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1Acknowledgement: slides based on https://www.coursera.org/specializations/reinforcement-learning 

And textbook by Sutton and Barto http://incompleteideas.net/book/the-book-2nd.html



Model-Based vs. Model-Free
• Model-Based RL: MDP planning 

– Learn MDP 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (given current state 𝑠 and action 𝑎, returns 

prob distribution of current reward 𝑟 and next state 𝑠′), then plan 

with Value Iteration or Policy Iteration

• Model-Free RL: Value-based and Policy-based

– Learn value function 𝑉 𝑠 or 𝑄(𝑠, 𝑎), or policy function 𝜋(𝑠)
without learning MDP
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next
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𝑉 𝑠 ,𝑄(𝑠, 𝑎)
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Policy 𝜋(𝑠)

state 𝑠 action 𝑎

action 𝑎 = 𝜋(𝑠)

MDP Planning Value-based RL Policy-based RL

action

a = argmaxa𝑄(𝑠, 𝑎)



Overview of RL Algorithms
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Markov Decision Process (MDP)
• An MDP consists of:

– Set of states 𝑆
– Start state s0
– Set of actions 𝐴
– Transitions and rewards 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (w. discount )

• Policy maps from states to actions:
– Deterministic policy 𝑎 = 𝜋(𝑠) defines a deterministic action 𝑎 for 

state 𝑠.
– Stochastic policy 𝜋(𝑎|𝑠) defines a probability distribution over 

possible actions 𝑎 for state 𝑠.
• Markov means that next state only depends on current state

– 𝑃 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, 𝐴𝑡−1 = 𝑎𝑡−1,…,𝑆0 = 𝑠0, 𝐴0 = 𝑎0
– = 𝑃(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡)
– Given the present state, the future and the past are independent
– e.g., for driving task, current vehicle position 𝒙 as the state does not 

satisfy the Markov property, since the next state depends on not 
only 𝒙, but also velocity ሶ𝒙, acceleration ሷ𝒙. (assuming acceleration ሷ𝒙
stays constant within each step) If we redefine the state as vector 
𝒙, ሶ𝒙, ሷ𝒙 𝑇, then it satisfies the Markov property.

– Or, current snapshot of front camera view can be used as the state 
(e.g., NVIDIA’s PilotNet), but some works use past 𝑁 video frames 
as the state to capture more dynamics (e.g., Waymo’s 
ChauffeurNet).



MDP Quiz
• For this MDP with a single state 𝑠 and two possible actions 𝑙𝑒𝑓𝑡 and

𝑟𝑖𝑔ℎ𝑡. Are these valid policies?
– 1) 𝜋 𝑙𝑒𝑓𝑡 𝑠 = 𝜋 𝑟𝑖𝑔ℎ𝑡 𝑠 = 0.5 (goes left or right with equal probability. 

uniform random policy)

– 2) 𝜋 𝑙𝑒𝑓𝑡 𝑠 = 1.0, 𝜋 𝑟𝑖𝑔ℎ𝑡 𝑠 = 0 (always goes left)

– 3) Alternating left and right, i.e., if previous action is left, then current 
action must be right, next action must be left, and so on.

– ANS: 3) is not a valid policy, since it depends on the history of actions. 
To be a valid policy, the action must depend on the current state only.

• We can redefine the MDP’ extended state to include the last action 
as part of it, then 3) is a valid policy for the new MDP.
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𝑠

(𝑠, 𝑙𝑒𝑓𝑡) (𝑠, 𝑟𝑖𝑔ℎ𝑡)



An Example MDP
• Green nodes denote 3 states 𝑠0, 𝑠1, 𝑠2; Red nodes denote 2 possible 

actions 𝑎0, 𝑎1 in each state. Each red node can also be denoted as 
(𝑠, 𝑎). 

• Agent taking action 𝑎 in state 𝑠 may get different reward 𝑟 and next 
state 𝑠′, denoted as state transition (𝑠, 𝑎, 𝑟, 𝑠′), due to environment 
uncertainty (all rewards are 0 expect +5 and −1 show in fig).
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RL Reward Function
• For the vehicle in left fig: 

– state: Pose of ego-car (𝑥, 𝑦, 𝜃) and environment map; action: Steering wheel/brake/acceleration

• Possible reward function: 𝑅𝑡 = 𝑤1𝑉𝑐𝑎𝑟 cos 𝜃 − 𝑤2 𝑐𝑡𝑒
– Weight sum to maximum longitudinal velocity (first term), and minimize cross-track error (distance to 

lane center)

– This is an example of dense reward (e.g., at every time step), as opposed to sparse reward (e.g., 
only at the end of each episode)

• Compare with twiddle() :
– twiddle() can be viewed as an RL algorithm (policy gradient), that learns PID parameters with sparse 

reward (cost function is average cross-track error (cte), computed at the end of each simulation 
episode, as sum of squares of ctes for N timesteps divided by N. But it is very crude: 

– It does not use the numeric value of cte, only its relative size (if err < best_err);

– Cost function does not include heading angle 𝜃; 

– if the track is very long and irregular, then we can make the reward denser, to adjust PID parameters 
every K timesteps instead of at the end of each episode.

7Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017

twiddle()



Amazon DeepRacer

• Amazon Web Services (AWS) launched 
DeepRacer in 2018 for training AD algorithms with 
RL

– https://aws.amazon.com/deepracer/

• You can train RL algorithm in the simulator on 
AWS cloud, but it costs money after some free 
time.

• They hold competitions, both online and in real-
world. 1/10th scale race car costs USD $349. 
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Example Reward Function
• def reward_function(params):

• '''Example of penalize steering, which helps mitigate zig-zag behaviors'''

• # Read input parameters

• distance_from_center = params['distance_from_center']

• track_width = params['track_width']

• steering = abs(params['steering_angle']) # Only need the absolute steering angle

• # Calculate 3 markers that are at varying distances away from the center line

• marker_1 = 0.1 * track_width

• marker_2 = 0.25 * track_width

• marker_3 = 0.5 * track_width

• # Give higher reward if the agent is closer to center line and vice versa

• if distance_from_center <= marker_1:

• reward = 1

• elif distance_from_center <= marker_2:

• reward = 0.5

• elif distance_from_center <= marker_3:

• reward = 0.1

• else:

• reward = 1e-3  # likely crashed/ close to off track

• # Steering penalty threshold, change the number based on your action space setting

• ABS_STEERING_THRESHOLD = 15

• # Penalize reward if the agent is steering too much

• if steering > ABS_STEERING_THRESHOLD:

• reward *= 0.8

• return float(reward)
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• A more realistic and complex reward function: https://www.middleware-

solutions.fr/2019/08/14/an-introduction-to-aws-deepracer

https://www.middleware-solutions.fr/2019/08/14/an-introduction-to-aws-deepracer/


MDP Search Tree
• Each MDP state 𝑠 projects a search tree starting from it.

• In general, both policy and environment may be 
stochastic
– Policy 𝜋 𝑎 𝑠 : probability distribution over possible actions 𝑎

from state 𝑠.
– Environment 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 : if agent takes action 𝑎 in state 𝑠, 

env gives probability distribution over reward 𝑟 and next 
states 𝑠′.

a

s

s’

s, a

(𝑠, 𝑎, 𝑠′) called a 
transition

Reward 𝑅(𝑠, 𝑎, 𝑠′)

s,a,s’

s is a 
state

(s, a) is a 
q-state



Preventing Infinite Rewards

• Problem: What if the game lasts forever? Do we 
get infinite rewards? No. Possible solutions:

• Finite horizon: (limit search tree depth)
– Terminate episodes after a fixed 𝑇 timesteps

• Discount factor: 0 < 𝛾 ≤ 1
– Think of it as a 1 − 𝛾 chance of ending the episode at 

every step. Effective horizon (expected episode 
length): σ𝑡=0

∞ 𝛾𝑡 =
1

1−𝛾

– Smaller 𝛾 leads to shorter horizon, and preference of 
short-term to long-term rewards, and vice versa

• (Can have both finite horizon and discount factor)

• Absorbing state: guarantee that for every policy, 
a terminal state will eventually be reached
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Discount Factor Example

• Each time we descend 

a level in the search 

tree, we multiply in the 

discount once

• Example: 𝛾 = 0.5
– 𝑈([1,2,3]) = 1 ∗ 1 +

0.5 ∗ 2 + 0.25 ∗ 3 <
𝑈([3,2,1])



Discounting Example

• Given:

– Actions: East, West, and Exit (only available in exit states a, e)

– Transitions: deterministic

• For  = 1, optimal policy in each state is always moving West 

– From state d, reward of going West is 𝛾3 ⋅ 10 = 10, larger than reward of going 

East 𝛾 ⋅ 1 = 1

• For  = 0.1, optimal policy in each state is shown below 

– From state d, reward from going West is 𝛾3 ⋅ 10 = 0.01, less than reward from 

going East 𝛾 ⋅ 1 = 0.1.

• For which  are West and East equally good when in state d?

– 𝛾3 ⋅ 10 = 𝛾 ⋅ 1 ⟹ 𝛾 =
1

10
≈ .32

← ←← ← ← ← ← →

 = 1  = 0.1  =
1
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The Big Picture
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Problem Bellman 
Equation

Algo (known 
MDP)

Algo (unknown MDP, 
sample-based)

Prediction (compute 
𝑣𝜋 𝑠 )

Bellman Exp. 
Equation for 𝑣

Policy Evaluation 
(PE)

MC Prediction, TD/TD(𝜆)
(on-policy)

Control (compute 
𝑣𝜋 𝑠 , then 𝜋 𝑠 =
argmax

𝑎
𝑞(𝑠, 𝑎)) for 

known MDP

Bellman Exp. 
Equation for 𝑣 + 
Greedy Policy 
Improvement (GPI)

Policy Iteration 
(PI=PE+GPI)

Cannot do GPI, since 
cannot get 𝑄(𝑠, 𝑎) from 
𝑉(𝑠) without MDP

Control (compute 
𝑣∗ 𝑠 , then 𝜋∗ 𝑠 =
argmax

𝑎
𝑞∗(𝑠, 𝑎)) for 

known MDP

Bellman Opt. 
Equation for 𝑣

Value Iteration 
(VI) (a form of 
Generalized PI)

Cannot compute 𝑉∗(𝑠) w. 
sample-based method 
due to max

𝑎
in front; 

cannot get 𝑄(𝑠, 𝑎) from 
𝑉(𝑠) without MDP

Control (compute 
𝑞∗(𝑠, 𝑎), then 𝜋∗ 𝑠 =
argmax

𝑎
𝑞∗(𝑠, 𝑎))

Bellman Opt. 
Equation for 𝑞

Q Value 
Iteration (QVI)

MC control, Sarsa (on-
policy)
Q Learning, Expected 
Sarsa (off-policy)

Important



Known MDP

• In this lecture, we assume known MDP, and 
use dynamic programming to solve Bellman 
Equations and find the optimal policy (no 
learning here).
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want to optimize



Formal Definition of MDP

• Return (cumulative discounted reward) at time 𝑡: 𝐺𝑡 ≐ 𝑅𝑡+1 +
𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯+ 𝛾𝑇−1𝑅𝑇 = σ𝑘=0

𝑇−𝑡−1 𝛾𝑘 𝑅𝑡+𝑘+1
– At each step 𝑡 ∈ [0, 𝑇 − 1], agent takes an action 𝐴𝑡 in state 𝑆𝑡; at 

step 𝑡 + 1, agent receives a reward 𝑅𝑡+1 and transitions into the 
next state 𝑆𝑡+1 with the trace (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1)

– We assume episodic tasks, and this specific episode has length 
of 𝑇 steps. (𝑇 = ∞ for continuous tasks)

• State Value Function: expected return under policy 𝜋: 𝑣𝜋 𝑠 ≐
𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

• Action Value Function: expected return from taking action 𝑎, then 
follow policy 𝜋: 𝑞𝜋 𝑠, 𝑎 ≐ 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• The RL problem: find the optimal policy 𝜋(𝑎|𝑠) that maximizes the 
expected return from each state (the state VF)
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Important

𝑝(𝑅𝑡+1, 𝑆𝑡+1|𝑆𝑡 , 𝐴𝑡)

Reward 𝑅𝑡+1
State 𝑆𝑡+1

Action 𝐴𝑡

Environment

RL Agent

𝜋(𝐴𝑡|𝑆𝑡)



Bellman Expectation Equations

• Bellman Expectation Equation for State Value 
Function:

• 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

– Expected value starting from state 𝑠 and following 
policy 𝜋.

• Bellman Expectation Equation for Action 
Value Function

• 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 [

]

𝑟 +

𝛾 σ𝑎′𝜋 𝑎′ 𝑠′ 𝑞𝜋 𝑠′, 𝑎′
– Expected value starting from state 𝑠, taking action 
𝑎, and thereafter following policy 𝜋.
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Bellman Optimality Equations
• Bellman Optimality Equation for State Value Function:

• 𝑣∗ 𝑠 = max
𝑎

σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠
′

– Max value starting from state 𝑠 and following the greedy policy 
𝜋 𝑠 = argmax

a
𝑞∗ 𝑠, 𝑎

• Bellman Optimality Equation for Action Value Function

• 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′

– Max value starting from state 𝑠, taking action 𝑎, and thereafter 
following the greedy policy 𝜋 𝑠 = argmax

a
𝑞∗ 𝑠, 𝑎
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• Notations in left fig: 

• σ𝑠′ 𝑇(𝑠, 𝑎, 𝑠′) [… ] =
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 [… ]

• 𝑅 𝑠, 𝑎 =
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟

Important



Bellman Equations written with 

Expectation Symbols
• Bellman Exp Equations:

• 𝑣𝜋 𝑠 = 𝔼𝑎𝔼𝑟, 𝑠′[𝑟 + 𝛾𝑣𝜋 𝑠′ ]

• 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾𝔼𝑎𝑞𝜋 𝑠, 𝑎

• Bellman Opt Equations:

• 𝑣∗ 𝑠 = max
𝑎

𝔼𝑟, 𝑠′[𝑟 + 𝛾𝑣∗ 𝑠′ ]

• 𝑞∗ 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾max
𝑎

𝑞∗ 𝑠, 𝑎

• Detailed derivations:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑎∼𝜋(𝑎|𝑠)𝑞𝜋 𝑠, 𝑎 =

𝔼𝑎∼𝜋(𝑎|𝑠) 𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎)[𝑟 + 𝛾𝑣𝜋 𝑠′ ]

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ = 𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎) 𝑟 + 𝛾𝑣𝜋 𝑠′ =

𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎) 𝑟 + 𝛾𝔼𝑎∼𝜋(𝑎|𝑠) 𝑞𝜋 𝑠, 𝑎

– 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎 = max
𝑎

𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎)[𝑟 + 𝛾𝑣∗ 𝑠′ ]

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′ = 𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎)[𝑟 + 𝛾𝑣∗ 𝑠′ ]
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𝜋 𝑎 𝑠 : agent 

takes action 𝑎

𝑝 𝑟, 𝑠′ 𝑠, 𝑎 : env 

gives reward 𝑟
and moves agent 

to 𝑠′

𝜋 𝑎 𝑠

𝑝 𝑟, 𝑠′ 𝑠, 𝑎

Backup Diagrams

Bellman Exp Eqn for 𝑞𝜋 𝑠, 𝑎 Bellman Opt Eqn for 𝑞∗ 𝑠, 𝑎

maxmax

Bellman Exp Eqn for 𝑣𝜋 𝑠 Bellman Opt Eqn for 𝑣∗ 𝑠

max

Important

(state, action) 

state



𝑣(𝑠) vs. 𝑞(𝑠, 𝑎)

22

• State-action Value Function 𝑞(𝑠, 𝑎) contains more 
information than State value function 𝑣(𝑠). Given
𝑞∗ 𝑠, 𝑎 , optimal policy 𝜋∗ s = argmax

𝑎
𝑞∗ 𝑠, 𝑎 .

• Can always go from 𝑞𝜋(𝑠, 𝑎) to 𝑣𝜋(𝑠), or from 𝑞∗(𝑠, 𝑎)
to 𝑣∗(𝑠):

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 ; 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎

• With known MDP (𝑝 𝑟, 𝑠′ 𝑠, 𝑎 , i.e., model-based): can
go from 𝑣𝜋(𝑠) to 𝑞𝜋(𝑠, 𝑎), or from 𝑣∗(𝑠) to 𝑞∗(𝑠, 𝑎):

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′

• With unknown MDP (unknown 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 , i.e., 
model-free) : cannot go from 𝑣𝜋(𝑠) to 𝑞𝜋(𝑠, 𝑎), or from 
𝑣∗(𝑠) to 𝑞∗(𝑠, 𝑎)

Important



Simplified Bellman Equations for 

Deterministic Env

• Bellman Equations:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

– 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′

• For Deterministic Env: there is only one possible 
(𝑟, 𝑠′) for a given (𝑠, 𝑎) (we use 𝑅𝑠

𝑎 to 
emphasize that reward 𝑟 is specific to this 
(𝑠, 𝑎)):

– 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣𝜋 𝑠′

– 𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣∗ 𝑠

′
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Policy Evaluation

• The prediction problem: predict Value Function for 
given policy 𝜋 by solving Bellman Exp. Equation 
for State Value Function

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

= 𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]

• Can also be written as:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ denotes the 

State-Action Value Function for taking action 𝑎 in 
state 𝑠, then follow policy 𝜋 afterwards

• A set of linear equations that can be solved 
analytically for small system

– # unknowns = # equations = # states 
24



Grid World1: Policy Evaluation
• Non-episodic MDP w. deterministic env: Agent in state 𝑠 ∈ 𝐴,𝐵, 𝐶, 𝐷 taking action 𝑎 ∈

𝑙, 𝑟, 𝑢, 𝑑 always moves to the next state in the movement direction, unless it is blocked 
by the walls. Discount factor 𝛾 = 0.7.

• Random policy: Agent in state 𝑠 ∈ 𝐴, 𝐵, 𝐶, 𝐷 takes a random action 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑 with 
equal probability of 0.25 each. 

• Bellman Exp. Equation for det env: 𝑣𝜋 𝑠 = σ𝑎𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣𝜋 𝑠′

• 𝑣𝜋 𝐴 = 0.25 𝑞𝜋 𝐴, 𝑙 + 𝑞𝜋 𝐴, 𝑟 + 𝑞𝜋 𝐴, 𝑢 + 𝑞𝜋(𝐴, 𝑑) = 0.5 ⋅ 0.7𝑣𝜋 𝐴 + 0.25 ⋅ ൫

൯

5 +

0.7𝑣𝜋 𝐵 + 0.25 ⋅ 0.7𝑣𝜋 𝐶

– 𝑞𝜋 𝐴, 𝑙 = 𝑞𝜋 𝐴, 𝑢 = 0 + 0.7𝑣𝜋 𝐴

– 𝑞𝜋 𝐴, 𝑟 = 5 + 0.7𝑣𝜋 𝐵

– 𝑞𝜋 𝐴, 𝑑 = 0 + 0.7𝑣𝜋 𝐶

• 𝑣𝜋 𝐵 = 0.25 𝑞𝜋 𝐵, 𝑙 + 𝑞𝜋 𝐵, 𝑟 + 𝑞𝜋 𝐵, 𝑢 + 𝑞𝜋(𝐵, 𝑑) = 0.25 ⋅ 0.7𝑣𝜋 𝐴 + 0.5 ⋅

5 + 0.7𝑣𝜋 𝐵 + 0.25 ⋅ 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐵, 𝑙 = 0 + 0.7𝑣𝜋 𝐴

– 𝑞𝜋 𝐵, 𝑟 = 𝑞𝜋 𝐴, 𝑢 = 5 + 0.7𝑣𝜋 𝐵

– 𝑞𝜋 𝐵, 𝑑 = 0 + 0.7𝑣𝜋 𝐷

• 𝑣𝜋 𝐶 = 0.25 𝑞𝜋 𝐶, 𝑙 + 𝑞𝜋 𝐶, 𝑟 + 𝑞𝜋 𝐶, 𝑢 + 𝑞𝜋(𝐶, 𝑑) = 0.25 ⋅ 0.7𝑣𝜋 𝐴 + 0.5 ⋅
0.7𝑣𝜋 𝐶 + 0.25 ⋅ 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐶, 𝑙 = 𝑞𝜋 𝐶, 𝑑 = 0 + 0.7𝑣𝜋 𝐶

– 𝑞𝜋 𝐶, 𝑟 = 0 + 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐶, 𝑢 = 0 + 0.7𝑣𝜋 𝐴

• 𝑣𝜋 𝐷 = 0.25 𝑞𝜋 𝐷, 𝑙 + 𝑞𝜋 𝐷, 𝑟 + 𝑞𝜋 𝐷, 𝑢 + 𝑞𝜋(𝐷, 𝑑) = 0.25 ⋅ (5 + 0.7𝑣𝜋 𝐵 ) + 0.25 ⋅
0.7𝑣𝜋 𝐶 + 0.5 ⋅ 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐷, 𝑙 = 0 + 0.7𝑣𝜋 𝐶

– 𝑞𝜋 𝐷, 𝑟 = 𝑞𝜋 𝐷, 𝑑 = 0 + 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐷, 𝑢 = 5 + 0.7𝑣𝜋 𝐵

• Solution: 𝑣𝜋 𝐴 = 4.2, 𝑣𝜋 𝐵 = 6.1, 𝑣𝜋 𝐶 = 2.2, 𝑣𝜋 𝐷 = 4.2. 𝑞𝜋 𝑠, 𝑎 can also be 
obtained.
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Iterative Policy Evaluation
• If # states are too large, it may be too expensive to analytically solve the set of 

linear Bellman Exp. Equations. We can use Iterative Policy Evaluation and 
solve the recursive Bellman equations iteratively:

– 𝑣 𝑠 = 𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝑣 𝑠′ ⇒ 𝑣𝑘 𝑠 ← 𝐵𝑒𝑙𝑙𝑚𝑎𝑛(𝑣𝑘−1 𝑠′ )

• In-place updates:
– For faster convergence, update 𝑣𝑘 𝑠 using the value of 𝑣𝑘 𝑠′ that has been updated in 

the same iteration, instead of  𝑣𝑘−1 𝑠′ from the previous iteration.

– 𝑣𝑘 𝑠 ← 𝐵𝑒𝑙𝑙𝑚𝑎𝑛(𝑣𝑘 𝑠′ )

26



Iterative Policy Evaluation Example

• An episodic MDP with terminal states with 𝑣 𝑠 = 0 located in the top left 
and bottom right corners. Reward 𝑅 = −1 for every transition (agent is 
punished for delays before reaching the terminal state and ending the 
episode). Discount factor 𝛾 = 1. Four possible actions in each state: 
up, down, left, and right. Environment is deterministic. If the action would 
move the agent off the grid, it instead leaves the agent in the same state.

• Random policy: Agent in any state 𝑠 takes a random action 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑
with equal probability of 0.25 each. 

27



Iterative Policy Evaluation Example
• For fixed random policy: 

• Bellman Exp. Equation for Det Env:𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎

+ 𝛾𝑣𝜋 𝑠′

• 1st sweep: 
– for all states 𝑣𝜋 𝑠 = .25( −1 + 0 + (−1 + 0) + −1 + 0 + −1 + 0 ) = −1

• 2nd sweep: 
– For states marked −2: 𝑣𝜋 𝑠 = .25( −1 − 1 + (−1 − 1) + −1 − 1 + −1 − 1 ) = −2
– For states marked −1.7: 𝑣𝜋 𝑠 = .25( −1 + 0 + (−1 − 1) + −1 − 1 + −1 − 1 ) = −1.75

• 3rd sweep: 
– For states marked −2.4: 𝑣𝜋 𝑠 = .25( −1 + 0 + (−1 − 2) + −1 − 1.75 + −1 − 2 )

= −2.43
– For states marked −2.9: 𝑣𝜋 𝑠 = .25( −1 − 1.7 + (−1 − 2) + −1 − 1.75 + −1 − 2 )

= −2.85
– For states marked −3: 𝑣𝜋 𝑠 = .25( −1 − 2 + (−1 − 2) + −1 − 2 + −1 − 2 ) = −3

• Influence of terminal states gradually spreads through the entire grid.
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Iterative Policy Evaluation Results
• Figure 4.1: Convergence of iterative policy evaluation on a small gridworld

with the random policy (all actions equally likely). The left column is the 
sequence of approximations of the state-value function. The right column is 
the sequence of greedy policies corresponding to the value function 𝑣𝜋(𝑠)
estimates.

• Note that we are not updating the policy (always the random policy) across 
iterations. If you follow the greedy action at the current step, then follow the 
random policy in the future, then it is better than following the random policy 
from the current step. 
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Policy Iteration

30

Repeat until policy converges:
Policy Evaluation: Estimate state value function 𝑣𝜋 for 

some fixed policy 𝜋 with Iterative Policy Evaluation (or 

solving linear equations).

Policy Improvement: generate new policy based on 

the newly estimated 𝑣𝜋: 𝜋 = greedy(𝑣𝜋).

Important



Policy Iteration Illustration
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Policy Iteration Example
• An episodic MDP with terminal states with 𝑣 𝑠 =
0 located in the top left corner. Blue states are bad 
states with large negative reward.

• Start with uniform random policy.

• Initialize 𝑣 𝑠 = 0 for all 𝑠.

32
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After 1st sweep of PE+PI. Most state’s policies are not good since they 

go towards blue states (darker colors denote low-value states).

After 2nd sweep of PE+PI. Policies are much better, but a few states’ 

policies still go towards blue states.

Bad policy Better policy
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Higher value

Better policy

Higher value Better policy
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Higher value Better policy

Value functions converged
(May not converge in general. Policy often 

stable long before value functions converge.)

Policy stable, hence it is optimal policy)



Another PI Example

• The greedy policy converges to the optimal policy after 5th

iteration of Policy Iteration. 

• Precise values of 𝑣(𝑠) are not necessary for computing 
optimal policy with Policy Iteration.

36



Value Iteration
• Obtain optimal Value Function by solving Bellman Opt. Equation for 

Optimal State Value Function iteratively (analytical solution is not 
possible due to the max operator)
– 𝑣∗ 𝑠 = max

𝑎
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠

′

• Optimal policy 𝜋∗(𝑠) is output at the end; intermediate value function 
𝑣(𝑠) may not correspond to any valid policy.

37
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Generalized Policy Iteration (GPI)
• GPI: 1. evaluate given policy; 2. Improve policy by acting greedily w.r.t its 

value function. GPI is guaranteed to converge to the optimal deterministic 
policy 𝜋∗.

• Two special cases of GPI:

• Policy Iteration (PI) (shown below):
– 1. Policy evaluation until convergence; 2. Improve policy

• Value Iteration (VI):
– 1. Policy evaluation with one single iteration; 2. improve policy (implicitly) 

38



Modified Policy Iteration

• PI is slower per sweep (cycle), with complexity 
𝑂 𝐴 𝑆 2 + 𝑆 3 , and requires fewer sweeps.

• VI is faster per sweep, with complexity 𝑂( 𝐴 𝑆 2), 
and requires more sweeps.

• Modified Policy Iteration: run Policy Evaluation for 
# steps between 1 for VI, and that needed for 
convergence of 𝑣𝜋(𝑠), may achieve best 
efficiency.
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Toy Example

• Non-episodic MDP with a single state 𝑠 and single possible action 
𝑎, with reward 𝑟 𝑠, 𝑎 = 1

• Policy Iteration:
– Policy Evaluation: initial policy 𝜋 𝑠 = 𝑎, 𝑣𝜋 𝑠 =

σ𝑎 𝜋 𝑎 𝑠 (1 + 𝛾𝑣𝜋 𝑠 ) = 1 + 𝛾𝑣𝜋 𝑠 ⇒ 𝑣𝜋 𝑠 =
1

1−𝛾

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ = 1 +
𝛾

1−𝛾
=

1

1−𝛾

– Policy Improvement: policy 𝜋 𝑠 = argmax
𝑎

𝑞𝜋 𝑠, 𝑎 = argmax
𝑎

1

1−𝛾
=

𝑎 = old-action. So policy is now stable.

• Value Iteration: 

– 𝑣∗ 𝑠 = max
𝑎

1 + 𝛾𝑣∗ 𝑠 = 1 + 𝛾𝑣∗ 𝑠 ⇒ 𝑣∗ 𝑠 =
1

1−𝛾

– Value function 𝑣∗ 𝑠 is now stable

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′ =
1

1−𝛾

– Optimal policy 𝜋∗ 𝑠 = argmax
𝑎

𝑞∗ 𝑠, 𝑎 = argmax
𝑎

1

1−𝛾
= 𝑎.

• Both PI and VI converges in one step, since 𝑣𝜋 𝑠 = 𝑣∗ 𝑠 = 1 +
𝛾 + 𝛾2 +⋯ =

1

1−𝛾
40
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MiniGW Example

• Policy Iteration for Deterministic 

Environment

• Policy Iteration for Stochastic Environment

• Value Iteration for Deterministic 

Environment  

• Value Iteration for Stochastic Environment

• Model learning

41



MiniGW Setup

• All transitions (𝑠, 𝑎, 𝑟, 𝑠′) for 𝑠 ∈ 𝐵, 𝐶, 𝐸 , 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑 have the same reward 
𝑟 = −1.

• 𝐴 and 𝐷 are terminal states with fixed value function 𝑣 𝐴 = −10, 𝑣 𝐷 = 10
– Or equivalently, you can think of an extra terminal state 𝑥 with 𝑣 𝑥 = 0, the only 

action in state 𝐴 or 𝐷 is 𝑒𝑥𝑖𝑡 that leads to 𝑥 with 𝑅𝐴
𝑎 = −10, 𝑅𝐷

𝑎 = 10. 

• Dark squares denote obstacles which the agent cannot move into.

• Discount factor  = 1.
• Deterministic env: Agent in state 𝑠 ∈ 𝐵, 𝐶, 𝐸 taking action 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑

always moves to the next state in the movement direction, unless it is 
blocked by an obstacle. 

• Stochastic env: Agent in state 𝑠 ∈ 𝐵, 𝐶, 𝐸 taking action 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑
moves to the next state in the movement direction w. prob 0.8, or to the left 
or right side, each w. prob 0.1. If it is blocked by an obstacle in any 
direction, then it stays in the same state with prob of moving in the blocked 
direction.

A

B C D

E

+10

−10
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Iter1 Policy Evaluation of Random Policy

• Bellman Exp Equation for Det Env:𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣𝜋 𝑠′

• Random policy: 𝜋 𝑙 𝑠 = 𝜋 𝑟 𝑠 = 𝜋 𝑢 𝑠 = 𝜋 𝑑 𝑠 = 0.25

• 𝑣𝜋 𝐶 = .25 𝑞𝜋 𝐶, 𝑙 + 𝑞𝜋 𝐶, 𝑟 + 𝑞𝜋 𝐶, 𝑢 + 𝑞𝜋 𝐶, 𝑑 = .25(−4 + 𝑣𝜋 𝐵 + 𝑣𝜋 𝐸 )

– 𝑞𝜋 𝐶, 𝑙 = −1 + 𝑣𝜋 𝐵

– 𝑞𝜋 𝐶, 𝑟 = −1 + 𝑣 𝐷 = −1 + 10 = 9

– 𝑞𝜋 𝐶, 𝑢 = −1 + 𝑣 𝐴 = −1 − 10 = −11

– 𝑞𝜋 𝐶, 𝑑 = −1 + 𝑣𝜋 𝐸

• 𝑣𝜋 𝐵 = .25 𝑞𝜋 𝐵, 𝑙 + 𝑞𝜋 𝐵, 𝑟 + 𝑞𝜋 𝐵, 𝑢 + 𝑞𝜋 𝐵, 𝑑 = .25(−4 + 3𝑣𝜋 𝐵 + 𝑣𝜋 𝐶 )

– 𝑞𝜋 𝐵, 𝑙 = 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = −1 + 𝑣𝜋 𝐵

– 𝑞𝜋 𝐵, 𝑟 = −1 + 𝑣𝜋 𝐶

• 𝑣𝜋 𝐸 = .25 𝑞𝜋 𝐸, 𝑙 + 𝑞𝜋 𝐸, 𝑟 + 𝑞𝜋 𝐸, 𝑢 + 𝑞𝜋 𝐸, 𝑑 = .25(−4 + 3𝑣𝜋 𝐸 + 𝑣𝜋 𝐶 )

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐸, 𝑟 = 𝑞𝜋 𝐸, 𝑑 = −1 + 𝑣𝜋 𝐸

– 𝑞𝜋 𝐸, 𝑢 = −1 + 𝑣𝜋 𝐶

• Analytic solution: 𝑣𝜋 𝐶 = −6, 𝑣𝜋 𝐵 = −10, 𝑣𝜋 𝐸 = −10

BF=4

BF=1
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Iter1 Policy Improvement

• Plug in values from PE: 𝑣𝜋 𝐶 = −6, 𝑣𝜋 𝐵 = −10, 𝑣𝜋 𝐸 = −10, to get new policy 𝜋′

• 𝜋′ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐶, 𝑎 = 𝑟

– 𝑞𝜋 𝐶, 𝑙 = −1 + 𝑣𝜋 𝐵 = −1 − 10 = −11

– 𝑞𝜋 𝐶, 𝑟 = 9

– 𝑞𝜋 𝐶, 𝑢 = −11

– 𝑞𝜋 𝐶, 𝑑 = −1 + 𝑣𝜋 𝐸 = −1 − 10 = −11

• 𝜋′ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐵, 𝑎 = 𝑟

– 𝑞𝜋 𝐵, 𝑙 = 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = −1 + 𝑣𝜋 𝐵 = −1 − 10 = −11

– 𝑞𝜋 𝐵, 𝑟 = −1 + 𝑣𝜋 𝐶 = −1 − 6 = −7

• 𝜋′ 𝐸 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐸, 𝑎 = 𝑢

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐸, 𝑟 = 𝑞𝜋 𝐸, 𝑑 = −1 + 𝑣𝜋 𝐸 = −1 − 10 = −11

– 𝑞𝜋 𝐸, 𝑢 = −1 + 𝑣𝜋 𝐶 = −1 − 6 = −7

A
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Iter2 Policy Evaluation of Det Policy

• Bellman Exp Equation for Det Env:𝑣𝜋 𝑠 =
σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠

𝑎 + 𝛾𝑣𝜋 𝑠′

• Det policy: 𝜋 𝑟 𝐵 = 1; 𝜋 𝑟 𝐶 = 1; 𝜋 𝑢 𝐸 = 1

• 𝑣𝜋 𝐶 = 1.0𝑞𝜋 𝐶, 𝑟

– 𝑞𝜋 𝐶, 𝑟 = 9

• 𝑣𝜋 𝐵 = 1.0𝑞𝜋 𝐵, 𝑟

– 𝑞𝜋 𝐵, 𝑟 = −1 + 𝑣𝜋 𝐶

• 𝑣𝜋 𝐸 = 1.0𝑞𝜋 𝐸, 𝑢

– 𝑞𝜋 𝐸, 𝑢 = −1 + 𝑣𝜋 𝐶

• Analytic solution: 𝑣𝜋 𝐶 = 9; 𝑣𝜋 𝐵 = 8; 𝑣𝜋 𝐸 = 8
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Iter2 Policy Improvement

• Plug in values from PE: 𝑣𝜋 𝐶 = 9, 𝑣𝜋 𝐵 = 8, 𝑣𝜋 𝐸 = 8, to get new policy 𝜋′

• 𝜋′ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐶, 𝑎 = 𝑟

– 𝑞𝜋 𝐶, 𝑙 = −1 + 𝑣𝜋 𝐵 = −1 + 8 = 7

– 𝑞𝜋 𝐶, 𝑟 = 9

– 𝑞𝜋 𝐶, 𝑢 = −11

– 𝑞𝜋 𝐶, 𝑑 = −1 + 𝑣𝜋 𝐸 = −1 + 8 = 7

• 𝜋′ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐵, 𝑎 = 𝑟

– 𝑞𝜋 𝐵, 𝑙 = 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = −1 + 𝑣𝜋 𝐵 = 7

– 𝑞𝜋 𝐵, 𝑟 = −1 + 𝑣𝜋 𝐶 = −1 + 9 = 8

• 𝜋′ 𝐸 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐸, 𝑎 = 𝑢

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐸, 𝑟 = 𝑞𝜋 𝐸, 𝑑 = −1 + 𝑣𝜋 𝐸 = 7

– 𝑞𝜋 𝐸, 𝑢 = −1 + 𝑣𝜋 𝐶 = −1 + 9 = 8

• Policy is now stable (𝜋′ = 𝜋), so we have found the optimal policy. (We do not need to re-
run Policy Evaluation, since we do not care if the value functions converge as long as the 
policy is stable.)
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MiniGW Example

• Policy Iteration for Deterministic 

Environment

• Policy Iteration for Stochastic Environment

• Value Iteration for Deterministic 

Environment  

• Value Iteration for Stochastic Environment

• Model learning
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Iter1 Policy Evaluation of Random Policy

• Bellman Exp Equation: 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

• Random policy: 𝜋 𝑙 𝑠 = 𝜋 𝑟 𝑠 = 𝜋 𝑢 𝑠 = 𝜋 𝑑 𝑠 = 0.25
• Set of equations:

• 𝑣𝜋 𝐶 = .25 𝑞𝜋 𝐶, 𝑙 + 𝑞𝜋 𝐶, 𝑟 + 𝑞𝜋 𝐶, 𝑢 + 𝑞𝜋 𝐶, 𝑑 = .25(−4 + 𝑣𝜋 𝐵 + 𝑣𝜋 𝐸 )

– 𝑞𝜋 𝐶, 𝑙 = .8[−1 + 𝑣𝜋 𝐵 ] + .1[−1 + 𝑣(𝐴)] + .1[−1 + 𝑣𝜋 𝐸 ] = −2 + .8𝑣𝜋 𝐵 + .1𝑣𝜋 𝐸

– 𝑞𝜋 𝐶, 𝑟 = .8[−1 + 𝑣 𝐷 ] + .1[−1 + 𝑣 𝐴 ] + .1[−1 + 𝑣𝜋 𝐸 ] = 6 + .1𝑣𝜋 𝐸

– 𝑞𝜋 𝐶, 𝑢 = .8[−1 + 𝑣 𝐴 ] + .1[−1 + 𝑣𝜋 𝐵 ] + .1[−1 + 𝑣 𝐷 ] = −8 + .1𝑣𝜋 𝐵

– 𝑞𝜋 𝐶, 𝑑 = .8[−1 + 𝑣𝜋 𝐸 ] + .1[−1 + 𝑣𝜋 𝐵 ] + .1[−1 + 𝑣 𝐷 ] = .8𝑣𝜋 𝐸 + .1𝑣𝜋 𝐵

• 𝑣𝜋 𝐵 = .25 𝑞𝜋 𝐵, 𝑙 + 𝑞𝜋 𝐵, 𝑟 + 𝑞𝜋 𝐵, 𝑢 + 𝑞𝜋 𝐵, 𝑑 = .25(−4 + 3𝑣𝜋 𝐵 + 𝑣𝜋 𝐶 )

– 𝑞𝜋 𝐵, 𝑙 = 1.0 −1 + 𝑣𝜋 𝐵 = −1 + 𝑣𝜋 𝐵

– 𝑞𝜋 𝐵, 𝑟 = .8 −1 + 𝑣𝜋 𝐶 + .2 −1 + 𝑣𝜋 𝐵 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐵

– 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = .9 −1 + 𝑣𝜋 𝐵 + .1 −1 + 𝑣𝜋 𝐶 = −1 + .9𝑣𝜋 𝐵 + .1𝑣𝜋 𝐶

• 𝑣𝜋 𝐸 = 0.25(𝑞𝜋 𝐸, 𝑙 + 𝑞𝜋 𝐸, 𝑟 + 𝑞𝜋 𝐸, 𝑢 + 𝑞𝜋 𝐸, 𝑑 ) = .25(−4 + 3𝑣𝜋 𝐸 + 𝑣𝜋 𝐶 )

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐵, 𝑟 = .9 −1 + 𝑣𝜋 𝐸 + .1 −1 + 𝑉𝜋 𝐶 = −1 + .9𝑣𝜋 𝐸 + .1𝑉𝜋 𝐶

– 𝑞𝜋 𝐸, 𝑢 = .8 −1 + 𝑣𝜋 𝐶 + .2 −1 + 𝑣𝜋 𝐸 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐸

– 𝑞𝜋 𝐸, 𝑑 = 1.0 −1 + 𝑣𝜋 𝐸 = −1 + 𝑣𝜋 𝐸

• Analytic solution: 𝑣𝜋 𝐶 = −6, 𝑣𝜋 𝐵 = −10, 𝑣𝜋 𝐸 = −10
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Iter1 Policy Improvement

• Plug in values from PE: 𝑣𝜋 𝐶 = −6, 𝑣𝜋 𝐵 = −10, 𝑣𝜋 𝐸 = −10, to get new policy 𝜋′

• 𝜋′ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐶, 𝑎 = 𝑟

– 𝑞𝜋 𝐶, 𝑙 = −2 + .8𝑣𝜋 𝐵 + .1𝑣𝜋 𝐸 = −2 + .8 ⋅ (−10) + .1 ⋅ (−10) = −11

– 𝑞𝜋 𝐶, 𝑟 = 6 + .1𝑣𝜋 𝐸 = 6 + .1 ⋅ (−10) = 5

– 𝑞𝜋 𝐶, 𝑢 = −8 + .1𝑣𝜋 𝐵 = −8 + .1 ⋅ (−10) = −9

– 𝑞𝜋 𝐶, 𝑑 = .8𝑣𝜋 𝐸 + .1𝑣𝜋 𝐵 = .8 ⋅ (−10) + 0.1 ⋅ (−10) = −9

• 𝜋′ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐵, 𝑎 = 𝑟

– 𝑞𝜋 𝐵, 𝑙 = −1 + 𝑣𝜋 𝐵 = −1 + (−10) = −11

– 𝑞𝜋 𝐵, 𝑟 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐵 = −1 + .8 ⋅ (−6) + .2 ⋅ (−10) = −7.8

– 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = −1 + .9𝑣𝜋 𝐵 + .1𝑣𝜋 𝐶 = −1 + .9 ⋅ (−10) + .1 ⋅ (−6) = −10.6

• 𝜋′ 𝐸 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐸, 𝑎 = 𝑢

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐵, 𝑟 = −1 + .9𝑣𝜋 𝐸 + .1𝑉𝜋 𝐶 = −1 + .9 ⋅ (−10) + .1 ⋅ (−6) = −10.6

– 𝑞𝜋 𝐸, 𝑢 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐸 = −1 + .8 ⋅ (−6) + .2 ⋅ (−10) = −7.8

– 𝑞𝜋 𝐸, 𝑑 = −1 + 1.0𝑣𝜋 𝐸 = −1 + 1.0 ⋅ (−10) = −11
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Iter2 Policy Evaluation of Det Policy

• Bellman Exp Equation: 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 =
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

• Det policy: 𝜋 𝑟 𝐵 = 1; 𝜋 𝑟 𝐶 = 1; 𝜋 𝑢 𝐶 = 1
• Set of equations:

• 𝑣𝜋 𝐶 = 1.0𝑞𝜋 𝐶, 𝑟
– 𝑞𝜋 𝐶, 𝑟 = 6 + 0.1𝑣𝜋 𝐸

• 𝑣𝜋 𝐵 = 1.0𝑞𝜋 𝐵, 𝑟
– 𝑞𝜋 𝐵, 𝑟 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐵

• 𝑣𝜋 𝐸 = 1.0𝑞𝜋 𝐸, 𝑢
– 𝑞𝜋 𝐸, 𝑢 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐸

• Analytic solution: 𝑣𝜋 𝐶 ≈ 6.5, 𝑣𝜋 𝐵 ≈ 5.3, 𝑣𝜋 𝐸 ≈ 5.3
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Iter2 Policy Improvement

• Plugging in values from PE: 𝑉𝜋 𝐶 = 6.5, 𝑉𝜋 𝐵 = 5.3, 𝑉𝜋 𝐸 = 5.3, we get new policy 𝜋′

• 𝜋′ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐶, 𝑎 = 𝑟

– 𝑞𝜋 𝐶, 𝑙 = −2 + .8𝑣𝜋 𝐵 + .1𝑣𝜋 𝐸 = −2 + .8 ⋅ 5.3 + .1 ⋅ 5.3 ≈ 2.8

– 𝑞𝜋 𝐶, 𝑟 = 6 + .1𝑣𝜋 𝐸 = 6 + .1 ⋅ 5.3 ≈ 6.5

– 𝑞𝜋 𝐶, 𝑢 = −8 + .1𝑣𝜋 𝐵 = −8 + .1 ⋅ 5.3 ≈ −7.5

– 𝑞𝜋 𝐶, 𝑑 = .8𝑣𝜋 𝐸 + .1𝑣𝜋 𝐵 = .8 ⋅ 5.3 + 0.1 ⋅ 5.3 ≈ 4.8

• 𝜋′ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐵, 𝑎 = 𝑟

– 𝑞𝜋 𝐵, 𝑙 = −1 + 𝑣𝜋 𝐵 = −1 + 5.3 = 4.3

– 𝑞𝜋 𝐵, 𝑟 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐵 = −1 + .8 ⋅ 6.5 + .2 ⋅ 5.3 ≈ 5.3

– 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = −1 + .9𝑣𝜋 𝐵 + .1𝑣𝜋 𝐶 = −1 + .9 ⋅ 5.3 + .1 ⋅ 6.5 ≈ 4.4

• 𝜋′ 𝐸 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐸, 𝑎 = 𝑢

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐵, 𝑟 = −1 + .9𝑣𝜋 𝐸 + .1𝑉𝜋 𝐶 = −1 + .9 ⋅ 5.3 + .1 ⋅ 6.5 ≈ 4.4

– 𝑞𝜋 𝐸, 𝑢 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐸 = −1 + .8 ⋅ 6.5 + .2 ⋅ 5.3 ≈ 5.3

– 𝑞𝜋 𝐸, 𝑑 = −1 + 𝑣𝜋 𝐸 = −1 + 5.3 = 4.3

• New policy is now stable (𝜋′ = 𝜋), so we have found the optimal policy. 51
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MiniGW Example

• Policy Iteration for Deterministic 

Environment

• Policy Iteration for Stochastic Environment

• Value Iteration for Deterministic 

Environment  

• Value Iteration for Stochastic Environment

• Model learning
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Bellman Opt Equation for Det Env

• Bellman Opt Equation for Det Env: 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎 ; 𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣∗ 𝑠′

• 𝑣∗ 𝐶 = max
𝑎

𝑞∗ 𝐶, 𝑎 = max{−1 + 𝑣∗ 𝐵 , 9,−11,−1 + 𝑣∗ 𝐸 }

– 𝑞∗ 𝐶, 𝑙 = −1 + 𝑣∗ 𝐵

– 𝑞∗ 𝐶, 𝑟 = −1 + 𝑣 𝐷 = 9

– 𝑞∗ 𝐶, 𝑢 = −1 + 𝑣 𝐴 = −11

– 𝑞∗ 𝐶, 𝑑 = −1 + 𝑣∗ 𝐸

• 𝑣∗ 𝐵 = max
𝑎

𝑞∗ 𝐵, 𝑎 = max{−1 + 𝑣∗ 𝐵 ,−1 + 𝑣∗ 𝐶 ,−1 + 𝑣∗ 𝐵 ,−1 + 𝑣∗ 𝐵 }

– 𝑞∗ 𝐵, 𝑙 = 𝑞∗ 𝐵, 𝑢 = 𝑞∗ 𝐵, 𝑑 = −1 + 𝑣∗ 𝐵

– 𝑞∗ 𝐵, 𝑟 = −1 + 𝑣∗ 𝐶

• 𝑣∗ 𝐸 = max
𝑎

𝑞∗ 𝐸, 𝑎 = max{−1 + 𝑣∗ 𝐸 ,−1 + 𝑣∗ 𝐸 ,−1 + 𝑣∗ 𝐶 ,−1 + 𝑣∗ 𝐸 }

– 𝑞∗ 𝐸, 𝑙 = 𝑞∗ 𝐸, 𝑟 = 𝑞∗ 𝐸, 𝑑 = −1 + 𝑣∗ 𝐸
– 𝑞∗ 𝐸, 𝑢 = −1 + 𝑣∗ 𝐶

• The set of non-linear equations cannot be solved analytically due to the max operator, so we 
need to use Value Iteration to find 𝑣∗ 𝐶 , 𝑣∗ 𝐵 , 𝑣∗ 𝐸
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Iter1 Value Iteration w. Det Env

• Value Iteration: 𝑣𝑘+1 𝑠 = max
𝑎

𝑞𝑘+1 𝑠, 𝑎 = max
𝑎

𝑟 + 𝛾𝑣𝑘 𝑠′ w. in-place updates.

• Initialize 𝑣0 𝐵 = 𝑣0 𝐶 = 𝑣0 𝐸 = 0. 

• 𝑣1 𝐶 = max
𝑎

𝑞1 𝐶, 𝑎 = max −1, 9,−11,−1 = 9

– 𝑞1 𝐶, 𝑙 = −1 + 𝑣0 𝐵 = −1 + 0 = −1

– 𝑞1 𝐶, 𝑟 = 9

– 𝑞1 𝐶, 𝑢 = −11

– 𝑞1 𝐶, 𝑑 = −1 + 𝑣0 𝐸 = −1 + 0 = −1

• 𝑣1 𝐵 = max
𝑎

𝑞1 𝐵, 𝑎 = max(−1, 8, −1, −1) = 8

– 𝑞1 𝐵, 𝑙 = 𝑞1 𝐵, 𝑢 = 𝑞1 𝐵, 𝑑 = −1 + 𝑣0 𝐵 = −1 + 0 = −1
– 𝑞1 𝐵, 𝑟 = 𝑟 + 𝑣1 𝐶 = −1 + 9 = 8 (𝑣1 𝐶 computed in the current iteration is used instead of 𝑣0 𝐶 )

• 𝑣1 𝐸 = max
𝑎

𝑞1 𝐸, 𝑎 = max(−1,−1, 8, −1) = 8

– 𝑞1 𝐸, 𝑙 = 𝑞1 𝐸, 𝑟 = 𝑞1 𝐸, 𝑑 = 𝑟 + 𝑣0 𝐸 = −1 + 0 = −1
– 𝑞1 𝐸, 𝑢 = 𝑟 + 𝑣1 𝐶 = −1 + 9 = 8 (𝑣1 𝐶 is used)

• After 1st iteration: 𝑣1 𝐶 = 9, 𝑣1 𝐵 = 8, 𝑣1 𝐸 = 8
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Iter2 Value Iteration w. Det Env

• Value Iteration: 𝑣𝑘+1 𝑠 = max
𝑎

𝑞𝑘+1 𝑠, 𝑎 = max
𝑎

𝑟 + 𝛾𝑣𝑘 𝑠′ w. in-place updates.

• We have now 𝑣1 𝐵 = 𝑣1 𝐸 = 8, 𝑣1 𝐶 = 9. 

• 𝑣2 𝐶 = max
𝑎

𝑞2 𝐶, 𝑎 = max 7, 9, −11, 7 = 9

– 𝑞2 𝐶, 𝑙 = −1 + 𝑣1 𝐵 = −1 + 8 = 7

– 𝑞2 𝐶, 𝑟 = 9

– 𝑞2 𝐶, 𝑢 = −11

– 𝑞2 𝐶, 𝑑 = −1 + 𝑣1 𝐸 = −1 + 8 = 7

• 𝑣2 𝐵 = max
𝑎

𝑞2 𝐵, 𝑎 = max(7, 8, 7, 7) = 8

– 𝑞2 𝐵, 𝑙 = 𝑞2 𝐵, 𝑢 = 𝑞2 𝐵, 𝑑 = −1 + 𝑣1 𝐵 = −1 + 8 = 7
– 𝑞2 𝐵, 𝑟 = −1 + 𝑣2 𝐶 = −1 + 9 = 8 (𝑣2 𝐶 is used, which happens to be equal to 𝑣1 𝐶 )

• 𝑣2 𝐸 = max
𝑎

𝑞2 𝐸, 𝑎 = max(7, 7, 8, 7) = 8

– 𝑞2 𝐸, 𝑙 = 𝑞2 𝐸, 𝑟 = 𝑞2 𝐸, 𝑑 = −1 + 𝑣1 𝐸 = −1 + 8 = 7
– 𝑞2 𝐸, 𝑢 = −1 + 𝑣2 𝐶 = −1 + 9 = 8 (𝑣2 𝐶 is used)

• After 2nd iteration: 𝑣2 𝐶 = 9, 𝑣2 𝐵 = 8, 𝑣2 = 8. VI has converged， so 𝑣∗ ⋅ = 𝑣2(⋅). 

• Optimal policy: 𝜋∗ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐶, 𝑎 = 𝑟; 𝜋∗ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐵, 𝑎 = 𝑟; 𝜋∗ 𝐸 =

argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐸, 𝑎 = 𝑢

BF=4

BF=1
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MiniGW Example

• Policy Iteration for Deterministic 

Environment

• Policy Iteration for Stochastic Environment

• Value Iteration for Deterministic 

Environment  

• Value Iteration for Stochastic Environment

• Model learning
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Bellman Opt Equation for Stochastic Env

• Bellman Opt Equation: 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎 , 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′

• 𝑣∗ 𝐶 = max
𝑎

𝑞∗ 𝐶, 𝑎

– 𝑞∗ 𝐶, 𝑙 = .8[−1 + 𝑣∗ 𝐵 ] + .1[−1 + 𝑣(𝐴)] + .1[−1 + 𝑣∗ 𝐸 ] = −2 + .8𝑣∗ 𝐵 + .1𝑣∗ 𝐸

– 𝑞∗ 𝐶, 𝑟 = .8[−1 + 𝑣 𝐷 ] + .1[−1 + 𝑣 𝐴 ] + .1[−1 + 𝑣∗ 𝐸 ] = 6 + .1𝑣∗ 𝐸

– 𝑞∗ 𝐶, 𝑢 = .8[−1 + 𝑣 𝐴 ] + .1[−1 + 𝑣∗ 𝐵 ] + .1[−1 + 𝑣 𝐷 ] = −8 + .1𝑣∗ 𝐵

– 𝑞∗ 𝐶, 𝑑 = .8[−1 + 𝑣∗ 𝐸 ] + .1[−1 + 𝑣∗ 𝐵 ] + .1[−1 + 𝑣 𝐷 ] = .8𝑣∗ 𝐸 + .1𝑣∗ 𝐵

• 𝑣1 𝐵 = max
𝑎

𝑞∗ 𝐵, 𝑎

– 𝑞∗ 𝐵, 𝑙 = 1.0 −1 + 𝑣∗ 𝐵 = −1 + 𝑣∗ 𝐵

– 𝑞∗ 𝐵, 𝑟 = .8 −1 + 𝑣∗ 𝐶 + .2 −1 + 𝑣∗ 𝐵 = −1 + .8𝑣∗ 𝐶 + .2𝑣∗ 𝐵

– 𝑞∗ 𝐵, 𝑢 = 𝑞∗ 𝐵, 𝑑 = .9 −1 + 𝑣∗ 𝐵 + .1 −1 + 𝑣𝜋 𝐶 = −1 + .9𝑣∗ 𝐵 + .1𝑣∗ 𝐶

• 𝑣1 𝐸 = max
𝑎

𝑞∗ 𝐸, 𝑎

– 𝑞∗ 𝐸, 𝑙 = 𝑞∗ 𝐵, 𝑟 = .9 −1 + 𝑣∗ 𝐸 + .1 −1 + 𝑣∗ 𝐶 = −1 + .9𝑣∗ 𝐸 + .1𝑣∗ 𝐶

– 𝑞∗ 𝐸, 𝑢 = .8 −1 + 𝑣∗ 𝐶 + .2 −1 + 𝑣∗ 𝐸 = −1 + .8𝑣∗ 𝐶 + .2𝑣∗ 𝐸

– 𝑞∗ 𝐸, 𝑑 = 1.0 −1 + 𝑣∗ 𝐸 = −1 + 𝑣∗ 𝐸

• The set of non-linear equations cannot be solved analytically due to the max operator, so we need 
to use Value Iteration to find 𝑣∗ 𝐶 , 𝑣∗ 𝐵 , 𝑣∗ 𝐸
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Iter1 Value Iteration w. Sto Env

• Value Iteration: 𝑣𝑘+1 𝑠 = max
𝑎

𝑞𝑘+1 𝑠, 𝑎 = max
𝑎

𝑟 + 𝛾σ𝑠′ 𝑝 𝑠′ 𝑠, 𝑎 𝑣𝑘 𝑠′ w. in-place updates.

• Initialize 𝑣0 𝐵 = 𝑣0 𝐶 = 𝑣0 𝐸 = 0. 

• 𝑣1 𝐶 = max
𝑎

𝑞1 𝐶, 𝑎 = max −2, 6,−8, 0 = 6

– 𝑞1 𝐶, 𝑙 = −2 + .8𝑣0 𝐵 + .1𝑣0 𝐸 = −2 + .8 ⋅ 0 + 0.1 ⋅ 0 = −2

– 𝑞1 𝐶, 𝑟 = 6 + .1𝑣0 𝐸 = 6 + 0.1 ⋅ 0 = 6

– 𝑞1 𝐶, 𝑢 = −8 + .1𝑣0 𝐵 = −8 + 0.1 ⋅ 0 = −8

– 𝑞1 𝐶, 𝑑 = .8𝑣0 𝐸 + .1𝑣0 𝐵 = 0.8 ⋅ 0 + 0.1 ⋅ 0 = 0

• 𝑣1 𝐵 = max
𝑎

𝑞1 𝐵, 𝑎 = max −1, 3.8, −0.4, −0.4 = 3.8

– 𝑞1 𝐵, 𝑙 = −1 + 𝑣0 𝐵 = −1 + 0 = −1

– 𝑞1 𝐵, 𝑟 = −1 + .8𝑣1 𝐶 + .2𝑣0 𝐵 = −1 + .8 ⋅ 6 + .2 ⋅ 0 = 3.8

– 𝑞1 𝐵, 𝑢 = 𝑞1 𝐵, 𝑑 = −1 + .9𝑣0 𝐵 + .1𝑣1 𝐶 = −1 + .9 ⋅ 0 + .1 ⋅ 6 = −0.4

• 𝑣1 𝐸 = max
𝑎

𝑞1 𝐸, 𝑎 = max −0.4,−0.4, 3.8, −1 = 3.8

– 𝑞1 𝐸, 𝑙 = 𝑞1 𝐸, 𝑟 = −1 + .9𝑣0 𝐸 + .1𝑣1 𝐶 = −1 + .9 ⋅ 0 + .1 ⋅ 6 = −0.4

– 𝑞1 𝐸, 𝑢 = −1 + .8𝑣1 𝐶 + .2𝑣0 𝐸 = −1 + .8 ⋅ 6 + .2 ⋅ 0 = 3.8

– 𝑞1 𝐸, 𝑑 = −1 + 𝑣0 𝐸 = −1 + 1.0 ⋅ 0 = −1

• After 1st iteration: 𝑉𝜋 𝐶 = 6, 𝑉𝜋 𝐵 = 3.8, 𝑉𝜋 𝐸 = 3.8
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Iter2 Value Iteration w. Sto Env

• Value Iteration: 𝑣𝑘+1 𝑠 = max
𝑎

𝑞𝑘+1 𝑠, 𝑎 = max
𝑎

𝑟 + 𝛾σ𝑠′ 𝑝 𝑠′ 𝑠, 𝑎 𝑣𝑘 𝑠′ w. in-place updates.

• Now: 𝑣1 𝐵 = 𝑣1 𝐸 = 3.8, 𝑣1 𝐶 = 6. 

• 𝑣2 𝐶 = max
𝑎

𝑞2 𝐶, 𝑎 = max 1.42, 6.38,−7.62, 3.42 = 6.38

– 𝑞2 𝐶, 𝑙 = −2 + .8𝑣1 𝐵 + .1𝑣1 𝐸 = −2 + .8 ⋅ 3.8 + .1 ⋅ 3.8 = 1.42
– 𝑞2 𝐶, 𝑟 = 6 + .1𝑣1 𝐸 = 6 + .1 ⋅ 3.8 =6.38

– 𝑞2 𝐶, 𝑢 = −8 + .1𝑣1 𝐵 = −8 + .1 ⋅ 3.8 = −7.62

– 𝑞2 𝐶, 𝑑 = .8𝑣1 𝐸 + .1𝑣1 𝐵 = .8 ⋅ 3.8 + .1 ⋅ 3.8 = 3.42

• 𝑣2 𝐵 = max
𝑎

𝑞2 𝐵, 𝑎 = max 2.8, 4.86, 3.06, 3.06 = 4.86

– 𝑞2 𝐵, 𝑙 = −1 + 𝑣1 𝐵 = −1 + 1.0 ⋅ 3.8 = 2.8

– 𝑞2 𝐵, 𝑟 = −1 + .8𝑣2 𝐶 + .2𝑣1 𝐵 = −1 + .8 ⋅ 6.38 + .2 ⋅ 3.8 = 4.86

– 𝑞2 𝐵, 𝑢 = 𝑞2 𝐵, 𝑑 = −1 + .9𝑣1 𝐵 + .1𝑣2 𝐶 = −1 + .9 ⋅ 3.8 + .1 ⋅ 6.38 ≈ 3.06

• 𝑣2 𝐸 = max
𝑎

𝑞2 𝐸, 𝑎 = max 3.06, 3.06, 4.86, 2.8 = 4.86

– 𝑞2 𝐸, 𝑙 = 𝑞2 𝐸, 𝑟 = −1 + .9𝑣1 𝐸 + .1𝑣2 𝐶 = −1 + .9 ⋅ 3.8 + .1 ⋅ 6.38 ≈ 3.06

– 𝑞2 𝐸, 𝑢 = −1 + .8𝑣2 𝐶 + .2𝑣1 𝐸 = −1 + .8 ⋅ 6.38 + .2 ⋅ 3.8 ≈ 4.86

– 𝑞1 𝐸, 𝑑 = −1 + 𝑣1 𝐸 = −1 + 3.8 = 2.8

• After 2nd iteration: 𝑉𝜋 𝐶 = 6.38, 𝑉𝜋 𝐵 = 4.86, 𝑉𝜋 𝐸 = 4.86
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Iter6 Value Iteration w. Sto Env

• Value functions 𝑣∗(𝑠)
converged to 𝑣∗ 𝐶 =
6.53, 𝑣∗ 𝐵 = 𝑣∗ 𝐸 = 5.28
after 6 iterations with 

threshold condition Δ ≤ 𝜃 =
0.01. We can get the optimal 

policy:

– 𝜋∗ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐶, 𝑎 = 𝑟

– 𝜋∗ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐵, 𝑎 = 𝑟;

– 𝜋∗ 𝐸 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐸, 𝑎 = 𝑢
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Policy Iteration w. Deterministic Env

61

A

B C D

E

+10

−10Policy

Eval

-10

-10

-6

A

B C D

E

+10

−10
A

B C D

E

+10

−10Policy

Improv

-10

-10

-6

A

B C D

E

+10

−10

8

8

9

Policy

Eval

A

B C D

E

+10

−10

8

8

9

argmax
𝑎

𝑞𝜋(𝑠, 𝑎)

Policy

Improv

argmax
𝑎

𝑞𝜋(𝑠, 𝑎)

Policy 

converged

𝑣𝜋(𝑠)
𝑞𝜋(𝑠, 𝑎)

𝑣𝜋(𝑠)
𝑞𝜋(𝑠, 𝑎)



Policy Iteration w. Stochastic Env
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Value Iteration w. Deterministic Env
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Value Iteration w. Stochastic Env
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MiniGW Example

• Policy Iteration for Deterministic 

Environment

• Policy Iteration for Stochastic Environment

• Value Iteration for Deterministic 

Environment  

• Value Iteration for Stochastic Environment

• Model learning
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Model-Based RL

• If MDP is not available, we can use Model-
Based RL:

• Step 1: Learn empirical MDP model
– Estimate the model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 by executing some 

policy 𝜋 (may be random), and keeping track of 
outcomes 𝑟, s′ for each 𝑠, 𝑎 in the observed 
episodes.

• Step 2: Do planning w. the learned MDP for 
the optimal policy
– Dynamic Programming w. Value Iteration or Policy 

Iteration 
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MiniGW: Model Learning
Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

(𝐵, 𝑟, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)
(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, 10)

(𝐵, 𝑟, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)

(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, +10)

(𝐸, 𝑢, 𝐶, −1)
(𝐶, 𝑟, 𝐴, −1)
(𝐴, 𝑒𝑥𝑖𝑡, 𝑥, −10)

Episode 1 Episode 2

Episode 3 Episode 4

(𝐸, 𝑢, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)
(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, 10)

𝑝 −1, 𝐶 𝐵, 𝑟 = 1.0
𝑝 −1,𝐷 𝐶, 𝑟 = 0.75
𝑝 −1, 𝐴 𝐶, 𝑟 = 0.25
𝑝 10, 𝑥 𝐷, 𝑒𝑥𝑖𝑡 = 1.0
𝑝 −10, 𝑥 𝐴, 𝑒𝑥𝑖𝑡 = 1.0

• In the 4 episodes, we see 4 transitions from 
(𝑠 = 𝐶, 𝑎 = 𝑟). 3 of them go to next state 𝑠′ =
𝐷, and one goes to next state 𝑠′ = 𝐴, each w. 
reward −1. Hence 𝑝 −1,𝐷 𝐶, 𝑟 =
0.75; 𝑝 −1, 𝐴 𝐶, 𝑟 = 0.25.

𝑝 𝑠′ 𝑠, 𝑎
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Extra Reading

• Reinforcement Learning Tutorial by 

javatpoint

– https://www.javatpoint.com/reinforcement-

learning
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