
L4.1 CNN and RNN

Zonghua Gu 2021

1

Acknowledgement: some contents taken from UC Berkeley CS231n https://cs231n.github.io

Coursera MOOC on CNN: https://www.coursera.org/learn/convolutional-neural-networks

Hung-yi Lee: https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.html

Outline

• CNN Convolution layers

• Pooling and Fully-Connected layers

• CNN case studies

• RNNs

2

Classic Computer Vision

• Most “classic” (non-ML) CV algorithms are
implemented in the OpenCV library, including
– Core Operations:

• basic operations on image like pixel editing, geometric
transformations...

– Image Processing
• Thresholding, smoothing, edge detection, Hough Line

Transform…

– Feature Detection and Description
• HOG, SIFT, SURF, BRIEF, ORB…

– Video analysis
• Object tracking w. optical flow

– Camera Calibration and 3D Reconstruction

• They are simple, fast and reliable (e.g., for lane
detection), and are often used in place of or in
conjunction w. complex ML/DL algorithms, which may
sometimes be unreliable and unpredictable.

3

Input Image Encoding
• A size 𝑁 × 𝑁 color image has volume 𝑁 × 𝑁 × 3, w. 𝑁 × 𝑁 pixels

and 3 color components (Red, Green, and Blue, RGB) for each pixel

• A size 𝑁 × 𝑁 greyscale image has volume 𝑁 × 𝑁 × 1
• Color depth, or bit depth, is number of bits used for each color

component of a single pixel
– Typical value is 8, so pixel value has range [0, 255]
– Larger depth is possible, e.g., true color (24-bit) is used in computer and

phone displays for human eyes, but 8-bit is typically enough for CV
tasks

4

=

Filters/Kernels in Computer Vision
• Convolution operation: we slide (convolve) each filter across the width and

height of the input volume and compute dot products between the entries of the

filter (kernel) and the input at any position. As we slide the filter over the width

and height of the input volume we will produce a 2-dimensional activation map

that gives the responses of that filter at every spatial position.

– dot product operation: elementwise multiplication of a filter w. corresponding input

values, then summing them to generate one output value

– Used to extract features for downstream tasks (classification or regression)

5

A Filter for Vertical Edge Detection

6

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

1 0 -1

1 0 -1

1 0 -1

=

0 30 30 0

0 30 30 0

0 30 30 0

0 30 30 0

∗

∗

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

=

0 -30 -30 0

0 -30 -30 0

0 -30 -30 0

0 -30 -30 0

1 0 -1

1 0 -1

1 0 -1

Sobel Filter for Vertical Edge Detection

7

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

1 0 -1

2 0 -2

1 0 -1

=

0 40 40 0

0 40 40 0

0 40 40 0

0 40 40 0

∗

∗

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

=

0 -40 -40 0

0 -40 -40 0

0 -40 -40 0

0 -40 -40 0

1 0 -1

2 0 -2

1 0 -1

Common Filters in CV

• These filters were designed, or “hand-crafted”, by CV researchers. They

extract features used by downstream tasks such as classification, image

segmentation, etc.
8

Machine Learning Meets CV

9

=∗
𝑤1𝑤2𝑤3

𝑤4𝑤5𝑤6

𝑤7𝑤8𝑤9

• Instead of hand-crafted filters in classic CV,
why not learn custom convolutional filters
from data by supervised learning?
– For easy tasks like edge detection, learning may

recover filters similar to hand-crafted ones.

– For difficult CV tasks, learning is essential to
achieving good results

Convolutional Neural Networks (CNN)

• A CNN (also called ConvNet) is a sequence of
Convolutional (CONV) Layers, Pooling (POOL) Layers
and non-linear activation functions for feature extraction,
followed by one or more Fully-Connected (FC) Layers for
classification based on the extracted features

Feature

Extraction

𝑃 0 = .01
𝑃 1 = .01
𝑃 2 = .01
𝑃 3 = .02
𝑃 4 = .03
𝑃 5 = .01
𝑃 6 = .02
𝑃 7 = .02
𝑃 8 = .85
𝑃 9 = .02

Classifier

(e.g., SoftMax)

Receptive Field and Parameter Sharing

• Each neuron in a CONV layer has local, sparse
connectivity to a small patch of the input volume w. size of
the filter, called its Receptive Field
– Each neuron covers a limited, narrow “field-of-view”

– In contrast, each neuron in a FC layer has RF that covers the
entire input volume

• Parameter sharing: all neurons in the same CONV layer
share the same filter params 𝑤, 𝑏
– It helps to reduce the number of params significantly compared

to fully-connected networks

– It gives translation invariance, e.g., an edge can be detected
regardless of its location in the image

11

Convolution Operation
• Slide the filter over the image spatially, computing dot

products 𝑤𝑇𝑥 + 𝑏 to generate an activation map as output

• The input may be an input RGB image w. 3 channels, hence
depth=3, or intermediate activation maps generated by hidden
layers of a CNN. We use the terms “input volume” and “output
volume” to emphasize they may be 3D tensors

12

32

32

3

32x32x3 input

5x5x3 filter

1 number:
the result of taking a dot product 𝑤𝑥 + 𝑏 between

the filter with weights 𝑤, bias 𝑏, and a 5 × 5 × 3
image patch 𝑥, with 5 ∗ 5 ∗ 3 = 75-dimensional

dot product + bias

13

32

32

3

32x32x3 input
5x5x3 filter

1

28

28

convolve (slide)

over all spatial

locations

32

32

3

32x32x3 input

5x5x3 filter

1

28

28

convolve

(slide) over all

spatial

locations

One (blue) filter

generates one

2D activation

map as output

Multiple (blue

and green)

filters generate

multiple (blue

and green) 2D

activation maps,

stacked along
the depth
dimension to
produce the 3D
output volume

Stacked Activation Maps

• If we have 6 5 × 5 filters, we’ll get 6 separate
activation maps (also called feature maps).

• We stack these up to get an output volume (a new
“image”) of size 28 × 28 × 6, an intermediate
representation to be passed to subsequent layers

14

32

3 6

28

activation maps

32

28

Convolution Layer w.

6 5x5 filters

Activation Maps Illustration

15

1 filter/kernel, 1 output activation map

3 filters/kernels, 3 output activation maps

Concrete Example:

3 Filters

• 3 filters 𝑾𝟎, 𝑾𝟏, 𝑾𝟐,
each extracting different
features. (𝑾𝒊 ∗ 𝑿𝒋
denotes convolution of
filter 𝑾𝒊 w. input 𝑿𝒋)
(bias terms are
assumed to be 0 here)

• Upper left: filter 𝑾𝟎
extracts vertical line
features 𝒁𝟎 from input
image 𝑿𝟏. (the other 2
filters do not extract any
meaningful features)

• Lower left: filter 𝑾𝟏
extracts horizontal line
features 𝒁𝟏 from input
image 𝑿𝟐 (the other 2
filters do not extract any
meaningful features)

16

Convolution of a Filter on RGB Image

w. 3 Channels

17

=∗

4 x 4

6 x 6 x 3

3 x 3 x 3

Convolution of 2 Filters on RGB

Image w. 3 Channels

• 6x6 input feature map w. 3 channels; two 3x3 filters with depth 3; 4x4
output feature map w. 2 channels

• # channels of input feature map == # depth of each filter (= 3 in figure)

• # channels of output feature map == # filters (=2 in figure)
18

=

6 x 6 x 3 4 x 4 x 23 x 3 x 3

∗

∗

3 x 3 x 3

Important

Convolution Example 1

• conv=nn.Conv2d(in_channels=2,
out_channels=1, kernel_size=3)

– Pytorch code for a CONV layer with an input image
with 2 channels (in_channels=2), 1 3 × 3 filter (with
depth 2), 1 output activation maps (out_channels=1).

– The biases are assumed to be 0

19

input 1 filter/kernel output

https://www.coursera.org/learn/deep-neural-networks-with-pytorch/lecture/1rUTu/9-3-multiple-input-and-output-channels

Convolution Example 2
• conv4=nn.Conv2d(in_channels=2,

out_channels=3, kernel_size=3)

– Pytorch code for a CONV layer with an input image with 2
channels (in_channels=2), 3 3 × 3 filters (with depth 2), 3 output
activation maps (out_channels=3)

– The biases are assumed to be 0

20

input

3 filters/kernels output

Convolution Example 2: Filters and

Input Image

21

3 3 × 3 filters input image with 2 channels

Convolution

Example 2: Output

• Each of the 3
filters convolved
with the input
image generates
an output
activation map.

• The output volume
consists of 3 3 × 3
activation maps,
with volume 3 ×
3 × 3

22

Filters and Activation Maps

Example

23

example 5x5 filters
(32 total)

one filter =>

one activation map

Section 6 - 21

filters

7x7 input, 3x3 filter, stride=1 ⇒ output: 5x5 filter

24

7x7 input, 3x3 filter, stride=2 ⇒ output: 3x3 filter

25

7x7 input, 3x3 filter, stride=3 ⇒ output: ???

26

The rightmost

and bottom

columns are not

processed!

Solution: Add Padding

• 7x7 input, 3x3 filter, stride=3, zero padding

w. 1 ⇒ output: 3x3 filter

27

0 0 0 0 0 0 0 0 0

0

0

0

0

0 0 0 0 0 0 0 0 0

0

0

0

0

0 0 0 0 0 0 0 0 0

0

0

0

0

Computation of CONV Layer Sizes

• If input has square shape, then we denote 𝑁1 = 𝑊1 = 𝐻1; a filter is assumed to have square
shape

• Each filter always has the same depth 𝐷1 as its input volume, and the number of filters 𝐾
always equals the depth 𝐷2 of its output volume

• In practice, it is common to have stride 𝑆 = 1, filter size 𝐹 × 𝐹, and zero-pad 𝑃 =
1

2
(𝐹 − 1).

Then output activation map has same spatial size as input. This is called “same padding”

– W2 =
1

𝑆
𝑊1 + 2𝑃 − 𝐹 + 1 =

1

1
𝑊1 + 𝐹 − 1 − 𝐹 + 1 = 𝑊1; similarly, 𝐻2 = 𝐻1

– e.g., 𝐹 < 3 ⇒ 𝑃 = 0; 𝐹 = 3 ⇒ 𝑃 = 1; 𝐹 = 5 ⇒ 𝑃 = 2 28

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1

- F = 5, S = 1, P = 2

- F = 1, S = 1, P = 0

Important

CONV Example 1: No Pad
• Input volume: 5 × 5 × 1 (𝑊1 = 𝐻1 = 𝑁1 = 32,𝐷1 = 3)(e.g., a greyscale image)

• A 3 × 3 × 1 filter
1 0 1
0 1 0
1 0 1

(𝐾 = 1, 𝐹 = 3) w. stride 𝑆 = 1, no pad

• Output activation map:

– Spatial size: W2 = H2 = N2 =
1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
5 − 3 + 1 = 3

– Depth: 𝐷2 = 𝐾 = 1

• Output volume: 3 × 3 × 1
• Even though the fig shows sequential computation, convolution operations are inherently

parallel, hence suitable for efficient implementation on parallel hardware, e.g., GPU,
FPGA…

29

CONV Example 2: Same Padding
• Input volume: 5 × 5 × 1
• A 3 × 3 × 1 filter (𝐾 = 1, 𝐹 = 3) w. stride 𝑆 = 1, pad 𝑃 = 1

• Output volume: 5 × 5 × 1 (since
1

1
5 + 2 − 3 + 1 = 5)

• Output activation map has the same spatial dimension as input
(5 × 5)

30

CONV Example 3: Stride 𝑆 = 2
• Input volume: 5 × 5 × 3
• 2 3 × 3 × 3 filters (𝐾 = 2, 𝐹 = 3) w. stride 𝑆 = 2, pad 𝑃 = 1

• Output volumes: 2 3 × 3 × 1 (since
1

2
5 + 2 ∗ 1 − 3 + 1 = 3)

– Animation: https://cs231n.github.io/convolutional-networks/

31

https://cs231n.github.io/convolutional-networks/

CONV Example 4: Input Depth 𝐷1 = 3

32
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

• Input volume: 𝑀 × 𝑁 × 3

• A 3 × 3 × 3 filter (𝐾 = 1, 𝐹 = 3) w. stride 𝑆 = 1, pad 𝑃 = 1

• Output volume: 𝑀 ×𝑁 × 1 (since
1

1
𝑀 + 2 ∗ 1 − 3 + 1 = 𝑀,

1

1
(

)

𝑁

+ 2 ∗ 1 − 3 + 1 = 𝑁)

Movement of

the filter

CONV Example 5: Multiple Filters 𝐾 = 10
• Input volume: 32 × 32 × 3 (𝑊1 = 𝐻1 = 𝑁1 = 32, 𝐷1 = 3)
• 10 5 × 5 × 3 filters (𝐾 = 10, 𝐹 = 5) w. stride 𝑆 = 1, no pad (𝑃 = 0)

• Each output activation map:

– Spatial size: W2 = H2 = N2 =
1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
32 − 5 + 1 = 28

– Depth: 𝐷2 = 𝐾 = 10

• Output volume: 28 × 28 × 10
• No. params (weights and biases) in this layer: each filter has 5 ∗ 5 ∗

3 + 1 = 76 params, so 10 filters add up to 76 ∗ 10 = 760 params

33

32

32

3

28

28

32

32

3

28

28

10

…

(10 neurons)

CONV Example 5: Neuron View
• One activation map is a 28 × 28

sheet of neuron outputs.

• With 10 filters, the CONV layer
consists of neurons arranged in a 3D
grid (28 × 28 × 10).
– For each 5 × 5 patch of the input, there

are 10 different neurons all looking at
it, each extracting different features

34

32

32

3

28

28

32

32

3

28

28

10

(10 neurons)

…

CONV Example 6: Pad 𝑃 = 2

• Input volume: 32 × 32 × 3 (𝑊1 = 𝐻1 = 𝑁1 =
32,𝐷1 = 3)

• 10 5 × 5 × 3 filters (𝐾 = 10, 𝐹 = 5) w. stride 𝑆 = 1,
pad 𝑃 = 2

• Each activation map:

– Spatial size: W2 = H2 = N2 =
1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
32 + 2 ∗ 2 − 5 + 1 = 32

– Depth: 𝐷2 = 𝐾 = 10

• Output volume:32 × 32 × 10
• No. params: each filter has 5 ∗ 5 ∗ 3 + 1 = 76

params, so 10 filters add up to 76 ∗ 10 = 760
params

35

Pointwise Convolution with 1 × 1 Filter

• A 1 × 1 filter performs “mixing” of the input
channels, then applies a non-linear activation
function

• Can be used to reduce the number of
channels (volume depth); the non-linear
activation function also helps increase model
capacity

36

∗ =

6 × 6 × 32 1 × 1 × 32 6 × 6 × # filters

1 × 1 Filter Example
• Input volume: 56 × 56 × 64 (𝑊1 = 𝐻1 = 𝑁1 = 56, 𝐷1 = 64)
• 32 1 × 1 × 64 filters (𝐾 = 32, 𝐹 = 1) w. stride 𝑆 = 1, no pad

• Each activation map:

– Spatial size: W2 = H2 = N2 =
1

𝑆
𝑁1 + 2𝑃 − 𝐹 + 1 =

1

1
56 − 1 + 1 = 56

– Depth: 𝐷2 = 𝐾 = 32

• Output volume:56 × 56 × 32
• No. params: each filter has 1 ∗ 1 ∗ 64 + 1 = 65 params, so 32 filters

add up to 65 ∗ 32 = 2080 params

3764

56

56
1x1 Conv

w. 32 filters

32

56

56

(each filter has size

1x1x64, and performs a

64-dimensional dot

product)

Dilated Convolution

• Insert 0s between
input elements to
increase receptive
field size without
increasing #
params

38

Regular convolution

(1-dilated)

2-dilated

convolution

3D Convolution

• 3D filter slides
along all 3 axes
(width, height,
depth). Very
computation
intensive

• Useful for 3D
images such as
medical CT/MRI
images, or Point
Clouds from
Lidar

39

Converting Convolution to Matrix

Multiplication: 1D CONV Example

40

• Since parallel hardware
(GPU, FPGA…) can
handle matrix
multiplication efficiently,
this conversion increases
computation efficiency at
the expense of increased
memory size for storing
the weights (the biases
are not shown in fig)

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

𝑤0

𝑤1

𝑤2

∗
𝑦1

𝑦2

𝑦3

=

𝑤0 𝑤1 𝑤2 0 0

0 𝑤0 𝑤1 𝑤2 0

0 0 𝑤0 𝑤1 𝑤2

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

×
𝑦1

𝑦2

𝑦3

=

Kernel

Input

Output

Converting Convolution to Matrix

Multiplication: 2D CONV Example

41

Two different ways

Outline

• CNN Convolution layers

• Pooling and Fully-Connected layers

• CNN case studies

• RNNs

42

Typical CNN Architecture
• Multiple layers, each consisting of CONV, POOL and

non-linear activation functions (e.g., ReLU), are
stacked into a deep network
– Many variants possible, e.g., multiple CONV layers can be

stacked without POOL and activation functions in-between

43

32

32

3

CONV,

POOL,

ReLU

e.g. 6

5x5x3

filters

28

28

6

CONV,

POOL,

ReLU

e.g. 10

5x5x6

filters

CONV,

POOL,

ReLU

….

10

24

24

ReLU

Activation

Function

Feature Hierarchy

44

• Multiple hidden layers extract a hierarchy of

increasingly-abstract features layer-by-layer,

until the last layer produces a classification

result

𝑃 𝑐𝑎𝑟 = .9
𝑃 𝑡𝑟𝑢𝑐𝑘 =. 1

Pooling (Sub-Sampling) Layer

• A pooling filter has depth 1, and operates over each activation map
independently, hence the input volume and output volume always have the
same depth 𝐷1 = 𝐷2

– In contrast, a CONV filter always has the same depth 𝐷1 as its input volume, and the
number of filters 𝐾 always equals the depth 𝐷2 of its output volume

– Common settings: 𝐹 = 2, 𝑆 = 2, or 𝐹 = 3, 𝑆 = 2

• Example: pooling w. a 2 × 2 filter w. stride 𝑆 = 2, no pad

• Output volume:
𝑊1

2
×

𝐻1

2
× D1(since

1

2
𝑊1 − 2 + 1 =

𝑊1

2
,
1

2
𝐻1 − 2 + 1 =

𝐻1

2
)

45

Important

Max Pooling w. Examples
• Max pooling: take

the max element
among the 𝐹 ∗ 𝐹
elements in each
𝐹 × 𝐹 patch of each
input activation map
to reduce its
dimension (𝐹 =
2, 𝑆 = 2 in upper
right fig)

• Alternative: average
pooling is less
commonly used

• Pooling is also
called subsampling
or downsampling

46

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

max pooling

6 8

3 4

3.3 5.3

2 2

avg pooling

Overlapping Pooling
• Input volume: 𝑁 × 𝑁 × D1
• A 3 × 3 pooling filter w. stride 𝑆 = 1, no pad

• Output volume: (𝑁 − 2) × (𝑁 − 2) × D1(since
1

1
𝑁 − 3 + 1 =

𝑁 − 2)
– In practice, it is more common to have 𝐹 = 3, 𝑆 = 2 for overlapping

pooling

47

1 3 2 1 3

2 9 1 1 5

1 3 2 3 2

8 3 5 1 0

5 6 1 2 9

9 9 5

9 9 5

8 6 9

max pool w. 3x3

filter and stride 1

FC Layer

• Contains neurons that connect to the entire
input volume w. no weight sharing

– No. params for FC layer of size 𝑁𝑜𝑢𝑡 connected to
input layer of size 𝑁𝑖𝑛 is (𝑁𝑖𝑛 + 1) ∗ 𝑁𝑜𝑢𝑡

48

bias

CNN Toy Example

• A CNN with 1 CONV layer and 1 FC layer

49
Huang C, Fan J, Chen X, et al. Divide and slide: Layer-wise refinement for output range analysis of deep neural

networks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(11): 3323-3335.

No. Params in Each Layer

50https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks

CONV POOL FC

Input size 𝑊1 × 𝐻1 × 𝐷1 𝑊1 × 𝐻1 × 𝐷1 𝑁𝑖𝑛

Output Size 𝑊2 × 𝐻2 × 𝐾 𝑊2 × 𝐻2 × 𝐾 𝑁𝑜𝑢𝑡

No. params 𝐹 ∗ 𝐹 ∗ 𝐷1 + 1 ∗ 𝐾 0 𝑁𝑖𝑛 + 1 ∗ 𝑁𝑜𝑢𝑡

Fully-Connected NN vs. CNN

• In a FCNN, all layers are

Fully-Connected

• Cannot alter input image size

• No translation invariance

• No. params can grow very

large, prune to overfitting

51

• In a CNN, only the last few (typically

<=3) layer(s) are FC

• CONV layers can handle images of

arbitrary size

• Translation invariance

• Fewer params than MLP

Outline

• CNN Convolution layers

• Pooling and Fully-Connected layers

• CNN case studies

• RNNs

52

LeNet-5

53

Layer Input

𝑊1 × 𝐻1 × 𝐷1

No.

Filters

Filter

𝐾 × 𝐾 × 𝐷/𝑆
Output

𝑊2 × 𝐻2 × 𝐷2

No. params

C1:CONV 32 × 32 × 1 6 5 × 5 × 1 28 × 28 × 6 156

S2:POOL 28 × 28 × 6 6 2 × 2 × 1/2 14 × 14 × 6 0

C3:CONV 14 × 14 × 6 16 5 × 5 × 6 10 × 10 × 16 2416

S4:POOL 10 × 10 × 16 16 2 × 2 × 1/2 5 × 5 × 16 0

C5:CONV 5 × 5 × 16 120 5 × 5 × 16 1 × 1 × 120 48120

F6 FC - − 84 10164

Output FC 10 850

LeNet-5 Details
• Input image: 32 × 32 × 1 (grey-scale images of hand-written digits w. size 32 × 32 pixels)

• Conv filters 5 × 5 × 1 w. stride 1; Pooling filters 2 × 2 w. stride 2
• Conv layer C1 maps from input volume 32 × 32 × 1 to 6 feature maps w. volume 28 × 28 × 6

(since
1

1
(32 − 5) + 1 = 28). No params: 5 ∗ 5 ∗ 1 + 1 ∗ 6 = 156

• Pooling layer S2 maps from input volume 28 × 28 × 6 to 6 feature maps w. volume 14 × 14 ×
6 (since

1

2
(28 − 2) + 1 = 14).

• Conv layer C3 maps from input volume 14 × 14 × 6 to 16 feature maps w. volume 10 × 10 ×
16 (since

1

1
(14 − 5) + 1 = 10). No params: 5 ∗ 5 ∗ 6 + 1 ∗ 16 = 2416

• Pooling layer S4 maps from input volume 10 × 10 × 16 to 16 feature maps w. volume 5 × 5 ×
16 (since

1

2
(10 − 2) + 1 = 5)

• Conv layer C5 maps from input volume 5 × 5 × 16 to 120 feature maps w. volume 1 × 1 ×
120 (since

1

1
(5 − 5) + 1 = 1). No params: 5 ∗ 5 ∗ 16 + 1 ∗ 120 = 48120

– You can also view it as an equivalent Fully-Connected layer that maps from the flattened input of size
400 × 1 (5 ∗ 5 ∗ 16 = 400) to output of size 120 × 1. For details, refer to L4.2 “Turning FC layer into
CONV Layers”

• FC layer F6 maps from input of size 120 × 1 to output of size 84 × 1. No params: (120 + 1) ∗
84 = 10164

• Output layer (SoftMax) maps from input of size 84 × 1 to output of size 10. No params: (84 +
1) ∗ 10 = 850

54
https://www.analyticsvidhya.com/blog/2021/03/the-architecture-of-lenet-5/

https://towardsdatascience.com/understanding-lenet-a-detailed-walkthrough-17833d4bd155

AlexNet [Krizhevsky et al. 2012]

55

• Input image: 227 × 227 × 3
• 1st layer (CONV1): 96 11 × 11 filters w. stride 𝑆 = 4, w. ReLU activation function
• Output volume: 55 × 55 × 96 (since

1

4
227 − 11 + 1 = 55).

• 2nd layer (POOL1): 3 × 3 filters w. stride 𝑆 = 2 (overlapping)
• Output volume: 27 × 27 × 96 (since

1

2
55 − 3 + 1 = 27)

• …
• Total No. params: 60M
• Introduced ReLU activation function

VGGNet [Simonyan 2014] (the best performing

variant VGG-16)

56

Same padding used for all CONV layers

VGG-16 Details

• VGG-16 has 16 weight layers, not including POOL layers w.
0 weight

• Input image: 224 × 224 × 3
• 1st and 2nd CONV layers: 64 3 × 3 filters w. stride 𝑆 = 1, pad
𝑃 = 1
– Output volume: 224 × 224 × 64 (since

1

1
224 + 2 ∗ 1 − 3 + 1 = 224)

• 3rd POOL layer: 2 × 2 filters w. stride 𝑆 = 2
– Output volume: 112 × 112 × 64 (since

1

2
224 − 2 + 1 = 112)

• 4th and 5th CONV layers: 128 3 × 3 filters w. stride 𝑆 = 1, pad
𝑃 = 1
– Output volume: 112 × 112 × 128 (since

1

1
112 + 2 ∗ 1 − 3 + 1 = 112)

• 6th POOL layer: 2 × 2 filters w. stride 𝑆 = 2
– Output volume: 56 × 56 × 128 (since

1

2
112 − 2 + 1 = 56)

• Total No. params: 60M
• ImageNet top 5 error: 7.3%

Stacked 3 × 3 CONV Layers
• 2 stacked 3 × 3 CONV layers w. pad 𝑃 = 1 have the same effective receptive

field as a 5 × 5 CONV layer; 3 stacked 3 × 3 CONV layers w. pad 𝑃 = 1 have RF
of 7 × 7; 𝐿 stacked 3 × 3 CONV layers w. pad 𝑃 = 1 have RF of 1 + 2𝐿

• Benefits:
– Fewer params. Suppose all volumes have the same depth 𝐷, then a 7 × 7 CONV layer has

7 ∗ 7 ∗ 𝐷 + 1 ∗ 𝐷 ≈ 49𝐷2 params, while three stacked 3x3 CONV layers have only
3 ∗ 3 ∗ 𝐷 + 1 ∗ 𝐷 ∗ 3) ≈ 27𝐷2 params

– Two layers of non-linear activation functions increases CNN depth, hence larger model
capacity

58https://zhuanlan.zhihu.com/p/79258431

VGGNet No. Params

• Memory refers to memory size of activation maps

• For ease of calculation, only the No. weights are counted, not the biases
59

VGGNet Variants

60

Best performing variant

VGG-16

GoogLeNet [Szegedy et al., 2014]

61
Inception Module

Additional classification heads

for regularization

Inception Module

• Can’t make up your mind about filter size? Have them
all in the Inception Module!
– But this increases computation load

• Additional 1 × 1 CONV layers serve as bottleneck to
reduce number of parameters and computation load

62

• Without the bottleneck layer: No. params: 5 ∗ 5 ∗ 192 ∗ 32 = 153600;

No. multiplications: 5 ∗ 5 ∗ 192 ∗ 32 ∗ 28 ∗ 28 = 120M

63

28 × 28 × 192

CONV

16,

1 × 1 × 192 28 × 28 × 16

CONV

32,

5 × 5 × 16

Same

padding

(𝑃 = 2)
28 × 28 × 32

28 × 28 × 192

CONV

32,

5 × 5 × 192

Same

padding

(𝑃 = 2) 28 × 28 × 32

• With the bottleneck layer: No. params: 1 ∗ 1 ∗ 192 ∗ 16 + 5 ∗ 5 ∗ 16 ∗
32 = 15872; No. multiplications: 1 ∗ 1 ∗ 192 ∗ 16 ∗ 28 ∗ 28 + 5 ∗ 5 ∗
16 ∗ 32 ∗ 28 ∗ 28 = 12.4M

GoogLeNet Size

• Compared to AlexNet:

– 12x less params (only 5M, due to no FC layers), 2x

more compute (due to more CONV layers)

64

Xception [Chollet 2017] MobileNets [Howard et al.

2017] : Depthwise Separable Convolution

65

Each filter is convolved with all

input channels

Depthwise Separable Convolution:

Each filter is convolved with one input channel

Followed by pointwise convolution

Regular Convolution

The intermediate feature maps serve as

bottleneck to reduce number of parameters and

computation load

(Optional) Depthwise Separable Convolution - A

FASTER CONVOLUTION!

https://www.youtube.com/watch?v=T7o3xvJLuHk

Example: Regular Convolution

66

No. params: 3 ∗ 3 ∗ 2 ∗ 4 = 72
(not counting biases)

No. MULs: 3 ∗ 3 ∗ 2 ∗ 4 ∗ 4 ∗ 4 =
1152 (3 ∗ 3 ∗ 2 MULs to

compute each output element,

with 4 ∗ 4 ∗ 4 output elements)

Input feature map

2 channels

Example: Depthwise Separable

Convolution

67

1. Depthwise Convolution

2. Pointwise Convolution 1 × 1
filter

No. params: 3 ∗
3 ∗ 2 + 2 ∗ 4 = 26
(not counting

biases)

No. MULs: 3 ∗ 3 ∗
1 ∗ 2 ∗ 4 ∗ 4 + 1 ∗
1 ∗ 2 ∗ 4 ∗ 4 ∗ 4 =
416

Residual Networks (ResNet) [He et al.

2015]

• Based on VGG-19, adding more layers and

skip connections

• ImageNet top 5 error: 3.6%

68

ResNet Skip Connection

• In a standard network, output from a given
layer is 𝐹 𝑥

• In ResNet w. the identity skip (or short-cut)
connection, output from a given layer is
𝐻 𝑥 = 𝐹 𝑥 + 𝑥

• Benefits:
– Residual connections help in handling the

vanishing gradient problem in very deep NNs

– If identify mapping is close to optimal, then
weights can be small to capture minor
differences only, in other words,
“unnecessary layers” can learn to be identity
mapping. This allows stacking many layers
(e.g., 152) without overfitting

69

Consider a 3-layer Network
• Standard NN:

– 𝑥3 = 𝑓3 𝑓2(𝑓1(𝑥0))

• ResNet:

– 𝑥1 = 𝑓1 𝑥0 + 𝑥0
– 𝑥2 = 𝑓2 𝑥1 + 𝑥1 = 𝑓2 𝑓1 𝑥0 + 𝑥0 + 𝑓1 𝑥0 + 𝑥0
– 𝑥3 = 𝑓3 𝑥2 + 𝑥2 = 𝑓3 𝑓2 𝑓1 𝑥0 + 𝑥0 + 𝑓1 𝑥0 + 𝑥0 + 𝑓2 𝑓1 𝑥0 + 𝑥0 +

𝑓1 𝑥0 + 𝑥0
• Suppose 𝑓2(𝑥1) is a vector of very small values (layer 2 is

“off”/skipped), then it looks like the input 𝑥0 bypassed the second
layer completely on its way to the output 𝑥3

70

𝑥1𝑥0 𝑥2 𝑥3 𝑥1𝑥0 𝑥2 𝑥3

ResNet is an Ensemble of Models

• Every input 𝑥0 to ResNet may
activate a unique path to the output.
Total number of possible paths is 2𝑁,
where 𝑁 is the total number of layers
in the network, since each layer may
be either “on” or “off” for a given input
𝑥0
– Compare w. a standard network, where

there is only one single path for any
input corresponding to all layers being
“on”, and no layer is skipped

• Consequences:
– Resilience to layer deletion: deleting 1-3

layers in a large ResNet introduces only
around 6-7% error

– Shortening of effective paths: w. 152-
layer ResNet, most paths are only 20-
30 levels deep! 71

Deeper Nets have Better Performance

72

ResNet Training with Stochastic

Depth
• For each minibatch of

inputs, randomly skip
some layers (replaced
w. identity mapping)

• Reduced network depth
during training; full
depth during inference

73

MB1

MB2

MB3

ImageNet Large Scale Visual

Recognition Challenge

• 1,000 object classes, 1.4 M labeled

images

74

CNN Layer Patterns
• A typical CNN architecture looks like: INPUT->[[CONV->RELU]*N->POOL?]*M->[FC-

>RELU]*K->FC

– where * indicates repetition, and POOL? indicates an optional pooling layer. 𝑁 ≥ 0 (usually 𝑁 ≤ 3),
𝑀 ≥ 0, 𝐾 ≥ 0 (and usually 𝐾 < 3)

• Some common architectures:
– INPUT->FC, implements a linear classifier. Here N = M = K = 0.

– INPUT->CONV->RELU->FC

– INPUT->[CONV->RELU->POOL]*2->FC->RELU->FC (fig below). There is a single CONV
layer between every POOL layer.

– INPUT->[CONV->RELU->CONV->RELU->POOL]*3->[FC->RELU]*2->FC There are
two CONV layers stacked before every POOL layer, e.g., two stacked 3 × 3 CONV Layers. This is
generally a good idea for larger and deeper networks, because multiple stacked CONV layers can
develop more complex features of the input volume before the destructive pooling operation.

75

Layer Sizing Rules-of-Thumb
• The input layer (that contains the image) should be divisible by 2 many times. Common

numbers include 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. ImageNet), 384,
and 512.

• The CONV layers should use small filters (e.g. 3x3 or at most 5x5), stride S=1. The input
volume should have “same padding”, i.e., the conv layer does not alter the spatial size of
the input. For any F, pad P=(F−1)/2 preserves the input size, e.g., when F=3, P=1; when
F=5, P=2. This means the CONV layers only transform the input volume depth-wise, but do
not perform downsampling. (c.f. CONV Example 3 and VGGNet).

• The POOL layers are in charge of downsampling the spatial dimensions of the input. The
most common setting is to use max-pooling with 2x2 receptive fields (F=2), with stride of 2
(S=2). A less common setting is to use F=3, S=2. It is uncommon to see receptive field
sizes for max pooling that are larger than 3, because the pooling is then too lossy and
aggressive.

• In some cases (especially in early layers), the memory size can build up very quickly with
the rules of thumb presented above. For example, filtering a 224x224x3 image with three
3x3 CONV layers with 64 filters each and padding 1 would create 3 activation volumes,
each with size 224x224x64. This amounts to a total of about 10 million activations, or
72MB of memory (per image, for both activations and gradients). Since GPUs are often
bottlenecked by memory, it may be necessary to compromise. In practice, make the
compromise at only the first CONV layer that is looking at the input image. For example,
AlexNet uses filter size of 11x11 and stride of 4 in the first CONV layer.

76

Memory Size Considerations

• From the intermediate volume sizes:
– These are the raw number of activations at every layer of

the CNN, and also their gradients (of equal size). Usually,
most of the activations are on the earlier CONV layers of a
CNN. These are kept around because they are needed for
backpropagation during training, but for inference, we can
store only the current activations at the current layer and
discarding the activations from previous layers.

• From the parameter sizes:
– These are the weights and biases, and their gradients

during backprop, and also a step cache if the optimization
is using momentum, Adagrad, or RMSProp. Therefore, the
memory to store the parameter vector alone usually should
be multiplied by a factor of at least 3 or so.

• Each number may need 4 B storage space for floating
point, 8 B for double, or 1 B or smaller for optimized
fixed-point implementations.

77

Transfer Learning

• Instead of training your CNN from scratch, start
from a pre-trained CNN, e.g., ResNet, and fine-
tune it for your task

• First, replace the SoftMax classification head with
your own

• Next, train the CNN while keeping frozen
– all CONV layers and only train the SoftMax layer

– or part of the earlier CONV layers close to the input
layer (snice earlier layers extract lower-level features
that are more likely to be common among different
tasks)

– or none of the layers

– The decision depends on how much training data you
have, and how similar your task is to that of the pre-
trained CNN

78

Outline

• CNN Convolution layers

• Pooling and Fully-Connected layers

• CNN case studies

• RNNs

79

Recurrent Neural Network (RNN)
• An RNN has connections between nodes that form

a directed graph along a temporal sequence. This
allows it to process variable-length input
sequences and take into account dynamic
temporal behavior

– e.g., To take into account temporal sequence of
consecutive image frames in a video clip, we can
either stack together a fixed number of frames as
input to a CNN (e.g., grouping four 𝑁 × 𝑁 × 3 input
images to form a 𝑁 × 𝑁 × 12 input image), or we can
use an RNN (combined w. CNN) to process any
variable-length sequence of frames

– (Optional) Michael Phi, Illustrated Guide to Recurrent
Neural Networks: Understanding the Intuition
https://www.youtube.com/watch?v=LHXXI4-IEns

80

https://www.youtube.com/watch?v=LHXXI4-IEns

RNN Architecture Variants

81

e.g., video

classification

on frame level

e.g. Machine Translation

seq of words -> seq of

words

e.g. Sentiment

Classification

sequence of

words ->

sentiment

e.g. Image

Captioning

image ->

sequence of

words

Regular

Feedforwar

d NN

RNN Many-to-Many Architecture
• RNN can process a sequence of inputs 𝑥 recurrently at every

time step, w. the same activation function and parameters 𝑓𝑊
– e.g. ℎ𝑡 = tanh(𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡) , 𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡
– ℎ𝑡 can even be a large CNN (without the last classification layer)

82

new state at

timestep 𝑡
old state input at

at 𝑡 − 1 timestep 𝑡
Activation function

w. params W

h

x

y

Unroll

ht-1
ht ht+1

xt-1
xt xt+1

yt-1
yt yt+1

Whh Whh

Wxh Wxh

Why

Wxh

Why Why

Example: Character-Level Language

Model, Training Time
• Task: predict the next

char from current char
sequence

• Example training
sequence: “hello” w.
vocabulary: [h,e,l,o]
– Input is one-hot

encoding of each char

– Hidden layer is learned
embedding

– Output layer is a
probability vector w.
size 4, denoting prob
distribution of next char.
(Fig shows the
activation values before
applying the SoftMax
function for computing
probabilities).

83

Example: Character-Level Language

Model, Inference Time
• Initial input is char “h”

• At each timestep,
sample from the prob
vector of the output 𝑦𝑡
to generate the next
input char
– The char w. largest

logit (highest
probability) is likely,
but not always
selected as output at
each timestep, i.e.,
“e”, “l”, “l” in
sequence (but it is
possible to select the
other choices, e.g.,
“l”, “e”, “e”)

84

sample sample sample

Initial Input

Example: Image Captioning

• CNN processes the input image and

generates a feature vector as input to

RNN

85

Convolutional Neural Network

Recurrent Neural Network

Image Captioning: Word-Level

Language Model, Inference Time

86

h0

y0

h1

y1

h2

y2

sample

<END> token

=> finish.

x0
<STA
RT>

straw hat

<START>

sample sample

• The last 2 layers
of the CNN for
classification (FC-
1000 and
SoftMax) are not
used, since we
only need the
extracted features
from the layer FC-
4096

• At each timestep,
sample from the
prob vector of the
output 𝑦𝑡 to
generate the next
input word

Image Captioning Examples

87
Bottom row shows failure cases

RNN in AD
• Combined with CNN, RNN can handle Non-Markovian

behavior, i.e, the current action depends not just on the
current observation (input image), but on a recent history of
observations

88

RNN Summary

• Training of RNNs requires back propagation
through time, which may cause exploding or
vanishing gradient problems

• More sophisticated architectures are more
practical

– LSTM (Long Short-Term Memory Model) or GRU
(Gated Recurrent Unit)

• RNNs are most widely used in Natural
Language Processing, but it is also useful for
processing videos, w. applications in
autonomous driving

89

