Truth

Positive Negative

Neg | False Negative (FN)=2 | True Negative (TN)=90

Predicted ”» ”»
Pos | True Positive (TP)=1 False Positive (FP)=7

https://medium.com/swih/recall-precision-f1-roc-auc-and-everything-542aedf322b9

21



Example Confusion Matrix 2

.. TP 0 . .
Precision = = (ill-defined)
TP+FP 0+0

— When the classifier predicts positive, it is correct ?% of the time (since it
never predicts positive, the question is ill-defined)

TP 0
Recall (TPR) = = =0
~ TP+FN  0+3 N
— The classier catches 0% of all the positive cases.
. FP 0
False Positive Rate (FPR) = = =0
_ _ B FP+TN  0+97 N
— The classier misclassifies 0% of the negative cases as positive
TP+TN 0+97
Accuracy = = = .97
TP+TN+FP+FN  0+97+0+3

— The classier makes the correct prediction 97% percent of the time

A medical test that never makes any positive diagnoses is very
accurate for a rare disease (diagnose everyone to be healthy), but not
very useful

Ground Truth

Positive Negative

Neg | False Negative (FN)=3 | True Negative (TN)=97

Predicted ”» ”»
Pos | True Positive (TP)=0 False Positive (FP)=0
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direction

ROC and AUC

» Binary classification is typically based on a decision threshold parameter.
Moving the decision threshold will cause FPR and TPR to move in the same

higher FPR and higher TPR, and vice versa

* Receiver Operating Characteristic (ROC) Curve plots FPR (x-axis) vs. TPR
(y-axis); Area Under the Curve (AUC) is the area under ROC (.5 < ROC <1,

since FPR < TPR)

(.6,1.0)

Distribution of
negative data
items

V\

Decisiorn
thresh.

FN: FP

Distribution of
positive data
items

Features

Predict negative l

Predict 'positive

True Positive Rate (Recall)

1.0 S

0.8

0.6

0.4

0.2 1

e.g., a medical test that sets a lower threshold for positive diagnosis will have both

Fig shows an example with 4 points (FPR, TPR) highlighted: (0,0), (.2, .6), (.6, .8),

The ideal ROC curve: FPR = 0,TPR = 1,AUC = 1, with FP = FN =0,
The worst ROC curve; FPR = TPR,AUC = .5 (dotted line)

Receiver Operating Charact;cLs,tic (ROC) Curve

1=0.0]

T T
0.4 0.6
False Positive Rate

T
0.2

1.0
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Confusion Matrix for Multi-Class

Classification
* Binary classification Is a special case of

multi-class classification:

Binary > Accuracy =

Accuracy

TP+TN

IP+IN +FP+FN

Ground Truth

Pos

Neg

= K]
x(i,j)
J=1
Ground Truth
Clsl | Cls2 | CIs3
Cls3
Pred. | Cls2

Cls1

Pred.

Pos

FN

TN

Neg

TP

FP




K-Fold Cross-Validation

Divide data into train data

and test data

Since we cannot peek at the

test data during training

time, we use part of the train
data for Cross-Validation:

e.g., Divide training data into
K=5 parts (folds). Use each
fold as validation data, and
the other 4 folds as training

data. Cycle through the

choice of which fold used for

validation and average

results.

train data

| test data |

v

fold 1

fold 2

| fold3 |

fold 4

fold 5

| test data |

Fold #1

Fold #2

Dataset Fold #3

Fold #4

Fold #5
Fold #1 Fold #1 Fold #1 Fold #1 Fold #1
Validation Training Training Training Training
Fold #2 Fold #2 Fold #2 Fold #2 Fold #2
Training Validation Training Training Training
Fold #3 Fold #3 Fold #3 Fold #3 Fold #3
Training Training Validation Training Training
Fold #4 Fold #4 Fold #4 Fold #4 Fold #4
Training Training Training Validation Training
Fold #5 Fold #5 Fold #5 Fold #5 Fold #5

Training Training Training Training Validation

Fold #1
Validation

Fold #2
Validation

Fold #3
Validation

Fold #4
Validation

Fold #5
Validation

https://github.com/jeffheaton/t81_558 deep_learning/blob/master/t81_558 class_05_2_kfold.ipynb
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Training Neural Networks



Local Gradient at One Neuron

/ —»] activations
\ * “local gradient”
= &

\Ca

o

ed}e 2
* f &

0z

4 3z O
» gradients




Gradient Descent

« Gradient descent 8 « 0 — aVgLoss(x,y; 0)

* Loss surface of a DNN is highly non-convex; can only
hope to find “reasonably good” local minima
Differentiable

: %&‘:E‘EOE E(x,y)~pLoss(x,y; 0)

A

= A deb
A -b‘
Parameters @

Can use gradient descent
method to find good 6

v
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Gradient Descent Algorithms

« Steepest descent may result in in efficient zig-zag
path

* More advanced GD methods exploit momentum,
e.g., Nesterov, AdaGrad, RMSProp, Adam...

0,

(&=

W

0

—

Negative gradient direction 0, ]

http://dataplusplus.ca/blog/2017/gradient-descent-with-momentum 29



Mini-batch Stochastic Gradient Descent

* Only use a small portion (a mini-batch) of
the training data to compute the gradient

« Common mini-batch sizes are 32/64/128
examples

* Loop:
— Sample a mini-batch of data
— Forward prop it through the graph, get loss
— Backprop to calculate the gradients

— Update the parameters using gradient
descent
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Batch Normalization

For each mini-batch:
— 1. Compute the empirical mean and variance independently for each

dimensioni=1,..m o /"-~
— 2. Normalize to a unit Gaussian with 0 mean and unit variance osf /
BN layers inserted before nonlinear activation function, and it - ;/
keeps x’s average value around 0 for maximum gradient during f
learning Y
Scale and shift params y, f gives more flexibility during training /,)_2'
Benefits: | N A
- Improves gradient flow through the network; Allows higher learning -10 -5 5 10
rates; Reduces the strong dependence on initialization; Acts as a form J
of regularization
Input: Values of z over a mini-batch: B = {x1_ . }; SO -
Parameters to be learned: v, 3 :
Output: {y; = BN, g(z;)} BN
!
s tanh
UB < — Z 4 // mini-batch mean J,
m FC
Z — uB)? // mini-batch variance I
= BN "
T; — % // normalize !
VOp T € tanh
Yi +— YZ; + B = BN, 5(z;) // scale and shift I
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Learning Rate Schedule during

Training

loss

low learning rate

good learning rate

Training Loss

Reduce learning rate

|
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Hyperparameter Optimization

« Example hyperparams
— Network architecture
— Learning rate, its decay schedule, update type
— Regularization (L2/Dropout strength)

 Grid search vs. random search

Grid Layout Random Layout
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Classification Accuracy

* BIg gap between training accuracy and validation
accuracy may imply overfitting => decrease model
capacity?

* No gap may imply underfitting => increase model
capacity?
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Data Augmentation for Enlarging
Training Dataset

Mirroring
* Mirroring, .
random
cropping, color
Shlftlng, Random Cropping
rotation, |

shearing, local
warping...
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