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Classic Computer Vision

• Most “classic” (non-ML) CV algorithms are 
implemented in the OpenCV library, including
– Core Operations:

• basic operations on image like pixel editing, geometric 
transformations...

– Image Processing
• Thresholding, smoothing, edge detection, Hough Line 

Transform…

– Feature Detection and Description
• HOG, SIFT, SURF, BRIEF, ORB…

– Video analysis
• Object tracking w. optical flow

– Camera Calibration and 3D Reconstruction

• They are simple, fast and reliable (e.g., for lane 
detection), and are often used in place of or in 
conjunction w. complex ML/DL algorithms, which may 
sometimes be unreliable and unpredictable.
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Input Image Encoding
• A size 𝑁 × 𝑁 color image has volume 𝑁 × 𝑁 × 3, w. 𝑁 × 𝑁 pixels 

and 3 color components (Red, Green, and Blue, RGB) for each pixel

• A size 𝑁 × 𝑁 greyscale image has volume 𝑁 × 𝑁 × 1
• Color depth, or bit depth, is number of bits used for each color 

component of a single pixel
– Typical value is 8, so pixel value has range [0, 255]
– Larger depth is possible, e.g., true color (24-bit) is used in computer and 

phone displays for human eyes, but 8-bit is typically enough for CV 
tasks

4

=



Filters/Kernels in Computer Vision
• Convolution operation: we slide (convolve) each filter across the width and 

height of the input volume and compute dot products between the entries of the 

filter (kernel) and the input at any position. As we slide the filter over the width 

and height of the input volume we will produce a 2-dimensional activation map 

that gives the responses of that filter at every spatial position.

– dot product operation: elementwise multiplication of a filter w. corresponding input 

values, then summing them to generate one output value

– Used to extract features for downstream tasks (classification or regression)
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A Filter for Vertical Edge Detection
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Sobel Filter for Vertical Edge Detection
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Common Filters in CV

• These filters were designed, or “hand-crafted”, by CV researchers. They 

extract features used by downstream tasks such as classification, image 

segmentation, etc. 
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Machine Learning Meets CV
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• Instead of hand-crafted filters in classic CV, 
why not learn custom convolutional filters 
from data by supervised learning?
– For easy tasks like edge detection, learning may 

recover filters similar to hand-crafted ones. 

– For difficult CV tasks, learning is essential to 
achieving good results



Convolutional Neural Networks (CNN)

• A CNN (also called ConvNet) is a sequence of 
Convolutional (CONV) Layers, Pooling (POOL) Layers 
and non-linear activation functions for feature extraction, 
followed by one or more Fully-Connected (FC) Layers for 
classification based on the extracted features

Feature

Extraction

𝑃 0 = .01
𝑃 1 = .01
𝑃 2 = .01
𝑃 3 = .02
𝑃 4 = .03
𝑃 5 = .01
𝑃 6 = .02
𝑃 7 = .02
𝑃 8 = .85
𝑃 9 = .02

Classifier

(e.g., SoftMax)



Receptive Field and Parameter Sharing

• Each neuron in a CONV layer has local, sparse 
connectivity to a small patch of the input volume w. size of 
the filter, called its Receptive Field
– Each neuron covers a limited, narrow “field-of-view”

– In contrast, each neuron in a FC layer has RF that covers the 
entire input volume

• Parameter sharing: all neurons in the same CONV layer 
share the same filter params 𝑤, 𝑏
– It helps to reduce the number of params significantly compared 

to fully-connected networks

– It gives translation invariance, e.g., an edge can be detected 
regardless of its location in the image
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Convolution Operation
• Slide the filter over the image spatially,  computing dot 

products 𝑤𝑇𝑥 + 𝑏 to generate an activation map as output

• The input may be an input RGB image w. 3 channels, hence 
depth=3, or intermediate activation maps generated by hidden 
layers of a CNN. We use the terms “input volume” and “output 
volume” to emphasize they may be 3D tensors
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Stacked Activation Maps

• If we have 6 5 × 5 filters, we’ll get 6 separate 
activation maps (also called feature maps).

• We stack these up to get an output volume (a new 
“image”) of size 28 × 28 × 6, an intermediate 
representation to be passed to subsequent layers
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Activation Maps Illustration
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1 filter/kernel, 1 output activation map

3 filters/kernels, 3 output activation maps



Concrete Example: 

3 Filters

• 3 filters 𝑾𝟎, 𝑾𝟏, 𝑾𝟐, 
each extracting different 
features. (𝑾𝒊 ∗ 𝑿𝒋
denotes convolution of 
filter 𝑾𝒊 w. input 𝑿𝒋) 
(bias terms are 
assumed to be 0 here)

• Upper left: filter 𝑾𝟎
extracts vertical line 
features 𝒁𝟎 from input 
image 𝑿𝟏. (the other 2 
filters do not extract any 
meaningful features)

• Lower left: filter 𝑾𝟏
extracts horizontal line 
features 𝒁𝟏 from input 
image 𝑿𝟐 (the other 2 
filters do not extract any 
meaningful features)
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Convolution of a Filter on RGB Image 

w. 3 Channels
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Convolution of 2 Filters on RGB 

Image w. 3 Channels

• 6x6 input feature map w. 3 channels; two 3x3 filters with depth 3; 4x4 
output feature map w. 2 channels

• # channels of input feature map == # depth of each filter (= 3 in figure)

• # channels of output feature map == # filters (=2 in figure)
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Convolution Example 1

• conv=nn.Conv2d(in_channels=2, 
out_channels=1, kernel_size=3)

– Pytorch code for a CONV layer with an input image 
with 2 channels (in_channels=2), 1 3 × 3 filter (with 
depth 2), 1 output activation maps (out_channels=1). 

– The biases are assumed to be 0
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input 1 filter/kernel output

https://www.coursera.org/learn/deep-neural-networks-with-pytorch/lecture/1rUTu/9-3-multiple-input-and-output-channels



Convolution Example 2
• conv4=nn.Conv2d(in_channels=2, 

out_channels=3, kernel_size=3)

– Pytorch code for a CONV layer with an input image with 2
channels (in_channels=2), 3 3 × 3 filters (with depth 2), 3 output 
activation maps (out_channels=3)

– The biases are assumed to be 0 

20
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Convolution Example 2: Filters and 

Input Image
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3 3 × 3 filters input image with 2 channels 



Convolution 

Example 2: Output

• Each of the 3 
filters convolved 
with the input 
image generates 
an output 
activation map.

• The output volume 
consists of 3 3 × 3
activation maps, 
with volume 3 ×
3 × 3
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Filters and Activation Maps 

Example

23

example 5x5 filters
(32 total)

one filter =>

one activation map

Section 6 - 21

filters



7x7 input, 3x3 filter, stride=1 ⇒ output: 5x5 filter
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7x7 input, 3x3 filter, stride=2 ⇒ output: 3x3 filter
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7x7 input, 3x3 filter, stride=3 ⇒ output: ???
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Solution: Add Padding

• 7x7 input, 3x3 filter, stride=3, zero padding 

w. 1  ⇒ output: 3x3 filter
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Computation of CONV Layer Sizes

• If input has square shape, then we denote 𝑁1 = 𝑊1 = 𝐻1; a filter is assumed to have square 
shape

• Each filter always has the same depth 𝐷1 as its input volume, and the number of filters 𝐾
always equals the depth 𝐷2 of its output volume

• In practice, it is common to have stride 𝑆 = 1, filter size 𝐹 × 𝐹, and zero-pad 𝑃 =
1

2
(𝐹 − 1). 

Then output activation map has same spatial size as input. This is called “same padding” 

– W2 =
1

𝑆
𝑊1 + 2𝑃 − 𝐹 + 1 =

1

1
𝑊1 + 𝐹 − 1 − 𝐹 + 1 = 𝑊1; similarly, 𝐻2 = 𝐻1

– e.g., 𝐹 < 3 ⇒ 𝑃 = 0; 𝐹 = 3 ⇒ 𝑃 = 1; 𝐹 = 5 ⇒ 𝑃 = 2 28

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1

- F = 5, S = 1, P = 2

- F = 1, S = 1, P = 0

Important



CONV Example 1: No Pad
• Input volume: 5 × 5 × 1 (𝑊1 = 𝐻1 = 𝑁1 = 32,𝐷1 = 3)(e.g., a greyscale image)

• A 3 × 3 × 1 filter 
1 0 1
0 1 0
1 0 1

(𝐾 = 1, 𝐹 = 3) w. stride 𝑆 = 1, no pad

• Output activation map: 

– Spatial size: W2 = H2 = N2 =
1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
5 − 3 + 1 = 3

– Depth: 𝐷2 = 𝐾 = 1

• Output volume: 3 × 3 × 1
• Even though the fig shows sequential computation, convolution operations are inherently 

parallel, hence suitable for efficient implementation on parallel hardware, e.g., GPU, 
FPGA…
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CONV Example 2: Same Padding
• Input volume: 5 × 5 × 1
• A 3 × 3 × 1 filter (𝐾 = 1, 𝐹 = 3) w. stride 𝑆 = 1, pad 𝑃 = 1

• Output volume: 5 × 5 × 1 (since 
1

1
5 + 2 − 3 + 1 = 5)

• Output activation map has the same spatial dimension as input 
(5 × 5)
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CONV Example 3: Stride 𝑆 = 2
• Input volume: 5 × 5 × 3
• 2 3 × 3 × 3 filters (𝐾 = 2, 𝐹 = 3) w. stride 𝑆 = 2, pad 𝑃 = 1

• Output volumes: 2 3 × 3 × 1 (since 
1

2
5 + 2 ∗ 1 − 3 + 1 = 3)

– Animation: https://cs231n.github.io/convolutional-networks/
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CONV Example 4: Input Depth 𝐷1 = 3

32
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

• Input volume: 𝑀 × 𝑁 × 3

• A 3 × 3 × 3 filter (𝐾 = 1, 𝐹 = 3) w. stride 𝑆 = 1, pad 𝑃 = 1

• Output volume: 𝑀 ×𝑁 × 1 (since 
1

1
𝑀 + 2 ∗ 1 − 3 + 1 = 𝑀,

1

1
(

)

𝑁

+ 2 ∗ 1 − 3 + 1 = 𝑁)

Movement of 

the filter



CONV Example 5: Multiple Filters 𝐾 = 10
• Input volume: 32 × 32 × 3 (𝑊1 = 𝐻1 = 𝑁1 = 32, 𝐷1 = 3)
• 10 5 × 5 × 3 filters (𝐾 = 10, 𝐹 = 5) w. stride 𝑆 = 1, no pad (𝑃 = 0)

• Each output activation map: 

– Spatial size: W2 = H2 = N2 =
1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
32 − 5 + 1 = 28

– Depth: 𝐷2 = 𝐾 = 10

• Output volume: 28 × 28 × 10
• No. params (weights and biases) in this layer: each filter has 5 ∗ 5 ∗

3 + 1 = 76 params, so 10 filters add up to 76 ∗ 10 = 760 params
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CONV Example 5: Neuron View
• One activation map is a 28 × 28

sheet of neuron outputs. 

• With 10 filters, the CONV layer 
consists of neurons arranged in a 3D 
grid (28 × 28 × 10). 
– For each 5 × 5 patch of the input, there 

are 10 different neurons all looking at 
it, each extracting different features
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CONV Example 6: Pad 𝑃 = 2

• Input volume: 32 × 32 × 3 (𝑊1 = 𝐻1 = 𝑁1 =
32,𝐷1 = 3)

• 10 5 × 5 × 3 filters (𝐾 = 10, 𝐹 = 5) w. stride 𝑆 = 1, 
pad 𝑃 = 2

• Each activation map: 

– Spatial size: W2 = H2 = N2 =
1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
32 + 2 ∗ 2 − 5 + 1 = 32

– Depth: 𝐷2 = 𝐾 = 10

• Output volume:32 × 32 × 10
• No. params: each filter has 5 ∗ 5 ∗ 3 + 1 = 76

params, so 10 filters add up to 76 ∗ 10 = 760
params
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Pointwise Convolution with 1 × 1 Filter

• A 1 × 1 filter performs “mixing” of the input 
channels, then applies a non-linear activation 
function

• Can be used to reduce the number of 
channels (volume depth); the non-linear 
activation function also helps increase model 
capacity 

36

∗ =

6 × 6 × 32 1 × 1 × 32 6 × 6 × # filters



1 × 1 Filter Example
• Input volume: 56 × 56 × 64 (𝑊1 = 𝐻1 = 𝑁1 = 56, 𝐷1 = 64)
• 32 1 × 1 × 64 filters (𝐾 = 32, 𝐹 = 1) w. stride 𝑆 = 1, no pad

• Each activation map: 

– Spatial size: W2 = H2 = N2 =
1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
56 − 1 + 1 = 56

– Depth: 𝐷2 = 𝐾 = 32

• Output volume:56 × 56 × 32
• No. params: each filter has 1 ∗ 1 ∗ 64 + 1 = 65 params, so 32 filters 

add up to 65 ∗ 32 = 2080 params

3764

56

56
1x1 Conv

w. 32 filters

32

56

56

(each filter has size  

1x1x64, and performs a  

64-dimensional dot  

product)



Dilated Convolution

• Insert 0s between 
input elements to 
increase receptive 
field size without 
increasing # 
params

38

Regular convolution
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3D Convolution

• 3D filter slides 
along all 3 axes 
(width, height, 
depth). Very 
computation 
intensive

• Useful for 3D 
images such as 
medical CT/MRI 
images, or Point 
Clouds from 
Lidar
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Converting Convolution to Matrix 

Multiplication: 1D CONV Example

40

• Since parallel hardware 
(GPU, FPGA…) can 
handle matrix 
multiplication efficiently, 
this conversion increases 
computation efficiency at 
the expense of increased 
memory size for storing 
the weights (the biases 
are not shown in fig)
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∗
𝑦1

𝑦2
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𝑤0 𝑤1 𝑤2 0 0

0 𝑤0 𝑤1 𝑤2 0

0 0 𝑤0 𝑤1 𝑤2

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

×
𝑦1

𝑦2

𝑦3

=

Kernel

Input

Output



Converting Convolution to Matrix 

Multiplication: 2D CONV Example
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Typical CNN Architecture
• Multiple layers, each consisting of CONV, POOL and 

non-linear activation functions (e.g., ReLU), are 
stacked into a deep network
– Many variants possible, e.g., multiple CONV layers can be 

stacked without POOL and activation functions in-between
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Feature Hierarchy
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• Multiple hidden layers extract a hierarchy of 

increasingly-abstract features layer-by-layer, 

until the last layer produces a classification 

result

𝑃 𝑐𝑎𝑟 = .9
𝑃 𝑡𝑟𝑢𝑐𝑘 =. 1



Pooling (Sub-Sampling) Layer

• A pooling filter has depth 1, and operates over each activation map 
independently, hence the input volume and output volume always have the 
same depth 𝐷1 = 𝐷2

– In contrast, a CONV filter always has the same depth 𝐷1 as its input volume, and the 
number of filters 𝐾 always equals the depth 𝐷2 of its output volume

– Common settings: 𝐹 = 2, 𝑆 = 2, or 𝐹 = 3, 𝑆 = 2

• Example: pooling w. a 2 × 2 filter w. stride 𝑆 = 2, no pad

• Output volume: 
𝑊1

2
×

𝐻1

2
× D1(since 

1

2
𝑊1 − 2 + 1 =

𝑊1

2
,
1

2
𝐻1 − 2 + 1 =

𝐻1

2
)

45
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Max Pooling w. Examples
• Max pooling: take 

the max element 
among the 𝐹 ∗ 𝐹
elements in each 
𝐹 × 𝐹 patch of each 
input activation map 
to reduce its 
dimension (𝐹 =
2, 𝑆 = 2 in upper 
right fig)

• Alternative: average 
pooling is less 
commonly used

• Pooling is also 
called subsampling 
or downsampling
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Overlapping Pooling
• Input volume: 𝑁 × 𝑁 × D1
• A 3 × 3 pooling filter w. stride 𝑆 = 1, no pad

• Output volume: (𝑁 − 2) × (𝑁 − 2) × D1(since 
1

1
𝑁 − 3 + 1 =

𝑁 − 2)
– In practice, it is more common to have 𝐹 = 3, 𝑆 = 2 for overlapping 

pooling
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FC Layer

• Contains neurons that connect to the entire 
input volume w. no weight sharing

– No. params for FC layer of size 𝑁𝑜𝑢𝑡 connected to 
input layer of size 𝑁𝑖𝑛 is (𝑁𝑖𝑛 + 1) ∗ 𝑁𝑜𝑢𝑡

48

bias



CNN Toy Example

• A CNN with 1 CONV layer and 1 FC layer

49
Huang C, Fan J, Chen X, et al. Divide and slide: Layer-wise refinement for output range analysis of deep neural 

networks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(11): 3323-3335.



No. Params in Each Layer 

50https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks

CONV POOL FC

Input size 𝑊1 × 𝐻1 × 𝐷1 𝑊1 × 𝐻1 × 𝐷1 𝑁𝑖𝑛

Output Size 𝑊2 × 𝐻2 × 𝐾 𝑊2 × 𝐻2 × 𝐾 𝑁𝑜𝑢𝑡

No. params 𝐹 ∗ 𝐹 ∗ 𝐷1 + 1 ∗ 𝐾 0 𝑁𝑖𝑛 + 1 ∗ 𝑁𝑜𝑢𝑡



Fully-Connected NN vs. CNN 

• In a FCNN, all layers are 

Fully-Connected

• Cannot alter input image size

• No translation invariance

• No. params can grow very 

large, prune to overfitting

51

• In a CNN, only the last few (typically 

<=3) layer(s) are FC

• CONV layers can handle images of 

arbitrary size 

• Translation invariance

• Fewer params than MLP
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LeNet-5
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Layer Input

𝑊1 × 𝐻1 × 𝐷1

No. 

Filters

Filter

𝐾 × 𝐾 × 𝐷/𝑆
Output

𝑊2 × 𝐻2 × 𝐷2

No. params

C1:CONV 32 × 32 × 1 6 5 × 5 × 1 28 × 28 × 6 156

S2:POOL 28 × 28 × 6 6 2 × 2 × 1/2 14 × 14 × 6 0

C3:CONV 14 × 14 × 6 16 5 × 5 × 6 10 × 10 × 16 2416

S4:POOL 10 × 10 × 16 16 2 × 2 × 1/2 5 × 5 × 16 0

C5:CONV 5 × 5 × 16 120 5 × 5 × 16 1 × 1 × 120 48120

F6 FC - − 84 10164

Output FC 10 850



LeNet-5 Details
• Input image: 32 × 32 × 1 (grey-scale images of hand-written digits w. size 32 × 32 pixels)

• Conv filters 5 × 5 × 1 w. stride 1; Pooling filters 2 × 2 w. stride 2
• Conv layer C1 maps from input volume 32 × 32 × 1 to 6 feature maps w. volume 28 × 28 × 6

(since 
1

1
(32 − 5) + 1 = 28). No params: 5 ∗ 5 ∗ 1 + 1 ∗ 6 = 156

• Pooling layer S2 maps from input volume 28 × 28 × 6 to 6 feature maps w. volume 14 × 14 ×
6 (since 

1

2
(28 − 2) + 1 = 14). 

• Conv layer C3 maps from input volume 14 × 14 × 6 to 16 feature maps w. volume 10 × 10 ×
16 (since 

1

1
(14 − 5) + 1 = 10). No params: 5 ∗ 5 ∗ 6 + 1 ∗ 16 = 2416

• Pooling layer S4 maps from input volume 10 × 10 × 16 to 16 feature maps w. volume 5 × 5 ×
16 (since 

1

2
(10 − 2) + 1 = 5)

• Conv layer C5 maps from input volume 5 × 5 × 16 to 120 feature maps w. volume 1 × 1 ×
120 (since 

1

1
(5 − 5) + 1 = 1). No params: 5 ∗ 5 ∗ 16 + 1 ∗ 120 = 48120

– You can also view it as an equivalent Fully-Connected layer that maps from the flattened input of size 
400 × 1 (5 ∗ 5 ∗ 16 = 400) to output of size 120 × 1. For details, refer to L4.2 “Turning FC layer into 
CONV Layers”

• FC layer F6 maps from input of size 120 × 1 to output of size 84 × 1. No params: (120 + 1) ∗
84 = 10164

• Output layer (SoftMax) maps from input of size 84 × 1 to output of size 10. No params: (84 +
1) ∗ 10 = 850
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AlexNet [Krizhevsky et al. 2012] 
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• Input image: 227 × 227 × 3
• 1st layer (CONV1): 96 11 × 11 filters w. stride 𝑆 = 4, w. ReLU activation function
• Output volume: 55 × 55 × 96 (since 

1

4
227 − 11 + 1 = 55). 

• 2nd layer (POOL1): 3 × 3 filters w. stride 𝑆 = 2 (overlapping)
• Output volume: 27 × 27 × 96 (since 

1

2
55 − 3 + 1 = 27)

• … 
• Total No. params: 60M
• Introduced ReLU activation function



VGGNet [Simonyan 2014] (the best performing 

variant VGG-16)
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Same padding used for all CONV layers



VGG-16 Details

• VGG-16 has 16 weight layers, not including POOL layers w. 
0 weight

• Input image: 224 × 224 × 3
• 1st and 2nd CONV layers: 64 3 × 3 filters w. stride 𝑆 = 1, pad 
𝑃 = 1
– Output volume: 224 × 224 × 64 (since 

1

1
224 + 2 ∗ 1 − 3 + 1 = 224)

• 3rd POOL layer: 2 × 2 filters w. stride 𝑆 = 2
– Output volume: 112 × 112 × 64 (since 

1

2
224 − 2 + 1 = 112)

• 4th and 5th CONV layers: 128 3 × 3 filters w. stride 𝑆 = 1, pad 
𝑃 = 1
– Output volume: 112 × 112 × 128 (since 

1

1
112 + 2 ∗ 1 − 3 + 1 = 112)

• 6th POOL layer: 2 × 2 filters w. stride 𝑆 = 2
– Output volume: 56 × 56 × 128 (since 

1

2
112 − 2 + 1 = 56)

• Total No. params: 60M 
• ImageNet top 5 error: 7.3%



Stacked 3 × 3 CONV Layers
• 2 stacked 3 × 3 CONV layers w. pad 𝑃 = 1 have the same effective receptive 

field as a 5 × 5 CONV layer; 3 stacked 3 × 3 CONV layers w. pad 𝑃 = 1 have RF 
of 7 × 7; 𝐿 stacked 3 × 3 CONV layers w. pad 𝑃 = 1 have RF of 1 + 2𝐿

• Benefits:
– Fewer params. Suppose all volumes have  the same depth 𝐷, then a 7 × 7 CONV layer has 

7 ∗ 7 ∗ 𝐷 + 1 ∗ 𝐷 ≈ 49𝐷2 params, while three stacked 3x3 CONV layers have only 
3 ∗ 3 ∗ 𝐷 + 1 ∗ 𝐷 ∗ 3) ≈ 27𝐷2 params

– Two layers of non-linear activation functions increases CNN depth, hence larger model 
capacity

58https://zhuanlan.zhihu.com/p/79258431



VGGNet No. Params

• Memory refers to memory size of activation maps

• For ease of calculation, only the No. weights are counted, not the biases
59



VGGNet Variants

60

Best performing variant

VGG-16



GoogLeNet [Szegedy et al., 2014]

61
Inception Module

Additional classification heads

for regularization



Inception Module

• Can’t make up your mind about filter size? Have them 
all in the Inception Module!
– But this increases computation load

• Additional 1 × 1 CONV layers serve as bottleneck to 
reduce number of parameters and computation load
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• Without the bottleneck layer: No. params: 5 ∗ 5 ∗ 192 ∗ 32 = 153600; 

No. multiplications: 5 ∗ 5 ∗ 192 ∗ 32 ∗ 28 ∗ 28 = 120M
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28 × 28 × 192

CONV

16,

1 × 1 × 192 28 × 28 × 16

CONV

32,

5 × 5 × 16

Same 

padding 

(𝑃 = 2)
28 × 28 × 32

28 × 28 × 192

CONV

32,

5 × 5 × 192

Same 

padding 

(𝑃 = 2) 28 × 28 × 32

• With the bottleneck layer: No. params: 1 ∗ 1 ∗ 192 ∗ 16 + 5 ∗ 5 ∗ 16 ∗
32 = 15872; No. multiplications: 1 ∗ 1 ∗ 192 ∗ 16 ∗ 28 ∗ 28 + 5 ∗ 5 ∗
16 ∗ 32 ∗ 28 ∗ 28 = 12.4M



GoogLeNet Size

• Compared to AlexNet:

– 12x less params (only 5M, due to no FC layers), 2x 

more compute (due to more CONV layers)
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Xception [Chollet 2017] MobileNets [Howard et al. 

2017] : Depthwise Separable Convolution
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Each filter is convolved with all 

input channels

Depthwise Separable Convolution:

Each filter is convolved with one input channel

Followed by pointwise convolution

Regular Convolution

The intermediate feature maps serve as 

bottleneck to reduce number of parameters and 

computation load

(Optional) Depthwise Separable Convolution - A 

FASTER CONVOLUTION! 

https://www.youtube.com/watch?v=T7o3xvJLuHk 



Example: Regular Convolution
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No. params: 3 ∗ 3 ∗ 2 ∗ 4 = 72
(not counting biases)

No. MULs: 3 ∗ 3 ∗ 2 ∗ 4 ∗ 4 ∗ 4 =
1152 (3 ∗ 3 ∗ 2 MULs to 

compute each output element, 

with 4 ∗ 4 ∗ 4 output elements)

Input feature map

2 channels



Example: Depthwise Separable 

Convolution
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1. Depthwise Convolution 

2. Pointwise Convolution 1 × 1
filter

No. params: 3 ∗
3 ∗ 2 + 2 ∗ 4 = 26
(not counting 

biases)

No. MULs: 3 ∗ 3 ∗
1 ∗ 2 ∗ 4 ∗ 4 + 1 ∗
1 ∗ 2 ∗ 4 ∗ 4 ∗ 4 =
416



Residual Networks (ResNet) [He et al. 

2015]

• Based on VGG-19, adding more layers and 

skip connections

• ImageNet top 5 error: 3.6%
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ResNet Skip Connection

• In a standard network, output from a given 
layer is 𝐹 𝑥

• In ResNet w. the identity skip (or short-cut) 
connection, output from a given layer is 
𝐻 𝑥 = 𝐹 𝑥 + 𝑥

• Benefits:
– Residual connections help in handling the 

vanishing gradient problem in very deep NNs

– If identify mapping is close to optimal, then 
weights can be small to capture minor 
differences only, in other words, 
“unnecessary layers” can learn to be identity 
mapping. This allows stacking many layers 
(e.g., 152) without overfitting
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Consider a 3-layer Network
• Standard NN:

– 𝑥3 = 𝑓3 𝑓2(𝑓1(𝑥0 ))

• ResNet:

– 𝑥1 = 𝑓1 𝑥0 + 𝑥0
– 𝑥2 = 𝑓2 𝑥1 + 𝑥1 = 𝑓2 𝑓1 𝑥0 + 𝑥0 + 𝑓1 𝑥0 + 𝑥0
– 𝑥3 = 𝑓3 𝑥2 + 𝑥2 = 𝑓3 𝑓2 𝑓1 𝑥0 + 𝑥0 + 𝑓1 𝑥0 + 𝑥0 + 𝑓2 𝑓1 𝑥0 + 𝑥0 +

𝑓1 𝑥0 + 𝑥0
• Suppose 𝑓2(𝑥1) is a vector of very small values (layer 2 is 

“off”/skipped), then it looks like the input 𝑥0 bypassed the second 
layer completely on its way to the output 𝑥3
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𝑥1𝑥0 𝑥2 𝑥3 𝑥1𝑥0 𝑥2 𝑥3



ResNet is an Ensemble of Models

• Every input 𝑥0 to ResNet may 
activate a unique path to the output. 
Total number of possible paths is 2𝑁, 
where 𝑁 is the total number of layers 
in the network, since each layer may 
be either “on” or “off” for a given input 
𝑥0
– Compare w. a standard network, where 

there is only one single path for any 
input corresponding to all layers being 
“on”, and no layer is skipped

• Consequences:
– Resilience to layer deletion: deleting 1-3 

layers in a large ResNet introduces only 
around 6-7% error

– Shortening of effective paths: w. 152-
layer ResNet, most paths are only  20-
30 levels deep! 71



Deeper Nets have Better Performance
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ResNet Training with Stochastic 

Depth
• For each minibatch of 

inputs, randomly skip 
some layers (replaced 
w. identity mapping)

• Reduced network depth 
during training; full 
depth during inference
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MB1

MB2

MB3



ImageNet Large Scale Visual 

Recognition Challenge

• 1,000 object classes, 1.4 M labeled 

images
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CNN Layer Patterns
• A typical CNN architecture looks like: INPUT->[[CONV->RELU]*N->POOL?]*M->[FC-

>RELU]*K->FC 

– where * indicates repetition, and POOL? indicates an optional pooling layer. 𝑁 ≥ 0 (usually 𝑁 ≤ 3), 
𝑀 ≥ 0, 𝐾 ≥ 0 (and usually 𝐾 < 3)

• Some common architectures:
– INPUT->FC, implements a linear classifier. Here N = M = K = 0.

– INPUT->CONV->RELU->FC

– INPUT->[CONV->RELU->POOL]*2->FC->RELU->FC (fig below). There is a single CONV 
layer between every POOL layer.

– INPUT->[CONV->RELU->CONV->RELU->POOL]*3->[FC->RELU]*2->FC There are 
two CONV layers stacked before every POOL layer, e.g., two stacked 3 × 3 CONV Layers. This is 
generally a good idea for larger and deeper networks, because multiple stacked CONV layers can 
develop more complex features of the input volume before the destructive pooling operation.
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Layer Sizing Rules-of-Thumb
• The input layer (that contains the image) should be divisible by 2 many times. Common 

numbers include 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. ImageNet), 384, 
and 512.

• The CONV layers should use small filters (e.g. 3x3 or at most 5x5), stride S=1. The input 
volume should have “same padding”, i.e., the conv layer does not alter the spatial size of 
the input. For any F, pad P=(F−1)/2 preserves the input size, e.g., when F=3, P=1; when 
F=5, P=2. This means the CONV layers only transform the input volume depth-wise, but do 
not perform downsampling. (c.f. CONV Example 3 and VGGNet).

• The POOL layers are in charge of downsampling the spatial dimensions of the input. The 
most common setting is to use max-pooling with 2x2 receptive fields (F=2), with stride of 2 
(S=2). A less common setting is to use F=3, S=2. It is uncommon to see receptive field 
sizes for max pooling that are larger than 3, because the pooling is then too lossy and 
aggressive. 

• In some cases (especially in early layers), the memory size can build up very quickly with 
the rules of thumb presented above. For example, filtering a 224x224x3 image with three 
3x3 CONV layers with 64 filters each and padding 1 would create 3 activation volumes, 
each with size 224x224x64. This amounts to a total of about 10 million activations, or 
72MB of memory (per image, for both activations and gradients). Since GPUs are often 
bottlenecked by memory, it may be necessary to compromise. In practice, make the 
compromise at only the first CONV layer that is looking at the input image. For example, 
AlexNet uses filter size of 11x11 and stride of 4 in the first CONV layer.

76



Memory Size Considerations

• From the intermediate volume sizes: 
– These are the raw number of activations at every layer of 

the CNN, and also their gradients (of equal size). Usually, 
most of the activations are on the earlier CONV layers of a 
CNN. These are kept around because they are needed for 
backpropagation during training, but for inference, we can 
store only the current activations at the current layer and 
discarding the activations from previous layers.

• From the parameter sizes: 
– These are the weights and biases, and their gradients 

during backprop, and also a step cache if the optimization 
is using momentum, Adagrad, or RMSProp. Therefore, the 
memory to store the parameter vector alone usually should 
be multiplied by a factor of at least 3 or so.

• Each number may need 4 B storage space for floating 
point, 8 B for double, or 1 B or smaller for optimized 
fixed-point implementations.
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Transfer Learning

• Instead of training your CNN from scratch, start 
from a pre-trained CNN, e.g., ResNet, and fine-
tune it for your task

• First, replace the SoftMax classification head with 
your own

• Next, train the CNN while keeping frozen 
– all CONV layers and only train the SoftMax layer

– or part of the earlier CONV layers close to the input 
layer (snice earlier layers extract lower-level features 
that are more likely to be common among different 
tasks)

– or none of the layers

– The decision depends on how much training data you 
have, and how similar your task is to that of the pre-
trained CNN
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Outline

• CNN Convolution layers

• Pooling and Fully-Connected layers

• CNN case studies

• RNNs
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Recurrent Neural Network (RNN) 
• An RNN has connections between nodes that form 

a directed graph along a temporal sequence. This 
allows it to process variable-length input 
sequences and take into account dynamic 
temporal behavior

– e.g., To take into account temporal sequence of 
consecutive image frames in a video clip, we can 
either stack together a fixed number of frames as 
input to a CNN (e.g., grouping four 𝑁 × 𝑁 × 3 input 
images to form a 𝑁 × 𝑁 × 12 input image), or we can 
use an RNN (combined w. CNN) to process any 
variable-length sequence of frames

– (Optional) Michael Phi, Illustrated Guide to Recurrent 
Neural Networks: Understanding the Intuition 
https://www.youtube.com/watch?v=LHXXI4-IEns
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RNN Architecture Variants
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e.g., video 

classification 

on frame level

e.g. Machine Translation

seq of words -> seq of 

words

e.g. Sentiment 

Classification

sequence of 

words -> 

sentiment

e.g. Image 

Captioning

image -> 

sequence of 

words

Regular 

Feedforwar

d NN



RNN Many-to-Many Architecture
• RNN can process a sequence of inputs 𝑥 recurrently at every 

time step, w. the same activation function and parameters 𝑓𝑊
– e.g. ℎ𝑡 = tanh(𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡) , 𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡
– ℎ𝑡 can even be a large CNN (without the last classification layer)
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Example: Character-Level  Language 

Model, Training Time
• Task: predict the next 

char from current char 
sequence

• Example training 
sequence:  “hello” w. 
vocabulary:  [h,e,l,o] 
– Input is one-hot 

encoding of each char 

– Hidden layer is learned 
embedding

– Output layer is a 
probability vector w. 
size 4, denoting prob 
distribution of next char. 
(Fig shows the 
activation values before 
applying the SoftMax 
function for computing 
probabilities). 

83



Example: Character-Level  Language 

Model, Inference Time
• Initial input is char “h”

• At each timestep, 
sample from the prob 
vector of the output 𝑦𝑡
to generate the next 
input char
– The char w. largest 

logit (highest 
probability) is likely, 
but not always 
selected as output at 
each timestep, i.e., 
“e”, “l”, “l” in 
sequence (but it is 
possible to select the 
other choices, e.g., 
“l”, “e”, “e”)
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Initial Input



Example: Image Captioning

• CNN processes the input image and 

generates a feature vector as input to 

RNN
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Convolutional Neural Network

Recurrent Neural Network



Image Captioning: Word-Level  

Language Model, Inference Time
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h0

y0

h1

y1

h2

y2

sample

<END> token

=> finish.

x0
<STA  
RT>

straw hat

<START>

sample sample

• The last 2 layers 
of the CNN for 
classification (FC-
1000 and 
SoftMax) are not 
used, since we 
only need the 
extracted features 
from the layer FC-
4096

• At each timestep, 
sample from the 
prob vector of the 
output 𝑦𝑡 to 
generate the next 
input word



Image Captioning Examples
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Bottom row shows failure cases



RNN in AD
• Combined with CNN, RNN can handle Non-Markovian 

behavior, i.e, the current action depends not just on the 
current observation (input image), but on a recent history of 
observations
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RNN Summary

• Training of RNNs requires back propagation 
through time, which may cause exploding or 
vanishing gradient problems

• More sophisticated architectures are more 
practical

– LSTM (Long Short-Term Memory Model) or GRU 
(Gated Recurrent Unit)

• RNNs are most widely used in Natural 
Language Processing, but it is also useful for 
processing videos, w. applications in 
autonomous driving
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