L4.2 Object Detection and
Segmentation

nghua Gu 2021

ey R

Acknowledgement: Based EECS 498 Deep Learning for Computer Vision, U Michigan

Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

-

CAT GRASS, CAT, TREE, DOG, DOG, CAT DOG, DOG, CAT
g VAN SKE o),
Y Y e 2l
No spatial extent No objects, just pixels Multiple Objects

Outline

* Object detection
« Segmentation

https://towardsdatascience.com/object-detection-using-deep-learning-
approaches-an-end-to-end-theoretical-perspective-4ca27eee8a9a

Object Detection: Task Definition

Input: Single Image
Output: a set of detected objects

For each object predict:
— 1. Class label (e.g., cat vs. dog)

— 2. Bounding box (4 numbers: X, v,
width, height)

Challenges:

— Multiple outputs: variable numbers
of objects per image

— Multiple types of output: predict
"what” (class label) as well as
“where” (bounding box)

— Large images: Classification works
at 224x224 or lower; need higher
resolution for detection, often
~800x600

Single-Object Detection

Detecting a single object

Often pretrained
on ImageNet
(Transfer learning)

W Y N I ¥
A

pt |

This image is 0C0 public domain

Treat localization as a
regression problem!

Problem: Images can have
more than one object!

”Wh atu Correct label:
Cat l
Class Scores
Fully
Connected: Cat: 0.9 Softmax
4096101000 " 6. 0 05 Loss Multitask
Car: 0.01 | 0SS
Weighted Loss
Sum
6 : k
Connected: BOX
— L2 Loss
4096104 coordinates
(x,y, w, h)
“\Where” Correct box:

(x, vy, w’, h’)

Multi-Object Detection

* Needs to predict 4 numbers for each object bounding box (x, y,w, h)
- (x,y) are coordinates of the box center; (w, h) are its width and height
* 4N numbers for N objects

CAT: (x,y,w, h)

DOG: (x,y, w, h)
DOG: (x,y, w, h)
CAT: (x,y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)

Detecting Multiple Objects: Sliding
Window

« Slide a box across the image, and apply a CNN to
classify each image patch as object or background

https://www.coursera.org/learn/convolutional-neural-networks/lecture/VgyWR/object-detection

Sliding Window Computational
Complexity

» Total number of possible box positions in an
Image of size H x W
— Consider a box of size h X w:

— Possible x positions: W-w + 1; Possible y
positions: H- h + 1 (assuming stride of 1)

— Total # possible positions: (W-w + 1)(H-h + 1)

— Consider all possible box sizes: 1 <h<H,1<
wW

— Total # possible boxes:
H(H+1) W(W+1
we12h=1(W-w+ 1)(H-h+1) = (2+) (2+)
— For an 800x600 image, that is 57 million!

Tuning a FC layer into an equivalent CONV layer

Two methods: . T

C\Afith w; X+ b
1) Upper left: With input 1 1
volume N; X N; X D4, set the
filter volume N; X N; X Dy,
l.e., F = Ny, stride S =1, no
pad. Then each filter
generates a single output in
the next layer (since N, =

E(Nl —F)+1=1). Set the
number of filters to be the Fylly connected layer

number of neurons in the
next layer

2) Lower left: Convert the
input volume N; X N; X D,
into 1 X 1x (N; * Ny x D).

wix + by

remember, these also involve dot
products between the receptive
fields and kernels

B N
2 * X + by
HEE L.

W;xx+ b
Wy w12
where W, =
W13 Wi14)]
W21 W22
W, = |
(W23 W24|

set the filter volume1l x 1 %
(Nl*Nl*Dl)’ |e,F: 1, ‘
stride S = 1, no pad. Then

each filter generates a

single output in the next

layer (since N, = = (1 -1+ wix + bo
S 2

1 = 1). Set the number of .

filters to be the number of

neurons in the next layer ‘

wix + by

Fully connected layer

& -

Or, we can concatenate the inputs
into 1x1 images with 4 channels and
then use 2 kernels

(remember, each kernel then also
has 4 channels)

https://sebastianraschka.com/fag/docs/fc-to-conv.html 9

FC-to-CONYV Conversion Applied

« Recall: at each CONV layer, each filter implicitly has the
same depth as its input volume, and the number of filters
Implicitly equals the depth of its output volume

—e.g., layer C2 has 1205 x 5 x 16 filters; layer C3 has
841 x 1 x 120 filters; layer C4 has 10 1 x 1 x 84 filters

MAX POOL
5x5 2x2
y

14 X 14 X 3 10 X 10 X 16 5%5X16 120 84 softmax(10)

MMHDO
HI
5x5 2x2 5x5 1x1

14 x 14 x 3 10 x 10 x 16 5x5x16 1x1x120 1x1x84 1x1x10
10

FC

O O
O O

Convolution Implementation of Sliding Windows

« Ifthe input image is larger than the CNN'’s input size, then this transformation allows us to “slide” the
entire CNN across many spatial positions in the larger input image, and generate multiple SoftMax
output vectors in one forward pass, whereas the original architecture with FC layers only computes
one SoftMax output vector in one forward pass. This improves computation efficiency by reducing
redundant computations between overlapping sliding windows

« Middle row: outputs 2 *x 2 = 4 probability vectors of size 4, corresponding to each of the 2 x 2 = 4
possible positions of sliding a 14 X 14 box across the 16 x 16 input image with stride 2

« Bottom row: outputs 8 * 8 = 64 probability vectors of size 4, corresponding to each of the 8 * 8 = 64
possible positions of sliding a 14 x 14 box across the 28 x 28 input image with stride 2

MAX POOL FC FC FC
> —> —> B —>] —> |
5%5 2X2 5X5 1x1 1x1
14 X 14 X 3 10X 10 X 16 5Xx5%Xx16 1x1xXx120 1xXx1x84 1x1x10
£ - MAX POOL
H —> H —» — BH - K — [
H 5x%x5 H 2X2 5%X5 1x1 1x1
IIIIIIIIIIIIIII: —
16 X 16 X 3 12X 12X 16 6X6X16 2X2xX120 2X2X84 2X2x%X10
MAX POOL
—> —> —> —> —>
5%x5 2 X2 5%x5 1x1 1x1

28 X 28 X 3 24 X 24 X 16 12x12%x16 8x8x120 8x8 x84 8 X 8 X10

Region Proposals

* Generating region proposals: find a small set
of boxes that are likely to cover all objects,
based on heuristics (no learning): e.g., look
for “blob-like” image regions

— Relatively fast to run: e.g. Selective Search gives
2000 region proposals in a few seconds on CPU

Important

R-CNN: Region-Based CNN

R-CNN: Training Time

Crop/warp each region proposal into same-size (e.g., 224 X 224) image
regions, and run each through a CNN to get boundlng box and class Iabel
for each region

Bounding box regression: transform each region proposal with learnable
parameters (t,, ty, ty, ty,) iNto a better bounding box

Classify each region

Bbox || Class
Bbox Class
Bbox | | Class N
Conv
Conv Net
Conv Net
Net / !

Bounding box regression:
Predict “transform”
Rol: 4 numbers (t,, t, t, t,)

to correct the

Forward each
region through
ConvNet

& Warped image

regions (224x224)

Regions of
Interest (Rol)
from a proposal

method (~2k)

Region proposal: (p,, Py, Ph, Pw)
Transform: (t,, t,, t,, t,,)

Output box: (b,, b, by, b,)

Translate relative to box size:
bx = px + pwtx by = py + phty

Log-space scale transform:
by = puexp(ty) by, = prexp(ty)

Girshick =t al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014,
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

R-CNN Training Example

- Categorize each region proposal as positive, negative, or neutral based on
overlap with ground-truth boxes

» Crop pixels from each positive and negative proposal, resize to 224 x 224

« Use the CNN for Bbox regression and classification for positive boxes; only
1-class prediction for negative boxes

Run each region through CNN. For positive

US | OW” R_C N N Tra | N | ng boxes predict class and box offset; for

negative boxes just predict background class

Input Ime .. Class target: Dog

Box target: =——p :

L. Class target: Cat
= Box target: =—p

. Class target: Dog
| Box target: m—

\.Jl Class target: Background
'~ Box target: None

GT Boxes Positive

Neutral Negative

This image is CCO public domain 14

R-CNN: Test Time

1. Run region proposal method to compute ~2000
region proposals
2. Resize each region to 224 x 224 (tunable

hyperparams) and run independently through the
CNN to predict class scores and Bbox transform

3. Use scores to select a subset of region
proposals to output

— Many choices here: threshold on background score
(e.g., output bottom K proposals with lowest
background scores), or per-class (e.g., output top K
proposals with highest classification scores for the
given class)...

4. Compare with ground-truth Bboxes

15

Detection Criteria (Intersection
Over Union, IOU)

o

N
»
s

¥ "‘-\\] y
RS | Area of
4) > .
g e overlapI Missed GT

Score =

= \
)
‘ 4= Area of .
=] $=s union
:i = A ;/

* Blue box: Ground Truth; Red box: model output

« Set a threshold for detection (positive result)
IOU(BGT» BPred) = HIOU

— Common threshold 6;,; = 0.5

16

Non-Max Suppression (NMS)

 NMS discards (suppresses) overlapping object boxes except the one with the maximum
classification score
1. For each output class
— 1.1 Select next highest-scoring box b and output it as a prediction
— 1.2 Discard any remaining boxes b’ with loU(b, b") > threshold
— 1.3. If any boxes remain, GOTO 1.1

« Example:
— Assume threshold=.7

— Blue box has the highest classification score P(dog) = .9. Output the blue box, and discard the
orange box since loU(blue, orange)=.78>.7.

— The next highest-scoring box is the purple box with P(dog) = .75. Output the purple box, and
discard the box since loU(purple,)=.74>.7

loU(m, m) =0.78

loU(m, m) =0.05
loU(m, =) =0.07

17

Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)

2. For each class, compute Average Precision (AP) =
area under Precision vs Recall Curve

— 1. For each detection (highest score to lowest score)

« 1. If it matches some GT box with loU > 0.5, mark it as positive
and eliminate the GT

» 2. Otherwise mark it as negative
« 3. Plot a point on PR Curve

— 2. Average Precision (AP) = area under PR curve

3. Mean Average Precision (mAP) = average of AP for
each class

4. For “"COCO mAP”: Compute mAP@thresh for each
loU threshold (0.5, 0.55, 0.6, ..., 0.95) and take
average

18

Precision

Precision

All dog detections sorted by score All dog detections sorted by score All dog detections sorted by score

Match: loU > 0.5 Match: loU > 0.5 No match > 0.5 loU with GT

q-ﬂ-- I3 I3 K N X 3 3 I
L

All ground-truth dog boxes All ground-truth dog boxes All ground-truth dog boxes
Precision=1/1=1.0 Precision=2/2=1.0 Precision =2/3 =0.67
Recall=1/3=0.33 Recall=2/3=0.67 Recall=2/3=0.67

+ ® + O O + O e

FN=2 | TN=0 S FN=1 | TN=0 5 ® | FN=1 | TN=0
2 @
TP=1 | FP=0 o TP=2 | FP=0 o TP=2 | FP=1
o o
|] | | | | |] |
1 | 1 1 | 1 1 | 1
Recall 10 Recall 1.0 Recall 1.0
All dog detections sorted by score All dog detections sorted by score
@
-
ST R ﬂ B
)
No match > 0.5 loU with GT Match: > 0.5 loU ‘O
Q
L
B * | Dog AP =0.86
All ground-truth dog boxes All ground-truth dog boxes | l
I
Precision =2/4 = 0.5 Precision =3/5=0.6 Recall 1.0
Recall=2/3=0.67 Recall=3/3=1.0
T O o cT O o
@ | FN=1 | TN=0 5 ®
2 @®| FN=0 | TN=0 . .
® | 1p=2 | FP=2 a2 ® Precision = ——
Q. TP=3 | FP=2 TP
et et Recall =
Recall 10 Recall 10 TP+FN

zogu0002
Sticky Note
Why sort by confidence from high to low? Do you get different curve if you sort from low to high?
Confidence threshold. Of course you should go from high to low. It does not make sense to have positive for conf=.1 but not for conf=.99

Perfect Detection

* To get the perfect AP = 1.0,

we need Precision =
TP

= 1.0, Recall =
77?;5P

= 1.0, 1.e., Hitall N
TP+FN

GT boxes with loU > 0.5,
and have no FP detections
ranked above any TP

FN=0

TN=0

TP=N

FP=0

Precision

(1.0,1.0)

Recall

20

MAP

* Suppose we have 3 classes, and have
computed AP values for each classwith
loU threshold .5 as:

— Car AP = .65, Cat AP = .80, Dog AP = .86,
then mMAP@.5=.77

 For COCO mAP: Compute
MAP @threshold for each loU threshold
(0.5, 0.55, 0.6, ..., 0.95) and take average
—COCOmAP =4

21

L Fast R-CNN

« 1. Use a backbone network to extract feature maps from the whole image;
2. Generate region proposals based on the feature maps; 3. use a
lightweight Per-Region network to perform Bbox regression and
classification

« Most of the computation happens in backbone network; this saves work for
overlapping region proposals compared to R-CNN

Fast R-CNN
Bbox | | Bbox || Bbox | Category and box “Slow” R-CNN
Class | | Class | [class | transform per region Process each region
. Tt &+ 1t independently
Regions of z[| [z Per-Region Network
Interest (Rols) 5 5 z [Bbox || Ct'ass |
Bbox | | Class
from a proposal Z 4
prop & b Crop + Resize features —=— (Cass| ™/ 1
method ﬁ@&ﬁ | Fant Conv
mage features - s
“Backbone” Run whole image
network: through ConvNet
AlexNet, VGG, o
ResNet, etc £ bl

Input image

Fast R-CNN Training Example

Input Image

Image Features

Backbone
CNN [T . [T |

B || s
_ 3 ‘,A \ TH ‘i ‘P ‘.
iy IR

e) EF‘\- -:-F.“#M a,
W 2| it

Heavyweight CNN for
extracting feature maps

o B

GT Boxes Positive

Neutral | Negative |

L[] 1l Class target: Dog |
= PR *{ Box target: ——> § g

1l Class target: Cat
{ BOX target: =

JL Class target: Dog
"~ Box target: =——p

1 Class target: Background
"~ Box target: None

h‘dﬁ .
Lightweight NN for Blox ™o

regression & classification
23

Example Backbone and Per-Region

Networks

* When using AlexNet for

detection, 5 CONV
ayers are used for
packbone and 2 FC
ayers are used for per-
region network

 For ResNet, the last
stage (CONV+FQC) Is
used as per-region
network: the rest of the
network Is used as
backbone

AlexNet ResNet

24

Fast R-CNN Performance

* Problem: Test time of Fast R-CNN is
dominated by region proposals
 Solution: instead of using the heuristic

"Selective Search” algorithm on CPU, let's
learn them with a CNN Iinstead

. Test time (seconds)
Tl'al n] I"Ig tlme (HOU rS) I Including Region propos Il Excluding Region Propo...

R-CNN R-CNN

SPP-Net
SPP-Net

Fast R-CNN

Fast R-CNN
100

60
25

Faster R-CNN

« Use Region Proposal Network (RPN) to predict
proposals from feature maps generated by the

backbone network

 The rest the same as Fast R-CNN

Faster R-CNN is a
Two-stage object detector

First stage: Run once per image
Backbone network
Region proposal network

Second stage: Run once per region
Crop features: Rol pool / align
Predict object class
Prediction bbox offset

Region Proposal Network "2
feature map '

. aI5/

t
P |

7

CNMN

Ro

pooling

r

i L i

26

Region Proposal Network

« Perform binary prediction for each anchor box

« The red anchor boxes are predicted false (contains no
object) and discarded; the green anchor box Is
predicted true (contains an object) and survives

, Imagine an anchor box of
Reg'on Proposal Network (RPN) fixed size at each point in

Run backbone CNN to get the feature map

features aligned to input image
<3 T
e — Anc orisan
Wi ‘ —, object?
3 .
S R 1x:20%15
| | Conv
TR | [
I8 RO B T e P
ek il s At each point, predict whether

Input Image the corresponding anchor

(e.g. 3 x640 x 480) Image teatures contains an object (per-cell
(e.g. 512 x 20 x 15) logistic regression, predict

scores with conv layer) 27

Region Proposal Network

* Bbox regression: transform each positive
anchor box (green), into a better-fitting (higher
loU with the Ground-Truth Bbox) object box

] Imagine an anchor box of
Reglon Proposal Network (RPN) fixed size at each pointin

Run backbone CNN to get the feature map

features aligned to input image y

Anchor is an
% object?
1x20x15

— Box transforms
e 4x20x 15

Input Image For positive boxes, also predict
(e.g. 3 x 640 x 480) Image features a box transform to regress
(e.g, 512 x 20 x 15) from anchor box to

28

Region Proposal Network

« Place K anchor boxes centered at each position in the
feature map, each with different sizes and aspect ratios
(K = 4 in left fig)

— This allows better-fitting anchor boxes (left fig), which helps

ease the downstream Bbox regression task, and detection
of multiple objects centered at the same position (right fig)

) Problem: Anchor box may B8
Region Proposal Network (RPN) have the wrong size / shape [
Solution: Use K different &

Run backbone CNN to get anchor boxes at each point!

features aligned to input image

I Anchor is an
' S object?
el A Kx20x 15
CNN : h : Conv
a : —— Box transforms
e 4Kx20x15
R P
At test time: sort all

Input Image

(e.g. 3 x 640 x 480) : 'masglezfe"’zt(‘)”eis) score, and take the top ~300
e.g. x 20 x

K*20*15 boxes by their

as our region proposals

29

Faster R-CNN Training: RPN Training

gLy Ll Class targetlobj | it

Input Image

GT Boxes

Positive

Neutral

Negative

Faster R-CNN Training: Stage 2

Input Image

GT Boxes

Positive

Neutral

Negative

Image Features

Backbone
CNN

RPN gives lots of anchors which
we classify as pos / neg / neutral
by matching with ground-truth

Image Features

Backbone

RPN predicts Object / Background for
each anchor, as well as regresses from

anchor to object box

L

f’ Box target: J—n

1 Class target: Obj

‘= BOX target; s
Igl |

L/ Class target'ObJ |k

"w““_ BOX target: b

M =

! Class target: Background
JBox target: None

Crop features for each proposal, use them
to predict class and box targets per region

1] M ' Class target.Dog

} Box target: —

J Class target!Cat

CNN

Now proposals come from RPN
rather than selective search,
but otherwise this works the
same as Fast R-CNN training

il ' Box target: s

’T‘ Class targeti Do
: 1Dog
{,l‘

i BoX target: me——p-

‘: Class target: Background
‘- Box target: None

This image iz CC0 public domain

30

Important

Faster R-CNN: Loss Function

Jointly train with 4 losses:

1. RPN classification: anchor box is
object / not an object ”pooling
2. RPN regression: predict transform

from anchor box to proposal box oroposals
3. Object classification: classify

proposals as background / object Region Proposal Network
4. Object regression: predict transform teatuire map -
from proposal box to object box

Anchor -> Region Proposal -> Object Box ~ '"@ining each o
stage looks a lot 4 /
(Stage 1) (Stage 2) like Fast R-CNN: Az 77—

31

Faster R-CNN: Performance

R-CNN Test-Time Speed

SPP-Netm

Fast R-CNN. 2.3

Faster R-CNN| 0.2

0 15 30 45

Single-Stage Object Detection

« Instead of the binary (object/not object) classifier for each of the Kx20x15
anchors in Faster-RCNN, we classify each anchor into C+1 classes
(including the background), in addition to regression of 4Kx20x15 box
transforms from anchor box to object box

« Sometimes use class-specific regression: Predict different box transforms

for each class, with Cx4Kx20x15 box transforms
RPN: Classify each anchor as

Single-Stage Object Detection object / not object
Single-Stage Detector: Classify
Run backbone CNN to get each object as one of C
features aligned to input image categories (or background)
p- 2 e ~_ Anchor category
= 3 —(C+1) x Kx 20 x 15
L yon
- Conv
AR e g S — Box transforms
e s e 4K x 20 x 15
e T

Remember: K anchors

Input Image
(e.g. 3 x 640 x 480) Image features at each position in

(e.g. 512 x 20 x 15) image feature map

33

Important

“Slow” R-CNN: Run
CNN independently

for each region

Bbox | | Class ' 1
Bbox | | Class Y Conv Forward each
, L Conv Net region through
Net ConvNet
Conv
Net

Warped image
regions (224x224)

Regions of
Interest (Rol)
image || — B from a proposal
2 method (~2k)

Fast R-CNN: Apply
differentiable
cropping to shared
image features

Faster R-CNN:
Compute proposals
with CNN

i, four losses
Category and box
transform per region
*

_ t 0
Regions of z z Per-Region Network
Interest (Rols) o

Fi_rg

" " .
from a proposal b Crop + Resize features roposat f

-
e
//
Z /
-2 = Ay
“Backbone” / Run whale image - .'

through ConvNet

network:
AlexNet, VGG,
ResNet, etc

Summary of Object Detectors

Single-Stage:

Fully convolutional

detector

34

Performance Comparisons (2017)

Two stage method (Faster R-CNN) get the best accuracy, but are
slower

Single-stage methods (SSD) are much faster, but don’t perform as
well

Bigger backbones improve performance, but are slower
Diminishing returns for slower methods

40
Faster R-CNN w/ResNet, Hi Meta Architecture
Res, 50 Proposals @ Faster RCNN B R-FCN ¢ SsD
35 — - "_,' — . P, I Lt
ResNet, Hi Res, ‘-s. - /
100 Proposals —~)]
et u Faster R-CNN w/Inception
- = Resnet, Hi Res, 300
N 30 __S, ® - :’(?. @ o Proposals, Stride 8
<) ﬂ -
£ ° i
5 25 ¥ 4
]]
>
o Feature Extractor
20 O Inception Resnet V2
@ Inception V2
$5D w/Inception V2, Lo Res @ Inception V3
15 55D w/MobileNet, Lo Res @ MobileNet
® Resnet 101
VGG .
10 = Inference Time (Ms)
0 200 400 600 800 1000

35

Outline

* Object detection
« Segmentation

https://medium.com/hackernoon/semantic-segmentation-datasets-for-autonomous-driving-1182ebd2aff0

36

Semantic Segmentation: Task
Definition
» Label each pixel in the image with a class label

« Don't differentiate among multiple instances (e.g., pixels
of the 2 cows are given the same label)

This image iz CC0 public domain

37

An Early Approach: Sliding

Windows

« Slide a box across the image, and apply a
CNN to classify each crop’s center pixel

« Computationally inefficient

Extract Classify center
patch pixel with CNN

7’ ! ' s W 2 d
7 ‘ ' ~ Jj '-I o J ':l ,‘ 101
P JlEsEe el Cow
P 'l I\ b \ S e L]
” B e e = e
v - w
B ¥

= -~
-~

Cow

Grass

38

Fully Convolutional Network

« A CNN with only CONV layers, no Fully-Connected
layer(s), for making predictions for all pixels all at
once. Loss function is per-pixel Cross-Entropy loss
— Problem #1.: Effective receptive field size grows linearly in

the feedforward direction with number of conv layers: with
L 3x3 conv layers, receptive field is 1+2L

— Problem #2: Convolution on high-res images without
downsampling is expensive

Conv Conv

A

N

Convolutions:

DxHxW

Conv

-

argmax

Scores:
CxHxW

Predictions:
HxW

39

Fully Convolutional Network

« A CNN with CONYV layers that perform
downsampling followed by upsampling

— Downsampling (with pooling or strided convolution)
allows effective receptive field size to grow more
quickly in the feedforward direction. It also leads to
more efficient computation

— Upsampling with interpolation or transposed
convolution to get output with the same size as input

Med-res: Med-res:
D,xH/4xW/4 D,xH/4xW/4/ "

aniil

/ Low-res: , % /

D5 x H/8 x W/8

Input:
3XxHxW

High-res: High-res: Predictions:
D, xH/2 xW/2 D, xH/2 x W/2 HxW
40

Unpooling for Upsampling

* Fig shows upsampling from a 2x2 image to a
4x4 iImage, by either inserting Os (Bed of
Nalls), or duplicating elements (Nearest

Neighbor)
Bed of Nails Nearest Neighbor
110120
1]2 0/0j0 |0 12
314 310140 3|4
0/0j0 |0
Input Output Input Output

Cx2x2 Cx4x4 Cx2x2 Cx4x4

41

Bilinear/Bicubic Interpolation for
Upsampling

* Fig shows upsampling from a 2x2 image to a
4x4 image with bilinear (left) and bicubic
(right) interpolation, to generate smoother

outputs

 Each output element is computed as a linear
or cubic combination of its closest neighbors;
closer neighbors are given higher weights

1 2

1.00

1.25

1.75

2.00

1.50

1.75

2.25

2.50

i

2

0.68

1.02

1.56

1.89

1.35

1.68

2.23

2.56

3 4

Input: Cx2x2

2.50

2.75

3.25

3.50

3.00

3.25

3.75

4.00

3

4

2.44

2.77

3.32

3.65

Output:Cx4 x4 Input:Cx2x2

3.11

3.44

3.98

4.32

Output: Cx4 x4

42

Max Unpooling

Max Pooling: Remember
which position had the max

2

6

3

—

NjRrlw | e

5
2
3

2
2
4

1
1
3

Max Unpooling: Place into
remembered positions

0(0]120
Re]ft 1|2 0(1]10,0
OT w—p —
et 3|4 0o|0|o|0O
30104

Pair each downsampling layer
with an upsampling layer

MNoh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

43

Recall: Regular Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Dot product
between input

and filter

Input: 4 x 4 Qutput: 2 x 2

44

Learnable Upsampling: Transposed Convolution

Sum where

3 x 3 convolution transpose, stride 2 output overlaps
Filter moves 2 pixels in output /
for every 1 pixel in input 4
Weight filter by
input value and
copy to output
Input: 2 x 2 Output: 4 x4
] ‘ Sum where
3 x 3 convolution transpose, stride 2 output overlaps
This gives 5x5 output — need to trim one /
pixel from top and left to give 4x4 output 4

Weight filter by
input value and
copy to output

Input: 2 x 2 Output: 4 x 4 45

Transposed Convolution Example

* Fig shows a 1D toy
example:
— Output has copies of filter
weighted by input Input Filter Output

— Stride 2: Move 2 pixels in
output for each pixel in input

ax

ay

azMbx

pace than with unit stride b

— Sum at overlaps - 7/ X
 The filter moves at a slower Y
k

AN

[t has many names: bz

Transposed Convolution,
Deconvolution,
Upconvolution, Fractionally-
strided convolution

46

Types of Segmentation Tasks

« Things: Object categories that can be separated into object instances (e.qg.
cats, cars, person)

« Stuff: Object categories that cannot be separated into instances (e.g. sky,
grass, water, trees)

» Object Detection: Detects individual object instances, but only gives
bounding box (things only)

« Semantic Segmentation: Label all pixels, but merges instances (both things
and stuff)

 Instance Segmentation: Detect all object instances and label the pixels that
belong to each object (things only)
— Approach: Perform object detection, then predict a segmentation mask for each object

« Panoptic Segmentation: In addition to Instance Segmentation, also label the
pixels that belong to each thing

Semantic Segmentation Panoptic Segmentation

47

mpotant | Mask R-CNN for Instance

Segmentation

» Add an extra "Mask Prediction” head on top
of Faster R-CNN for Object Detection

Instance Segmentation:
Mask R-CNN

proposals
Instance
Segmentation o
Region Proposal Network
feature map H

o A
v
-'.-.'»':.‘_.,
'._v._f:_; Y
s
-

DOG, DOG, CAT s 7 .

Mask R-CNN for Instance
~Segmentation

Classification Scores: C
Box coordinates (per class):
4*C

Rol Align Conv Conv
| 256x14x14 256x14x14

Predict a mask for
each of C classes:
Cx28x28

Target segmentation mask Target segmentation mask
for class “chair” in the Bbox for class “person” in the Bbox

49

Mask R-CNN for Keypoint
Estimation

« Add an extra “Keypoint Prediction” head to perform joint
Instance Segmentation and Pose Estimation

— Example keypoints: Left / Right shoulder, elbow, wrist, hip, knee,

ankle...
Mask R-CNN: Classificatior Mas}
Keypoint Estimation —, I | redcior

1

f_"'_-__J> Keypoint
=" s
. nrediction
Rol poohng PICUICliorni

ication Bounding-box
regression los:s
: proposV /

Region Proposal Network LS
Keypoint
estimation feature map
!

50

mporant] - Summary of Per-Region

Heads for Different Tasks

General Idea: Add Per-
Region “Heads” to
Faster / Mask R-CNN!

Per-Region Heads:
Each receives the features after
Rol Pool / Rol Align, makes
some prediction per-region

regre on i«
propOszV /

Region Proposal Network :

Object Instance Ke.yp0|.nt
Detection Segmentation estimation ki
-) .I

DOG, DOG, CAT DOG, DOG, CAT
Helet al, “Mask R-CNN”, ICCV 2017

51

