
L4.2 Object Detection and 

Segmentation

Zonghua Gu 2021

1
Acknowledgement: Based EECS 498 Deep Learning for Computer Vision, U Michigan



Computer Vision Tasks

2



Outline

• Object detection

• Segmentation

3
https://towardsdatascience.com/object-detection-using-deep-learning-

approaches-an-end-to-end-theoretical-perspective-4ca27eee8a9a



Object Detection: Task Definition

• Input: Single Image

• Output: a set of detected objects

• For each object predict:
– 1. Class label (e.g., cat vs. dog)

– 2. Bounding box (4 numbers: x, y, 
width, height)

• Challenges:
– Multiple outputs: variable numbers 

of objects per image

– Multiple types of output: predict 
”what” (class label) as well as 
“where” (bounding box)

– Large images: Classification works 
at 224x224 or lower; need higher 
resolution for detection, often 
~800x600

4



Single-Object Detection

5



Multi-Object Detection
• Needs to predict 4 numbers for each object bounding box 𝑥, 𝑦, 𝑤, ℎ

– (𝑥, 𝑦) are coordinates of the box center; (𝑤, ℎ) are its width and height

• 4N numbers for N objects

6



Detecting Multiple Objects: Sliding 

Window
• Slide a box across the image, and apply a CNN to 

classify each image patch as object or background

7https://www.coursera.org/learn/convolutional-neural-networks/lecture/VgyWR/object-detection



Sliding Window Computational 

Complexity
• Total number of possible box positions in an 

image of size 𝐻 ×𝑊:

– Consider a box of size ℎ × 𝑤:

– Possible x positions: 𝑊–𝑤 + 1; Possible y 
positions: 𝐻–ℎ + 1 (assuming stride of 1)

– Total # possible positions: (𝑊–𝑤 + 1)(𝐻–ℎ + 1)

– Consider all possible box sizes: 1 ≤ ℎ ≤ 𝐻, 1 ≤
𝑤 ≤ 𝑊

– Total # possible boxes: 

σ𝑤=1
𝑊 σℎ=1

𝐻 (𝑊–𝑤 + 1)(𝐻– ℎ + 1) =
𝐻 𝐻+1

2

𝑊 𝑊+1

2

– For an 800x600 image, that is 57 million!

8



Tuning a FC layer into an equivalent CONV layer

• Two methods:

• 1) Upper left: With input 
volume 𝑁1 × 𝑁1 × 𝐷1, set the 
filter volume 𝑁1 × 𝑁1 × 𝐷1, 
i.e., 𝐹 = 𝑁1, stride 𝑆 = 1, no 
pad. Then each filter 
generates a single output in 
the next layer (since 𝑁2 =
1

𝑆
𝑁1 − 𝐹 + 1 = 1). Set the 

number of filters to be the 
number of neurons in the 
next layer

• 2) Lower left: Convert the 
input volume 𝑁1 × 𝑁1 × 𝐷1
into 1 × 1 × (𝑁1 ∗ 𝑁1 ∗ 𝐷1). 
set the filter volume1 × 1 ×
(𝑁1 ∗ 𝑁1 ∗ 𝐷1), i.e., 𝐹 = 1, 
stride 𝑆 = 1, no pad. Then 
each filter generates a 
single output in the next 
layer (since 𝑁2 =

1

𝑆
1 − 1 +

1 = 1). Set the number of 
filters to be the number of 
neurons in the next layer

9https://sebastianraschka.com/faq/docs/fc-to-conv.html



FC-to-CONV Conversion Applied

• Recall: at each CONV layer, each filter implicitly has the 
same depth as its input volume, and the number of filters 
implicitly equals the depth of its output volume

– e.g., layer C2 has 120 5 × 5 × 16 filters; layer C3 has 
84 1 × 1 × 120 filters; layer C4 has 10 1 × 1 × 84 filters

10

10 × 10 × 16 5 × 5 × 1614 × 14 × 3

5 × 5 2 × 2

MAX POOLC1

C1 C2 C3 C4

FC FC

y
softmax(10)

14 × 14 × 3 10 × 10 × 16 5 × 5 × 16

5 × 5 2 × 2

MAX POOL

1 × 1 × 120 1 × 1 × 84 1 × 1 × 10

5 × 5 1 × 1

120

⋮

84

⋮



Convolution Implementation of Sliding Windows
• If the input image is larger than the CNN’s input size, then this transformation allows us to “slide” the 

entire CNN across many spatial positions in the larger input image, and generate multiple SoftMax 
output vectors in one forward pass, whereas the original architecture with FC layers only computes 
one SoftMax output vector in one forward pass. This improves computation efficiency by reducing 
redundant computations between overlapping sliding windows

• Middle row: outputs 2 ∗ 2 = 4 probability vectors of size 4, corresponding to each of the 2 ∗ 2 = 4
possible positions of sliding a 14 × 14 box across the 16 × 16 input image with stride 2

• Bottom row: outputs 8 ∗ 8 = 64 probability vectors of size 4, corresponding to each of the 8 ∗ 8 = 64
possible positions of sliding a 14 × 14 box across the 28 × 28 input image with stride 2

11



Region Proposals

• Generating region proposals: find a small set 
of boxes that are likely to cover all objects, 
based on heuristics (no learning): e.g., look 
for “blob-like” image regions

– Relatively fast to run: e.g. Selective Search gives 
2000 region proposals in a few seconds on CPU

12



R-CNN: Training Time
• Crop/warp each region proposal into same-size (e.g., 224 × 224) image 

regions, and run each through a CNN to get bounding box and class label 
for each region

• Bounding box regression: transform each region proposal with learnable 
parameters (𝑡𝑥, 𝑡𝑦 , 𝑡ℎ, 𝑡𝑤) into a better bounding box

13

Important



R-CNN Training Example
• Categorize each region proposal as positive, negative, or neutral based on 

overlap with ground-truth boxes

• Crop pixels from each positive and negative proposal, resize to 224 x 224

• Use the CNN for Bbox regression and classification for positive boxes; only 
1-class prediction for negative boxes

14



R-CNN: Test Time

• 1. Run region proposal method to compute ~2000 
region proposals

• 2. Resize each region to 224 × 224 (tunable 
hyperparams) and run independently through the 
CNN to predict class scores and Bbox transform

• 3. Use scores to select a subset of region 
proposals to output 

– Many choices here: threshold on background score 
(e.g., output bottom K proposals with lowest 
background scores), or per-class (e.g., output top K 
proposals with highest classification scores for the 
given class)…

• 4. Compare with ground-truth Bboxes

15



Detection Criteria (Intersection 

Over Union, IOU)

• Blue box: Ground Truth; Red box: model output

• Set a threshold for detection (positive result) 

IOU(BGT, BPred) ≥ 𝜃𝐼𝑜𝑈
– Common threshold 𝜃𝐼𝑜𝑈 = 0.5

16



Non-Max Suppression (NMS)
• NMS discards (suppresses) overlapping object boxes except the one with the maximum 

classification score 

• 1. For each output class
– 1.1 Select next highest-scoring box 𝑏 and output it as a prediction

– 1.2 Discard any remaining boxes 𝑏′ with IoU(𝑏, 𝑏′) > threshold

– 1.3. If any boxes remain, GOTO 1.1

• Example: 
– Assume threshold=.7

– Blue box has the highest classification score 𝑃 𝑑𝑜𝑔 = .9. Output the blue box, and discard the 
orange box since IoU(blue, orange)=.78>.7. 

– The next highest-scoring box is the purple box with 𝑃 𝑑𝑜𝑔 = .75. Output the purple box, and 
discard the yellow box since IoU(purple, yellow)=.74>.7

17



Evaluating Object Detectors:

Mean Average Precision (mAP)
• 1. Run object detector on all test images (with NMS)

• 2. For each class, compute Average Precision (AP) = 
area under Precision vs Recall Curve
– 1. For each detection (highest score to lowest score)

• 1. If it matches some GT box with IoU > 0.5, mark it as positive 
and eliminate the GT

• 2. Otherwise mark it as negative

• 3. Plot a point on PR Curve

– 2. Average Precision (AP) = area under PR curve

• 3. Mean Average Precision (mAP) = average of AP for 
each class

• 4. For “COCO mAP”: Compute mAP@thresh for each 
IoU threshold (0.5, 0.55, 0.6, …, 0.95) and take 
average

18



19

FN=2 TN=0

TP=1 FP=0

FN=1 TN=0

TP=2 FP=0

FN=1 TN=0

TP=2 FP=1

FN=1 TN=0

TP=2 FP=2
FN=0 TN=0

TP=3 FP=2

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁

zogu0002
Sticky Note
Why sort by confidence from high to low? Do you get different curve if you sort from low to high?
Confidence threshold. Of course you should go from high to low. It does not make sense to have positive for conf=.1 but not for conf=.99



Perfect Detection

• To get the perfect AP = 1.0, 

we need Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
= 1.0, Recall = 

𝑇𝑃

𝑇𝑃+𝐹𝑁
= 1.0, i.e., Hit all 𝑁

GT boxes with IoU > 0.5, 

and have no FP detections 

ranked above any TP

20

FN=0 TN=0

TP=N FP=0

Recall

P
re

c
is

io
n

(1.0,1.0)



mAP

• Suppose we have 3 classes, and have 

computed AP values for each classwith

IoU threshold .5 as:

– Car AP = .65, Cat AP = .80, Dog AP = .86, 

then mAP@.5=.77

• For COCO mAP: Compute 

mAP@threshold for each IoU threshold 

(0.5, 0.55, 0.6, …, 0.95) and take average

– COCO mAP = .4

21



Fast R-CNN
• 1. Use a backbone network to extract feature maps from the whole image; 

2. Generate region proposals based on the feature maps; 3. use a 
lightweight Per-Region network to perform Bbox regression and 
classification 

• Most of the computation happens in backbone network; this saves work for 
overlapping region proposals compared to R-CNN

22

Important



Fast R-CNN Training Example

23

Heavyweight CNN for

extracting feature maps

Lightweight NN for Bbox

regression & classification 



Example Backbone and Per-Region 

Networks

24
AlexNet ResNet

• When using AlexNet for 
detection, 5 CONV 
layers are used for 
backbone and 2 FC 
layers are used for per-
region network

• For ResNet, the last 
stage (CONV+FC) is 
used as per-region 
network; the rest of the 
network is used as 
backbone



Fast R-CNN Performance

• Problem: Test time of Fast R-CNN is 
dominated by region proposals 

• Solution: instead of using the heuristic 
”Selective Search” algorithm on CPU, let’s 
learn them with a CNN instead

25



Faster R-CNN
• Use Region Proposal Network (RPN) to predict 

proposals from feature maps generated by the 
backbone network

• The rest the same as Fast R-CNN

26



Region Proposal Network

• Perform binary prediction for each anchor box

• The red anchor boxes are predicted false (contains no 
object) and discarded; the green anchor box is 
predicted true (contains an object) and survives

27



Region Proposal Network

• Bbox regression: transform each positive 
anchor box (green), into a better-fitting (higher 
IoU with the Ground-Truth Bbox) object box 
(yellow)

28



Region Proposal Network
• Place 𝐾 anchor boxes centered at each position in the 

feature map, each with different sizes and aspect ratios 
(𝐾 = 4 in left fig)
– This allows better-fitting anchor boxes (left fig), which helps 

ease the downstream Bbox regression task, and detection 
of multiple objects centered at the same position (right fig)

29



30



Faster R-CNN: Loss Function

31

Important



Faster R-CNN: Performance

32



Single-Stage Object Detection
• Instead of the binary (object/not object) classifier for each of the Kx20x15 

anchors in Faster-RCNN, we classify each anchor into C+1 classes 
(including the background), in addition to regression of 4Kx20x15 box 
transforms from anchor box to object box

• Sometimes use class-specific regression: Predict different box transforms 
for each class, with Cx4Kx20x15 box transforms

33



Summary of Object Detectors

34

Important



Performance Comparisons (2017)

• Two stage method (Faster R-CNN) get the best accuracy, but are 
slower

• Single-stage methods (SSD) are much faster, but don’t perform as 
well

• Bigger backbones improve performance, but are slower

• Diminishing returns for slower methods

35

Inference Time (ms)



Outline

• Object detection

• Segmentation

36
https://medium.com/hackernoon/semantic-segmentation-datasets-for-autonomous-driving-1182ebd2aff0



Semantic Segmentation: Task 

Definition
• Label each pixel in the image with a class label 

• Don’t differentiate among multiple instances (e.g., pixels 

of the 2 cows are given the same label)

37



An Early Approach: Sliding 

Windows
• Slide a box across the image, and apply a 

CNN to classify each crop’s center pixel

• Computationally inefficient 

38



Fully Convolutional Network
• A CNN with only CONV layers, no Fully-Connected 

layer(s), for making predictions for all pixels all at 
once. Loss function is per-pixel Cross-Entropy loss
– Problem #1: Effective receptive field size grows linearly in 

the feedforward direction with number of conv layers: with 
L 3x3 conv layers, receptive field is 1+2L

– Problem #2: Convolution on high-res images without 
downsampling is expensive

39



Fully Convolutional Network

• A CNN with CONV layers that perform 
downsampling followed by upsampling
– Downsampling (with pooling or strided convolution) 

allows effective receptive field size to grow more 
quickly in the feedforward direction. It also leads to 
more efficient computation 

– Upsampling with interpolation or transposed 
convolution to get output with the same size as input

40

D3 x H/8 x W/8



Unpooling for Upsampling

• Fig shows upsampling from a 2x2 image to a 
4x4 image, by either inserting 0s (Bed of 
Nails), or duplicating elements (Nearest 
Neighbor)

41



Bilinear/Bicubic Interpolation for 

Upsampling
• Fig shows upsampling from a 2x2 image to a 

4x4 image with bilinear (left) and bicubic 
(right) interpolation, to generate smoother 
outputs

• Each output element is computed as a linear 
or cubic combination of its closest neighbors; 
closer neighbors are given higher weights

42



Max Unpooling

43



Recall: Regular Convolution

44



Learnable Upsampling: Transposed Convolution

45



Transposed Convolution Example

• Fig shows a 1D toy 
example: 
– Output has copies of filter 

weighted by input

– Stride 2: Move 2 pixels in 
output for each pixel in input

– Sum at overlaps

• The filter moves at a slower 
pace than with unit stride

• It has many names: 
Transposed Convolution, 
Deconvolution, 
Upconvolution, Fractionally-
strided convolution

46



Types of Segmentation Tasks
• Things: Object categories that can be separated into object instances (e.g. 

cats, cars, person)

• Stuff: Object categories that cannot be separated into instances (e.g. sky, 
grass, water, trees)

• Object Detection: Detects individual object instances, but only gives 
bounding box (things only)

• Semantic Segmentation: Label all pixels, but merges instances (both things 
and stuff)

• Instance Segmentation: Detect all object instances and label the pixels that 
belong to each object (things only)

– Approach: Perform object detection, then predict a segmentation mask for each object

• Panoptic Segmentation: In addition to Instance Segmentation, also label the 
pixels that belong to each thing

47

Semantic Segmentation Instance Segmentation Panoptic Segmentation



Mask R-CNN for Instance 

Segmentation
• Add an extra “Mask Prediction” head on top 

of Faster R-CNN for Object Detection

48

Important



Mask R-CNN for Instance 

Segmentation

49

Target segmentation mask 

for class “chair” in the Bbox

Target segmentation mask 

for class “person” in the Bbox



Mask R-CNN for Keypoint

Estimation
• Add an extra “Keypoint Prediction” head to perform joint 

Instance Segmentation and Pose Estimation
– Example keypoints: Left / Right shoulder, elbow, wrist, hip, knee, 

ankle…

50



Summary of Per-Region 

Heads for Different Tasks

51

Important




