
L4.2 Adversarial Robustness

Zonghua Gu 2021

1
Based on ICML 2018 tutorial https://adversarial-ml-tutorial.org

Outline

• Introduction

• Adversarial examples and verification

– Constructing adversarial examples via local
search

• Physically-realizable attacks

– Formal verification via combinatorial
optimization

– Formal verification via convex relaxations

• Training adversarially robust models

• Adversarial robustness beyond security

2

A Limitation of the (Supervised) ML

Framework
• Distribution Shift: In reality, the data

distributions during inference on may NOT be
the same as the ones we train it on
– May be naturally occurring, or may be due to

adversarial attacks

3

Adversarial Examples

• Starting with an image of a panda, the attacker adds a
small perturbation that has been calculated to make
the image be recognized as a gibbon with high
confidence.

4https://openai.com/blog/adversarial-example-research/

Why Is This Brittleness of ML a

Problem?

5

Training Time Attack vs. Inference

Time Attack

6

Data Poisoning
• Adding a single “poison data

point” may hamper a linear
model’s generalization, but not
for deep learning, which can
handle outliers w. memorization

7

Data poisoning for

a linear model

Data poisoning for

deep learning

Data Poisoning for Deep Learning

• But for deep learning, it may affect

classification of specific inputs

8

Three Commandments of Secure/Safe

ML
• I. Thou shall not train on data you don’t fully

trust

– (because of data poisoning)

• II. Thou shall not let anyone use your model
(or observe its outputs) unless you
completely trust them

– (because of model stealing and black box
attacks)

• III. Thou shall not fully trust the predictions of
your model

– (because of adversarial examples)

9

Outline

• Introduction

• Adversarial examples and verification

– Constructing adversarial examples via local
search

• Physically-realizable attacks

– Formal verification via combinatorial
optimization

– Formal verification via convex relaxations

• Training adversarially robust models

• Adversarial robustness beyond security

10

Robust ML Problem Formulation

• Standard ML: Empirical Cost Minimization:
min
𝜃

𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃)

• Adversarial Input Generation (untargeted
attack): max

𝛿∈Δ
Loss(𝑥 + 𝛿, 𝑦; 𝜃)

• Adversarial Robust ML:
min
𝜃

𝔼 𝑥,𝑦 ∼𝐷max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃)

– Inner maximization problem: generating an
adversarial input by adding a small perturbation 𝛿
(or ensuring one does not exist)

– Outer minimization problem: training a robust
classifier in the presence of adversarial examples

11

Input Perturbations

• Which input perturbations 𝛿 are allowed?

• Examples: 𝛿 that is small wrt

– 𝑙𝑝 norm (we focus on it in this lecture)

– Rotation and/or translation

– VGG feature perturbation

– (add the perturbation you need here)

12

Vector Norms
• 𝑙𝑝 norm of a 𝑘-dimensional vector
𝑥 ∈ ℝ𝑘 is a scalar defined as 𝑥 𝑝 =

σ𝑖=1
𝑘 𝑥𝑖

𝑝 1/𝑝
. Suppose 𝑥 =

3
4

• 𝑙1 norm: 𝑥 1 = σ𝑖 𝑥𝑖 (Manhattan
Distance)

– = 3 + 4 = 7

• 𝑙2 norm: 𝑥 2 = σ𝑖 𝑥𝑖
2 (Euclidean

norm)

– = 32 + 42 = 5

• 𝑙∞ norm: 𝑥 ∞ = max
𝑖

|𝑥𝑖|

– = max
𝑖

3,4 = 4

13https://montjoile.medium.com/l0-norm-l1-norm-l2-norm-l-infinity-norm-7a7d18a4f40c

𝑙1 norm

𝑙2 norm

𝑙∞ norm

Vector Norm Balls
• The 𝑙𝑝 norm ball 𝑥 𝑝 ≤ 𝜖 is the set of all vectors

with 𝑝-norm less than or equal to 𝜖: 𝐵𝑝 = {𝑥 ∈
ℝ𝑘| 𝑥 𝑝 ≤ 𝜖}

• 𝑙2 norm ball 𝑥 2 ≤ 𝜖 : a circle with radius 𝜖
centered at origin

• 𝑙∞ norm ball 𝑥 ∞ ≤ 𝜖 : a square with edge length
2𝜖 centered at origin

14

𝑙2 vs. 𝑙∞
• Consider the original vector 𝑥0 =

10
10

and

two disturbed vectors 𝑥1 =
3
3
, 𝑥2 =

10
0

– 𝛿1 = 𝑥0 − 𝑥1 =
10
10

−
3
3

=
7
7
, 𝛿2 = 𝑥0 −

𝑥2 =
10
10

−
0
10

=
10
0

• Same 𝑙2 distance:

– 𝛿1 2 = 72 + 72 ≈ 9.9, 𝛿2 2 =

102 + 02 = 10

• Different 𝑙∞ distances:

– 𝛿1 ∞ = max 7,7 = 7 , 𝛿2 ∞ =
max 10,0 = 10

• 𝑙∞ distance only cares about the one
maximally-changed individual pixel,
whereas 𝑙2 distance cares about all pixels.
An image with added random salt-and-
pepper noise will have a large 𝑙2 distance
from the original image, but not a large 𝑙∞
distance

15

Change one
pixel much

Change
every pixel a
little bit

same 𝑙2

small 𝑙∞

large 𝑙∞

The Maximization Problem for Finding

Adversarial Examples
• max

𝛿∈Δ
Loss(𝑥 + 𝛿, 𝑦; 𝜃)

– Loss() is a highly non-linear function involving a NN, e.g.,
Cross-Entropy loss with SoftMax classifier

• Attacks can be categorized w.r.t
– 1) the allowable perturbation set Δ
– 2) the optimization procedure used to perform the

maximization

16

Three Approaches

• To solve max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃):

• 1. Constructing adversarial examples via local search (
– Lower bound on objective

• 2. Formal verification via combinatorial optimization
– Exactly solve objective

• 3. Formal verification via convex relaxation
– Upper bound on objective

17

Approach #1

• To solve max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃):

• 1. Constructing adversarial examples via local search (
– Lower bound on objective

• 2. Formal verification via combinatorial optimization
– Exactly solve objective

• 3. Formal verification via convex relaxation
– Upper bound on objective

18

Local Search
• The loss landscape of a NN is highly non-convex,

inner maximization problem is difficult to solve exactly

• We can find an approximate solution using gradient-
based methods, similar to deep learning training

19

Model Training vs. Local Search for

Adversarial Input Generation
• To solve min

𝜃
𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃)

for model training: gradient
descent 𝜃 ← 𝜃 − 𝛼∇𝜃Loss 𝑥, 𝑦; 𝜃
– Update model params 𝜃 by

following the gradient downhill, in
order to decrease Loss 𝑥, 𝑦; 𝜃 . (𝛼 is
the Learning Rate)

• To solve max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃) for

adversarial input generation:
gradient ascent 𝛿 ← 𝛿 +
𝛼∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃
– Update input 𝛿 by following the

gradient uphill, in order to increase
Loss 𝑥 + 𝛿, 𝑦; 𝜃 , while ensuring 𝛿 ∈
Δ

20

𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃)

𝜃

Loss 𝑥 + 𝛿, 𝑦; 𝜃

𝛿

Aside: Vector Derivative

• In general, 𝑥, 𝛿 are vectors, e.g., a 128x128 pixel
color image is a 128x128x3 tensor, encoded as a
vector of size 128*128*3=49152

• Consider a scalar (loss) function 𝑦 = 𝑓(𝑥) that
takes as input a 𝑛-dim vector 𝑥 and returns a
scalar value 𝑦, then ∇𝑥𝑓 𝑥 is a 𝑛-dim vector:

• 𝑥 =

𝑥0
𝑥1
…

𝑥𝑛−1

, ∇𝑥𝑓 𝑥 =

𝜕𝑓

𝜕𝑥0
𝜕𝑓

𝜕𝑥1
…
𝜕𝑓

𝜕𝑥𝑛−1

21

Projected Gradient Descent

• Take a gradient step, and if you have

stepped outside of the feasible set, project
back into the feasible set: Δ: 𝛿 ←

𝒫Δ 𝛿 + 𝛼∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃

22

Fast Gradient Sign Method (FGSM)

• Consider 𝑙∞ norm bound
Δ = {𝛿: 𝛿 ∞ ≤ 𝜖}. Projection onto this
norm ball by clipping values of 𝛿 to lie
within the range [−𝜖, 𝜖]: 𝒫Δ(𝛿) ≔
Clip(𝛿, −𝜖, 𝜖)

• Starting from 𝛿 = 0, take a large step in
the gradient direction by making the
learning rate 𝛼 very large. After clipping,
we have: 𝛿 = 𝒫Δ൫

൯
0 + 𝛼∇𝛿Loss(

)
𝑥 +

𝛿, 𝑦; 𝜃 = 𝜖 ⋅ sign ∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃
• The specific values of 𝛼 and gradient do

not matter if they are large enough; only
the gradient direction matters
– Any gradient direction in the upper right

quadrant of the 𝑙∞ norm ball will result in
the same 𝛿 at the upper right corner

23

𝜀
𝛿 = 0

Gradient

∇𝛿Loss
𝒫Δ

𝛿

Adversarial Examples by FGSM

• Two NNs for MNIST classification. 𝑙∞ norm
bound 𝛿 ∞ ≤ 𝜖 = 0.1

24

Comments on FGSM

• FGSM is an attack designed for 𝑙∞ norm bound by
taking a single PGD (Projected Gradient Descent)
step within 𝛿 ∞ ≤ 𝜖, not for other norm bounds

• FGSM is the optimal attack against a linear binary
classifier under the 𝑙∞ norm bound (details
omitted)

25

PGD w. Small Steps

• Instead of taking a single large step as in FGSM, PGD takes many
small steps to iteratively update 𝛿:

– Repeat: 𝛿 ← 𝒫Δ 𝛿 + 𝛼∇𝛿Loss 𝑥 + 𝛿, 𝑦; 𝜃
– 𝒫Δ corresponds to clipping in the case of 𝑙∞ norm

– Rule-of-thumb: choose 𝛼 to be a small fraction of 𝜖, and set the number
of iterations to be a small multiple of 𝜖/𝛼

• Fig shows a sequence of gradient steps, with the last step going
outside of the 𝑙∞ ball Δ, but 𝒫Δ brings it back into Δ. (Fig shows the
final 𝛿 to end up at a corner of the 𝑙∞ ball, but it may not be in
general.)

26

Projected Steepest Descent
• PGD is highly sensitive to the gradient size, which can be very small. In

contrast, PSD finds some update direction 𝑣, chosen to maximize the inner
product between 𝑣 and the gradient subject to a norm constraint on 𝑣:

– 𝛿 ← 𝒫Δ 𝛿 + argmax
v≤α

𝑣𝑇∇δ𝐽 δ

– For 𝑙∞, argmax
𝑣 ≤𝛼

𝑣𝑇∇𝛿𝐽 𝛿 = 𝛼 sign(∇𝛿𝐽 𝛿) (similar to FGSM, except we do not make 𝛼

very large)

– For 𝑙2, argmax
𝑣 ≤𝛼

𝑣𝑇∇𝛿𝐽 𝛿 = 𝛼
∇𝛿𝐽 𝛿

∇𝛿𝐽 𝛿 2

• Recall vector inner product 𝑥𝑇𝑦 = 𝑥 ⋅ 𝑦 = 𝑥 𝑦 cos 𝜃, where 𝜃 is the angle
between 𝑥 and 𝑦.

– For 𝑙∞, the update direction and step size are changed to point to a corner of the 𝑙∞
ball 𝑣 ∞ ≤ 𝛼 that is most aligned with the original gradient direction

– For 𝑙2, the update direction is unchanged, but step size is changed to point to the
boundary of the 𝑙2 ball 𝑣 2 ≤ 𝛼

27

2𝛼

∇𝛿𝐽 𝛿

𝑣∗

Illustration of PGD

28

Recall: Cross-Entropy Loss for Multi-

Class Classification
• The SoftMax operator 𝜎:ℝ𝑘 → ℝ𝑘computes a vector of

predicted probabilities 𝜎(𝑧): ℝ𝑘 from a vector of logits
𝑧: ℝ𝑘, where 𝑘 is the number of classes:

– 𝜎 𝑧 𝑖 =
exp 𝑧𝑖

σ𝑗=1
𝑘 exp 𝑧𝑗

• The loss function is defined as the negative log
likelihood of the predicted probability corresponding to
the correct label 𝑦:

– Loss ℎ𝜃 𝑥 , 𝑦 = − log 𝜎 ℎ𝜃 𝑥
𝑦
= −

log
exp ℎ𝜃 𝑥 𝑦

σ𝑗=1
𝑘 exp ℎ𝜃 𝑥 𝑗

= log σ𝑗=1
𝑘 exp ℎ𝜃 𝑥 𝑗 − ℎ𝜃 𝑥 𝑦

• Minimizing Loss ℎ𝜃 𝑥 , 𝑦 amounts to maximizing the
logit ℎ𝜃 𝑥

𝑦
corresponding to the correct label 𝑦

29

Targeted Attacks
• Explicitly try to change label to a particular target class 𝑦𝑡𝑎𝑟𝑔:

– max
𝛿∈Δ

(Loss 𝑥 + 𝛿, 𝑦; 𝜃 − Loss 𝑥 + 𝛿, 𝑦𝑡𝑎𝑟𝑔; 𝜃

• Recall Cross-Entropy loss from “L3 Intro to ML”:

– Loss 𝑥 + 𝛿, 𝑦; 𝜃 = log σ𝑗=1
𝑘 exp ℎ𝜃 𝑥 + 𝛿 𝑗 − ℎ𝜃 𝑥 + 𝛿 𝑦

• The maximization problem aims to maximize logit ℎ𝜃 𝑥
𝑦𝑡𝑎𝑟𝑔

of the

target class 𝑦𝑡𝑎𝑟𝑔, and minimize logit ℎ𝜃 𝑥
𝑦

of the true class 𝑦:

– max
𝛿∈Δ

(ℎ𝜃 𝑥 + 𝛿 𝑦𝑡𝑎𝑟𝑔 − ℎ𝜃 𝑥 + 𝛿 𝑦)

• An alternative is to maximize the logit ℎ𝜃 𝑥
𝑦𝑡𝑎𝑟𝑔

of the target class

𝑦𝑡𝑎𝑟𝑔, and minimize the logit ℎ𝜃 𝑥
𝑦′

of all the other classes 𝑦′:

– max
𝛿∈Δ

(ℎ𝜃 𝑥 + 𝛿 𝑦𝑡𝑎𝑟𝑔 − σ𝑦′≠𝑦𝑡𝑎𝑟𝑔
ℎ𝜃 𝑥 + 𝛿 𝑦′)

• (We are optimizing the logits at the last linear layer before applying
the SoftMax operator. Since SoftMax is a monotonically-increasing
function, removing it does not affect the solution of 𝛿)

30

Targeted Attacks Examples

• Note: It is possible for a targeted attack to
succeed in fooling the classifier, but change
to a different label than the target

31

Physically-Realizable Attacks

• Instead of directly manipulating pixels, it is possible to modify
physical objects and cause miss-classification

• [Evtimov et al 2017]: Physical Adversarial Examples Against
Deep Neural Networks
– https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

32

https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

An optimization approach to creating

robust adversarial examples
• The following optimization problem for targeted attack aims to

minimize the cost function for input 𝑥 + 𝛿 and target label
𝑦𝑡𝑎𝑟𝑔 (𝜆 is the Lagrange multiplier; the objective tries to
minimize the perturbation 𝛿 𝑝 instead of putting a hard
bound on 𝛿 𝑝)

– argmin𝛿 𝜆 𝛿 𝑝 + 𝐽(𝑓𝜃 𝑥 + 𝛿 , 𝑦𝑡𝑎𝑟𝑔)

• To create a universal perturbation for robust adversarial
examples, enhance the training dataset with multiple (𝑘)
variants of the input image at different viewing angles and
lighting conditions

– argmin𝛿 𝜆 𝛿 𝑝 +
1

𝑘
σ𝑖=1
𝑘 𝐽(𝑓𝜃 𝑥 + 𝛿 , 𝑦∗)

33

Optimizing Spatial Constraints
• To make the perturbation imperceptible to humans, we add a mask

𝑀𝑥 to localize the perturbation to specific areas of the Stop Sign to
mimic vandalism:

– argmin𝛿 𝜆 𝑀𝑥 ⋅ 𝛿 𝑝 +
1

𝑘
σ𝑖=1
𝑘 𝐽(𝑓𝜃 𝑥 +𝑀𝑥 ⋅ 𝛿 , 𝑦∗)

– Use 𝑙1 norm in 𝑀𝑥 ⋅ 𝛿 1 to find the most vulnerable regions (since 𝑙1
loss promotes sparsity), then generate perturbation 𝛿 within these
regions

• Video demos:
– “Bo Li – Secure Learning in Adversarial Autonomous Driving

Environments”
https://www.youtube.com/watch?v=0VfBGWnFNuw&t=421s

34

https://www.youtube.com/watch?v=0VfBGWnFNuw&t=421s

Adversarial Traffic Signs

35

Attacks on Face Recognition
• 1. An attacker would need to find perturbations that generalize

beyond a single image.

• 2. Small differences between adjacent pixels in the
perturbation are unlikely to be accurately captured by
cameras, so make the perturbation form large patches.

• 3. It is desirable to craft perturbations that are comprised
mostly of colors reproducible by the printer.

36https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf

Blackbox Attacks
• We have been discussing Whitebox attacks, where we know the NN model

parameters 𝜃
• Black Box Attacks:

• If you have the training dataset of the target Blackbox model:
– Train a proxy Whitebox model yourself

– Generate attacked objects for the proxy model

• If you do not have the training dataset, you can obtain input-output data
pairs from the target Blackbox model by invoking online cloud services

– May get expensive if the cloud service is not free

37

Target
Blackbox

Model

Proxy
Whitebox

Model

Training Data

Attacked
Input Image

Blackbox Attack Example

• [Evtimov et al 2017]: Physical adversarial examples
generated for the YOLO object detector (the proxy
Whitebox model) are also be able to fool Faster-RCNN
(the Blackbox model)

38

DeepBillboard
• Goal: generate a single adversarial billboard image that may

mislead the steering angle of an AV upon every single frame
captured by onboard camera during the process of driving by
a billboard.

39
Zhou H, Li W, Kong Z, et al. Deepbillboard: Systematic physical-world testing of autonomous driving systems[C]//2020

IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE, 2020: 347-358.

DeepBillboard Workflow
• To generate adversarial perturbations for contiguous frames,

• 1. Training dataset generation: pre-fill the billboard with unicolor,
and paint its four corners with contrasting colors. Record video while
driving by the billboard with different speeds and angles

• 2. Training algorithm: 1. Generate locally-best perturbation for each
single frame; 2. Find a single perturbation that misleads DNNs best
for multiple consecutive frames (𝑝𝑖 represents the i-th frame), using
a joint loss optimization method; 3. Transfer RGB values to printable
colors

40

Phantom of the ADAS
• A phantom is a depthless presented/projected picture

of a 3D object (e.g., pedestrian, traffic sign, car, truck,
bicycle…), with the purpose of fooling ADAS to treat it
as a real object and trigger an automatic reaction

• Phantom attacks by projecting a phantom via a drone
equipped with a portable projector:

– https://www.youtube.com/watch?v=1cSw4fXYqWI&t=85s

• or by presenting a phantom on a hacked roadside
digital billboard:

– https://www.youtube.com/watch?v=-E0t_s6bT_4

41https://www.nassiben.com/phantoms

https://www.youtube.com/watch?v=1cSw4fXYqWI&t=85s
https://www.youtube.com/watch?v=-E0t_s6bT_4

Algorithm for Disguising Phantoms
• 1. Extract key points as focus areas of human attention for every frame

based on the SURF algorithm

• 2. Compute a local score for every block in a frame that represents how
distant a block is from the focus areas, and embed phantoms into “dead
areas” that viewers will not focus on

• 3. Display the phantom in at least 𝑡 consecutive video frames (longer
duration leads to higher success rate)

42

Countermeasure - GhostBusters
• When a frame is captured, (1) the on-board object detector

locates a road sign, (2) the road sign is cropped and passed
to the Context, Surface, Light, and Depth models, and (3) the
Combiner model interprets the models’ embeddings and
makes a final decision on the traffic sign (real or fake).

43

Constraints on Perturbations?

• In both DeepBillboard and Phantom of the

ADAS attacks, there is no 𝛿 ∈ Δ norm

constraint on the allowable perturbations

– DeepBillboard simply assumes human drivers

don’t pay attention to roadside billboards, so the

entire area of the billboard can be used for attack

– Phantom of the ADAS embeds phantoms into

“dead areas” that human viewers will not focus on

• The 𝛿 ∈ Δ norm constraint may not be fully

aligned with human perception

44

Approach #2

• To solve max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃):

• 1. Constructing adversarial examples via local search (
– Lower bound on objective

• 2. Formal verification via combinatorial optimization
– Exactly solve objective

• 3. Formal verification via convex relaxation
– Upper bound on objective

45

Exact Combinatorial Optimization

• Consider a ReLU-based 𝑑−layer feedforward NN ℎ𝜃 𝑥 , defined by:

– 𝑧1 = 𝑥

– 𝑧𝑖+1 = ReLU 𝑊𝑖𝑧𝑖 + 𝑏𝑖 , 𝑖 = 1,… , 𝑑 − 1
– ℎ𝜃 𝑥 = 𝑧𝑑+1 = 𝑊𝑑𝑧𝑑 + 𝑏𝑑, where params 𝜃 = {𝑊1, 𝑏1, … ,𝑊𝑑 , 𝑏𝑑}

• Targeted attack in 𝑙∞ norm:

– min
𝑧1:𝑑+1

𝑒𝑦 − 𝑒𝑦𝑡𝑎𝑟𝑔
𝑇
𝑧𝑑+1 s.t.

– 𝑧𝑖+1 = ReLU 𝑊𝑖𝑧𝑖 + 𝑏𝑖 , 𝑖 = 1,… , 𝑑 − 1

– 𝑧𝑑+1 = 𝑊𝑑𝑧𝑑 + 𝑏𝑑
– 𝑧1 − 𝑥 ∞ ≤ 𝜖
– where 𝑒𝑖 denotes the unit basis, i.e., a vector with a 1 in the i-th position and 0s

everywhere else; and where we removed the explicit 𝛿 term in favor of a constraint
that simply requires 𝑧1 (the input to the first layer), to be within 𝜖 of 𝑥.

• Example: binary classification 𝑦 = 𝑐𝑎𝑡, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑑𝑜𝑔. 𝑒𝑦 =
1
0
, 𝑒𝑦𝑡𝑎𝑟𝑔 =

0
1

.

The objective function is 1 −1
𝑧𝑑+1 𝑦

𝑧𝑑+1 𝑦𝑡𝑎𝑟𝑔
= 𝑧𝑑+1 𝑦 − 𝑧𝑑+1 𝑦𝑡𝑎𝑟𝑔

– Minimizing this objective function: try to increase the logit 𝑧𝑑+1 𝑦𝑡𝑎𝑟𝑔 and decrease the
logit 𝑧𝑑+1 𝑦

46

Solving the Combinatorial Problem

• The optimization formulation of an adversarial
attack can be written as an binary mixed
Integer Linear Program (ILP) or a
Satisfiability Modulo Theories (SMT) problem

• In practice, off-the-shelf solvers (CPLEX,
Gurobi, etc) can scale to ~100 hidden units,
but size depends heavily on problem
structure (including, e.g, the size of 𝜖)

• One of the key aspects of finding an efficient
solution is to provide tight bounds on the pre-
ReLU activations 𝑊𝑖𝑧𝑖 + 𝑏𝑖 ∈ [𝑙𝑖 , 𝑢𝑖]

47

Encoding ReLU w. ILP

• ReLU: 𝑧𝑖+1 = max 0,𝑊𝑖𝑧𝑖 + 𝑏𝑖 , 𝑙𝑖 ≤ 𝑊𝑖𝑧𝑖 + 𝑏𝑖 ≤ 𝑢𝑖
• Linearization: we introduce a vector of binary variables 𝑣𝑖 with

same size as 𝑧𝑖+1. A vector inequality constraint is applied
elementwise to the vector

• Proof that the set of constraints on the left encodes the ReLU:

48

𝑧𝑖+1 ≥ 𝑊𝑖𝑧𝑖 + 𝑏𝑖
𝑧𝑖+1 ≥ 0

𝑢𝑖 ⋅ 𝑣𝑖 ≥ 𝑧𝑖+1
𝑊𝑖𝑧𝑖 + 𝑏𝑖 ≥ 𝑧𝑖+1 + 1 − 𝑣𝑖 ⋅ 𝑙𝑖

𝑣𝑖 ∈ 0,1 𝑣𝑖

𝑧𝑖+1 ≥ 𝑊𝑖𝑧𝑖 + 𝑏𝑖
𝑧𝑖+1 ≥ 0
𝑢𝑖 ≥ 𝑧𝑖+1

𝑊𝑖𝑧𝑖 + 𝑏𝑖 ≥ 𝑧𝑖+1

𝑧𝑖+1 ≥ 𝑊𝑖𝑧𝑖 + 𝑏𝑖
𝑧𝑖+1 ≥ 0
0 ≥ 𝑧𝑖+1

𝑊𝑖𝑧𝑖 + 𝑏𝑖 ≥ 𝑧𝑖+1 + 𝑙𝑖

𝑊𝑖𝑧𝑖 + 𝑏𝑖 ≥ 0
⇒ 𝑣𝑖 = 1 𝑧𝑖+1 = 𝑊𝑖𝑧𝑖 + 𝑏𝑖

𝑊𝑖𝑧𝑖 + 𝑏𝑖 < 0
⇒ 𝑣𝑖 = 0

𝑧𝑖+1 = 0

Bound Propagation
• How to get the bounds at each layer 𝑙𝑖 ≤ 𝑊𝑖𝑧𝑖 + 𝑏𝑖 ≤ 𝑢𝑖?
• If 𝑙 ≤ 𝑧 ≤ 𝑢, then 𝑊 +𝑙 + 𝑊 −𝑢 + 𝑏 ≤ 𝑊𝑧 + 𝑏 ≤ 𝑊 +𝑢 +

𝑊 −𝑙 + 𝑏
– where 𝑊 − ≔ min 𝑊, 0 , 𝑊 + ≔ max{𝑊, 0}.
– It is a loose bound in general, but still useful

– Tighter bounds lead to higher computational efficiency of the
MILP solver; tightness of the bounds does not affect optimality of
the result, as long as the bounds are safe

49

Bound Propagation Example

• 𝑊 =
1 1
1 −1

,
0
.1

≤ 𝑧 =
𝑥1
𝑥2

≤
.3
.4

, 𝑏 = 0

•
.1
−.4

=
1 1
1 0

0
.1

+
0 0
0 −1

.3

.4
≤ 𝑊𝑧 =

𝑥3
𝑥4

≤
1 1
1 0

.3

.4
+

0 0
0 −1

0
.1

=
.7
.2

• To get 𝑊𝑧’s lower bound, whenever a scalar element of matrix 𝑊 is negative

(positive), set the corresponding entry in vector 𝑧 to be its upper (lower) bound

• To get 𝑊𝑧’s upper bound, whenever a scalar element of matrix 𝑊 is negative

(positive), set the corresponding entry in vector 𝑧 to be its lower (upper) bound

50

Final ILP Formulation

• min
𝑧1:𝑑+1,𝑣1:𝑑−1

𝑒𝑦 − 𝑒𝑦𝑡𝑎𝑟𝑔
𝑇
𝑧𝑑+1 s.t.

• (Éncoding ReLU 𝑧𝑖+1 = ReLU 𝑊𝑖𝑧𝑖 + 𝑏𝑖 , 𝑖 = 1,… , 𝑑 − 1)

– 𝑧𝑖+1 ≥ 𝑊𝑖𝑧𝑖 + 𝑏𝑖 , 𝑖 = 1, … , 𝑑 − 1

– 𝑧𝑖+1 ≥ 0, 𝑖 = 1,… , 𝑑 − 1

– 𝑢𝑖 ⋅ 𝑣𝑖 ≥ 𝑧𝑖+1, 𝑖 = 1,… , 𝑑 − 1

– 𝑊𝑖𝑧𝑖 + 𝑏𝑖 ≥ 𝑧𝑖+1 + 1 − 𝑣𝑖 𝑙𝑖 , 𝑖 = 1,… , 𝑑 − 1

– 𝑣𝑖 ∈ 0,1 𝑣𝑖 , 𝑖 = 1,… , 𝑑 − 1

• (Encoding 𝑧1 − 𝑥 ∞ ≤ 𝜖)

– 𝑧1 ≤ 𝑥 + 𝜖

– 𝑧1 ≥ 𝑥 − 𝜖

• (Last linear layer)

– 𝑧𝑑+1 = 𝑊𝑑𝑧𝑑 + 𝑏𝑑
• Can be solved with solvers like CPEX or cvxpy+Gurobi

51

Certifying Robustness

• Consider the optimization objective 𝑒𝑦 − 𝑒𝑦𝑡𝑎𝑟𝑔
𝑇
𝑧𝑑+1. If we solve it for

some 𝑦𝑡𝑎𝑟𝑔 and the objective is positive, then this gives a robustness
certificate: Given a data input 𝑥 and a NN model, under the specified threat
model (e.g., 𝑙∞-norm ball 𝑧1 − 𝑥 ∞ ≤ 𝜖), the top-1 prediction of the
perturbed input will not be altered to 𝑦𝑡𝑎𝑟𝑔, i.e., there exists no adversarial
example for target class 𝑦𝑡𝑎𝑟𝑔

– Example: binary classification 𝑦 = 𝑐𝑎𝑡, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑑𝑜𝑔. If min
𝑧1:𝑑

൬

൰

𝑧𝑑+1 𝑦 −

𝑧𝑑+1 𝑦𝑡𝑎𝑟𝑔 > 0, then it is not possible to misclassify a perturbed cat image as a dog

• If the objective is positive for all 𝑦𝑡𝑎𝑟𝑔, this is a verified proof that there exists
no adversarial example at all

52

Certified Robustness Illustration

53ECCV 2020 Tutorial on Adversarial Robustness of Deep Learning Models by Pin-Yu Chen (IBM Research)

Certified Robustness Illustration
• We can use an iterative process (e.g. binary search) to

find the maximum 𝜖 for the robustness certificate

54ECCV 2020 Tutorial on Adversarial Robustness of Deep Learning Models by Pin-Yu Chen (IBM Research)

Approach #3

• To solve max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃):

• 1. Constructing adversarial examples via local search (
– Lower bound on objective

• 2. Formal verification via combinatorial optimization
– Exactly solve objective

• 3. Formal verification via convex relaxation
– Upper bound on objective

55

Convex Relaxation
• For a ReLU-based NN, solving the ILP with 𝑣𝑖 ∈ 0,1 𝑣𝑖 (the

ReLU can be either off or on) is too computationally
expensive

• Convex relaxation: replace the ReLU constraints with their
convex hull 0 ≤ 𝑣𝑖 ≤ 1 (the ReLU can be partially off and
partially on). Then optimization problem becomes a Linear
Program (instead of ILP)

56

Accurate

ReLU

Convex

relaxation

of ReLU

Convex Relaxation as Conservative

Approximation
• Convex relaxation provides a strict lower bound on the ILP objective

(because feasible set is larger) Obj(LP) ≤ Obj(ILP) (refer to p. 17)

• If Objective(LP) is still positive for all target classes, the relaxation
gives a verifiable proof that no adversarial example exists

• If Objective(LP) may be negative for some target class, we can say
nothing about existence of adversarial examples. Solving the
relaxed problem does not actually produce a true adversarial
example anymore. The relaxation may be able to construct an
example with a negative objective, even though no actual example
could achieve this

57

Interval-based Bounds

• We can formulate optimization considering only bound
constraints. We propagate interval bounds to the second-to-
last layer 𝑧𝑑, and then solve the minimization problem at the
last linear layer:

– min
𝑧𝑑

𝑐𝑇 𝑊𝑑𝑧𝑑 + 𝑏𝑑 = (𝑐𝑇𝑊𝑑)𝑧𝑑 + 𝑐𝑇𝑏𝑑 s.t.

– 𝑙 ≤ 𝑧𝑑 ≤ 𝑢

• Since the minimization problem is to find the lower bound, the
solution is to choose 𝑧𝑑 𝑗 = 𝑙𝑗 if 𝑐𝑇𝑊𝑑 𝑗 > 0, and 𝑧𝑑 𝑗 = 𝑢𝑗
otherwise. This results in the analytical solution for the optimal
objective:

– min
𝑧𝑑

𝑐𝑇 𝑊𝑑𝑧𝑑 + 𝑏𝑑 = 𝑐𝑇𝑊𝑑 +𝑙 + 𝑐𝑇𝑊𝑑 −𝑢 + 𝑐𝑇𝑏𝑑

• These bounds are even more pessimistic than bounds
obtained by convex relaxation. There is no single input (even
with relaxed activations) that creates these bounds on the
logit differences: each individual activation assumes that the
previous layer could take on a separate set of values to
minimize or maximize just that one activation

58

Outline

• Introduction

• Adversarial examples and verification

– Constructing adversarial examples via local
search

• Physically-realizable attacks

– Formal verification via combinatorial
optimization

– Formal verification via convex relaxations

• Training adversarially robust models

• Adversarial robustness beyond security

59

Adversarial Training w. Outer Minimization

60

Higher network

capacity enables

more complex

decision

boundary and

more robust

classification

(omitted)

Danskin’s Theorem

• How to compute the gradient of the objective
with the max term inside?

• Danskin’s Theorem:
∇𝜃max

𝛿∈Δ
Loss(𝑥 + 𝛿, 𝑦; 𝜃) = ∇𝜃Loss(𝑥 + 𝛿∗, 𝑦; 𝜃)

• where 𝛿∗ = max
𝛿∈Δ

Loss(𝑥 + 𝛿, 𝑦; 𝜃)

• It means we can optimize through the max
operator by finding the 𝛿∗ that maximizes the
loss function, then taking gradient at the point
𝑥 + 𝛿∗

• It only applies when max is performed exactly

61

Adversarial Training [Goodfellow et al.,

2014]

62

• In theory, Danskin’s theorem only applies to the case where
we are able to compute the maximum exactly. In practice, the
quality of the robust gradient descent procedure is tied directly
to how well we are able to perform the inner maximization. In
other words, the key aspect is incorporate a strong attack into
the inner maximization procedure.

Evaluating Robust Models

• Our model looks good, but we also need

to evaluate against different attacks, PGD

attacks run for longer, with random

restarts, etc

• Note: it is not very informative to evaluate

against a different type of attack, e.g.

evaluate 𝑙∞ robust model against 𝑙1 or 𝑙2
attacks

63

What Makes the Models Robust?

• The robust model has a smoother loss surface,
making it more difficult for an attacker to change
the class label with small gradient steps

64

Loss Surfaces Examples

• Upper right fig shows a
smooth loss surface with
small gradients near the
correct label and large
distances to other labels,
which makes attacks more
difficult

• Lower right fig shows a
less smooth loss surface
and small distances to
other labels, which makes
attacks easier

• You can also think of them
as 2 different directions on
the same loss surface, and
the attacker’s goal is to find
the optimal direction to
change input 𝑥 (e.g., by
gradient ascent with FGSM
or PGD)

65

𝑥

𝑦𝑦′ 𝑦′′

𝑦𝑦′ 𝑦′′

𝑥

Smoothing Filter on the Input as Defense

• The filter helps
make the loss
surface smoother,
which makes
attacks more
difficult

• Not a very effective
defense.
Furthermore, if
attacker knows the
filter, the defense is
no longer effective

66

+ Filter +

e.g.

Smoothing

Attack

signal 𝛿

Original

Image

Smoothed

attack signal 𝛿
is less effective

Smoothed

Image

Image credit: Hung-yi Lee

Outline

• Introduction

• Adversarial examples and verification

– Constructing adversarial examples via local
search

• Physically-realizable attacks

– Formal verification via combinatorial
optimization

– Formal verification via convex relaxations

• Training adversarially robust models

• Adversarial robustness beyond security

67

Adv. Robust Generalization Needs More

Data to Avoid Overfitting

• Theorem [Schmidt Santurkar Tsipras Talwar M 2018]: Sample
complexity of adv. robust generalization can be significantly
larger than that of “standard” generalization

• Specifically: There exists a 𝑑-dimensional distribution 𝐷 s.t.:
– A single sample is enough to get an accurate classifier

(P[correct] > 0.99)

– But need Ω(𝑑) samples for better-than-chance robust classifier

68

Does Being Robust Help “Standard”

Generalization?
• Data augmentation: An effective technique to improve “standard”

generalization

• Adversarial training = An “ultimate” version of data augmentation
– (since we train on the ”most confusing” version of the training set)

• Does adversarial training always improve “standard” generalization?
– No. Adversarial training typically results in lower performance when

evaluated on standard input

69

Does Being Robust Help “Standard”

Generalization?
• Theorem [Tsipras et al. 2018]: No “free lunch”: trade-off between

accuracy and robustness

• Standard training tries to use all features to maximize model
accuracy, incl. non-robust features (e.g., outdoor scenery for class
label “dog”), and the resulting model is vulnerable to adversarial
examples that manipulate the non-robust features w. minor
perturbations

• Adversarial training tries to use only robust features (e.g., human-
recognizable dog features like ears, tail, black nose…for class label
“dog”) to increase model robustness at the cost of reduced
accuracy, since larger and more noticeable perturbations are
needed to change the robust features

70

Adversarial Robustness is Not Free

• Optimization during training more difficult

and models need to be larger

• More training data might be required

• Might need to lose on “standard”

measures of performance like precision,

recall, accuracy

71

But There Are (Unexpected?) Benefits

Too
• Models become more semantically

meaningful

• Fig shows heatmaps highlighting the pixels
that maximally activate the output neuron
with the predicted label

72

But There Are (Unexpected?)

Benefits Too
• Lower left: an input image, correctly labeled as “Primate”

• Lower middle: an adversarial input that fools a standard
model into misclassification as “Bird”
– Minor perturbation undetectable by humans

• Lower right: an adversarial input that fools an adv. robust
model into misclassification as “Bird”
– Semantically-meaningful perturbation detectable by humans

73

Attack

Conclusions

• Algorithms: Faster robust training + verification,
smaller models, new architectures?

• Theory: (Better) adv. robust generalization bounds,
new regularization techniques

• Data: New datasets and more comprehensive set of
perturbations (robust-ml.org)
– Major need: Embracing more of a worst-case mindset

• Open-source tools:
– IBM Adversarial Robustness Toolbox (ART)

https://github.com/Trusted-AI/adversarial-robustness-
toolbox

– CleverHans https://github.com/cleverhans-lab/cleverhans

– Foolbox https://github.com/bethgelab/foolbox

74

https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/cleverhans-lab/cleverhans
https://github.com/bethgelab/foolbox

