
L7.1 MDP Planning

Zonghua Gu 2021

1Acknowledgement: slides based on https://www.coursera.org/specializations/reinforcement-learning

And textbook by Sutton and Barto http://incompleteideas.net/book/the-book-2nd.html

Model-Based vs. Model-Free
• Model-Based RL: MDP planning

– Learn MDP 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (given current state 𝑠 and action 𝑎, returns

prob distribution of current reward 𝑟 and next state 𝑠′), then plan

with Value Iteration or Policy Iteration

• Model-Free RL: Value-based and Policy-based

– Learn value function 𝑉 𝑠 or 𝑄(𝑠, 𝑎), or policy function 𝜋(𝑠)
without learning MDP

2

MDP

state 𝑠 action 𝑎

next

state 𝑠′
reward 𝑟

𝑉 𝑠 ,𝑄(𝑠, 𝑎)

state 𝑠 action 𝑎

Policy 𝜋(𝑠)

state 𝑠 action 𝑎

action 𝑎 = 𝜋(𝑠)

MDP Planning Value-based RL Policy-based RL

action

a = argmaxa𝑄(𝑠, 𝑎)

Overview of RL Algorithms

3

Markov Decision Process (MDP)
• An MDP consists of:

– Set of states 𝑆
– Start state s0
– Set of actions 𝐴
– Transitions and rewards 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (w. discount )

• Policy maps from states to actions:
– Deterministic policy 𝑎 = 𝜋(𝑠) defines a deterministic action 𝑎 for

state 𝑠.
– Stochastic policy 𝜋(𝑎|𝑠) defines a probability distribution over

possible actions 𝑎 for state 𝑠.
• Markov means that next state only depends on current state

– 𝑃 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, 𝐴𝑡−1 = 𝑎𝑡−1,…,𝑆0 = 𝑠0, 𝐴0 = 𝑎0
– = 𝑃(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡)
– Given the present state, the future and the past are independent
– e.g., for driving task, current vehicle position 𝒙 as the state does not

satisfy the Markov property, since the next state depends on not
only 𝒙, but also velocity ሶ𝒙, acceleration ሷ𝒙. (assuming acceleration ሷ𝒙
stays constant within each step) If we redefine the state as vector
𝒙, ሶ𝒙, ሷ𝒙 𝑇, then it satisfies the Markov property.

– Or, current snapshot of front camera view can be used as the state
(e.g., NVIDIA’s PilotNet), but some works use past 𝑁 video frames
as the state to capture more dynamics (e.g., Waymo’s
ChauffeurNet).

MDP Quiz
• For this MDP with a single state 𝑠 and two possible actions 𝑙𝑒𝑓𝑡 and

𝑟𝑖𝑔ℎ𝑡. Are these valid policies?
– 1) 𝜋 𝑙𝑒𝑓𝑡 𝑠 = 𝜋 𝑟𝑖𝑔ℎ𝑡 𝑠 = 0.5 (goes left or right with equal probability.

uniform random policy)

– 2) 𝜋 𝑙𝑒𝑓𝑡 𝑠 = 1.0, 𝜋 𝑟𝑖𝑔ℎ𝑡 𝑠 = 0 (always goes left)

– 3) Alternating left and right, i.e., if previous action is left, then current
action must be right, next action must be left, and so on.

– ANS: 3) is not a valid policy, since it depends on the history of actions.
To be a valid policy, the action must depend on the current state only.

• We can redefine the MDP’ extended state to include the last action
as part of it, then 3) is a valid policy for the new MDP.

5

𝑠

(𝑠, 𝑙𝑒𝑓𝑡) (𝑠, 𝑟𝑖𝑔ℎ𝑡)

An Example MDP
• Green nodes denote 3 states 𝑠0, 𝑠1, 𝑠2; Red nodes denote 2 possible

actions 𝑎0, 𝑎1 in each state. Each red node can also be denoted as
(𝑠, 𝑎).

• Agent taking action 𝑎 in state 𝑠 may get different reward 𝑟 and next
state 𝑠′, denoted as state transition (𝑠, 𝑎, 𝑟, 𝑠′), due to environment
uncertainty (all rewards are 0 expect +5 and −1 show in fig).

6

RL Reward Function
• For the vehicle in left fig:

– state: Pose of ego-car (𝑥, 𝑦, 𝜃) and environment map; action: Steering wheel/brake/acceleration

• Possible reward function: 𝑅𝑡 = 𝑤1𝑉𝑐𝑎𝑟 cos 𝜃 − 𝑤2 𝑐𝑡𝑒
– Weight sum to maximum longitudinal velocity (first term), and minimize cross-track error (distance to

lane center)

– This is an example of dense reward (e.g., at every time step), as opposed to sparse reward (e.g.,
only at the end of each episode)

• Compare with twiddle() :
– twiddle() can be viewed as an RL algorithm (policy gradient), that learns PID parameters with sparse

reward (cost function is average cross-track error (cte), computed at the end of each simulation
episode, as sum of squares of ctes for N timesteps divided by N. But it is very crude:

– It does not use the numeric value of cte, only its relative size (if err < best_err);

– Cost function does not include heading angle 𝜃;

– if the track is very long and irregular, then we can make the reward denser, to adjust PID parameters
every K timesteps instead of at the end of each episode.

7Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017

twiddle()

Amazon DeepRacer

• Amazon Web Services (AWS) launched
DeepRacer in 2018 for training AD algorithms with
RL

– https://aws.amazon.com/deepracer/

• You can train RL algorithm in the simulator on
AWS cloud, but it costs money after some free
time.

• They hold competitions, both online and in real-
world. 1/10th scale race car costs USD $349.

8

https://aws.amazon.com/deepracer/

9

Params for Writing

Reward Function

Example Reward Function
• def reward_function(params):

• '''Example of penalize steering, which helps mitigate zig-zag behaviors'''

• # Read input parameters

• distance_from_center = params['distance_from_center']

• track_width = params['track_width']

• steering = abs(params['steering_angle']) # Only need the absolute steering angle

• # Calculate 3 markers that are at varying distances away from the center line

• marker_1 = 0.1 * track_width

• marker_2 = 0.25 * track_width

• marker_3 = 0.5 * track_width

• # Give higher reward if the agent is closer to center line and vice versa

• if distance_from_center <= marker_1:

• reward = 1

• elif distance_from_center <= marker_2:

• reward = 0.5

• elif distance_from_center <= marker_3:

• reward = 0.1

• else:

• reward = 1e-3 # likely crashed/ close to off track

• # Steering penalty threshold, change the number based on your action space setting

• ABS_STEERING_THRESHOLD = 15

• # Penalize reward if the agent is steering too much

• if steering > ABS_STEERING_THRESHOLD:

• reward *= 0.8

• return float(reward)

10

• A more realistic and complex reward function: https://www.middleware-

solutions.fr/2019/08/14/an-introduction-to-aws-deepracer

https://www.middleware-solutions.fr/2019/08/14/an-introduction-to-aws-deepracer/

MDP Search Tree
• Each MDP state 𝑠 projects a search tree starting from it.

• In general, both policy and environment may be
stochastic
– Policy 𝜋 𝑎 𝑠 : probability distribution over possible actions 𝑎

from state 𝑠.
– Environment 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 : if agent takes action 𝑎 in state 𝑠,

env gives probability distribution over reward 𝑟 and next
states 𝑠′.

a

s

s’

s, a

(𝑠, 𝑎, 𝑠′) called a
transition

Reward 𝑅(𝑠, 𝑎, 𝑠′)

s,a,s’

s is a
state

(s, a) is a
q-state

Preventing Infinite Rewards

• Problem: What if the game lasts forever? Do we
get infinite rewards? No. Possible solutions:

• Finite horizon: (limit search tree depth)
– Terminate episodes after a fixed 𝑇 timesteps

• Discount factor: 0 < 𝛾 ≤ 1
– Think of it as a 1 − 𝛾 chance of ending the episode at

every step. Effective horizon (expected episode
length): σ𝑡=0

∞ 𝛾𝑡 =
1

1−𝛾

– Smaller 𝛾 leads to shorter horizon, and preference of
short-term to long-term rewards, and vice versa

• (Can have both finite horizon and discount factor)

• Absorbing state: guarantee that for every policy,
a terminal state will eventually be reached

12

Discount Factor Example

• Each time we descend

a level in the search

tree, we multiply in the

discount once

• Example: 𝛾 = 0.5
– 𝑈([1,2,3]) = 1 ∗ 1 +

0.5 ∗ 2 + 0.25 ∗ 3 <
𝑈([3,2,1])

Discounting Example

• Given:

– Actions: East, West, and Exit (only available in exit states a, e)

– Transitions: deterministic

• For  = 1, optimal policy in each state is always moving West

– From state d, reward of going West is 𝛾3 ⋅ 10 = 10, larger than reward of going

East 𝛾 ⋅ 1 = 1

• For  = 0.1, optimal policy in each state is shown below

– From state d, reward from going West is 𝛾3 ⋅ 10 = 0.01, less than reward from

going East 𝛾 ⋅ 1 = 0.1.

• For which  are West and East equally good when in state d?

– 𝛾3 ⋅ 10 = 𝛾 ⋅ 1 ⟹ 𝛾 =
1

10
≈ .32

← ←← ← ← ← ← →

 = 1  = 0.1  =
1

10

←→

The Big Picture

15

Problem Bellman
Equation

Algo (known
MDP)

Algo (unknown MDP,
sample-based)

Prediction (compute
𝑣𝜋 𝑠)

Bellman Exp.
Equation for 𝑣

Policy Evaluation
(PE)

MC Prediction, TD/TD(𝜆)
(on-policy)

Control (compute
𝑣𝜋 𝑠 , then 𝜋 𝑠 =
argmax

𝑎
𝑞(𝑠, 𝑎)) for

known MDP

Bellman Exp.
Equation for 𝑣 +
Greedy Policy
Improvement (GPI)

Policy Iteration
(PI=PE+GPI)

Cannot do GPI, since
cannot get 𝑄(𝑠, 𝑎) from
𝑉(𝑠) without MDP

Control (compute
𝑣∗ 𝑠 , then 𝜋∗ 𝑠 =
argmax

𝑎
𝑞∗(𝑠, 𝑎)) for

known MDP

Bellman Opt.
Equation for 𝑣

Value Iteration
(VI) (a form of
Generalized PI)

Cannot compute 𝑉∗(𝑠) w.
sample-based method
due to max

𝑎
in front;

cannot get 𝑄(𝑠, 𝑎) from
𝑉(𝑠) without MDP

Control (compute
𝑞∗(𝑠, 𝑎), then 𝜋∗ 𝑠 =
argmax

𝑎
𝑞∗(𝑠, 𝑎))

Bellman Opt.
Equation for 𝑞

Q Value
Iteration (QVI)

MC control, Sarsa (on-
policy)
Q Learning, Expected
Sarsa (off-policy)

Important

Known MDP

• In this lecture, we assume known MDP, and
use dynamic programming to solve Bellman
Equations and find the optimal policy (no
learning here).

16

known

known

want to optimize

Formal Definition of MDP

• Return (cumulative discounted reward) at time 𝑡: 𝐺𝑡 ≐ 𝑅𝑡+1 +
𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯+ 𝛾𝑇−1𝑅𝑇 = σ𝑘=0

𝑇−𝑡−1 𝛾𝑘 𝑅𝑡+𝑘+1
– At each step 𝑡 ∈ [0, 𝑇 − 1], agent takes an action 𝐴𝑡 in state 𝑆𝑡; at

step 𝑡 + 1, agent receives a reward 𝑅𝑡+1 and transitions into the
next state 𝑆𝑡+1 with the trace (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1)

– We assume episodic tasks, and this specific episode has length
of 𝑇 steps. (𝑇 = ∞ for continuous tasks)

• State Value Function: expected return under policy 𝜋: 𝑣𝜋 𝑠 ≐
𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

• Action Value Function: expected return from taking action 𝑎, then
follow policy 𝜋: 𝑞𝜋 𝑠, 𝑎 ≐ 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• The RL problem: find the optimal policy 𝜋(𝑎|𝑠) that maximizes the
expected return from each state (the state VF)

17

Important

𝑝(𝑅𝑡+1, 𝑆𝑡+1|𝑆𝑡 , 𝐴𝑡)

Reward 𝑅𝑡+1
State 𝑆𝑡+1

Action 𝐴𝑡

Environment

RL Agent

𝜋(𝐴𝑡|𝑆𝑡)

Bellman Expectation Equations

• Bellman Expectation Equation for State Value
Function:

• 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

– Expected value starting from state 𝑠 and following
policy 𝜋.

• Bellman Expectation Equation for Action
Value Function

• 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 [

]

𝑟 +

𝛾 σ𝑎′𝜋 𝑎′ 𝑠′ 𝑞𝜋 𝑠′, 𝑎′
– Expected value starting from state 𝑠, taking action
𝑎, and thereafter following policy 𝜋.

18

Important

Bellman Optimality Equations
• Bellman Optimality Equation for State Value Function:

• 𝑣∗ 𝑠 = max
𝑎

σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠
′

– Max value starting from state 𝑠 and following the greedy policy
𝜋 𝑠 = argmax

a
𝑞∗ 𝑠, 𝑎

• Bellman Optimality Equation for Action Value Function

• 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′

– Max value starting from state 𝑠, taking action 𝑎, and thereafter
following the greedy policy 𝜋 𝑠 = argmax

a
𝑞∗ 𝑠, 𝑎

19

• Notations in left fig:

• σ𝑠′ 𝑇(𝑠, 𝑎, 𝑠′) […] =
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 […]

• 𝑅 𝑠, 𝑎 =
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟

Important

Bellman Equations written with

Expectation Symbols
• Bellman Exp Equations:

• 𝑣𝜋 𝑠 = 𝔼𝑎𝔼𝑟, 𝑠′[𝑟 + 𝛾𝑣𝜋 𝑠′]

• 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾𝔼𝑎𝑞𝜋 𝑠, 𝑎

• Bellman Opt Equations:

• 𝑣∗ 𝑠 = max
𝑎

𝔼𝑟, 𝑠′[𝑟 + 𝛾𝑣∗ 𝑠′]

• 𝑞∗ 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾max
𝑎

𝑞∗ 𝑠, 𝑎

• Detailed derivations:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑎∼𝜋(𝑎|𝑠)𝑞𝜋 𝑠, 𝑎 =

𝔼𝑎∼𝜋(𝑎|𝑠) 𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎)[𝑟 + 𝛾𝑣𝜋 𝑠′]

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ = 𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎) 𝑟 + 𝛾𝑣𝜋 𝑠′ =

𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎) 𝑟 + 𝛾𝔼𝑎∼𝜋(𝑎|𝑠) 𝑞𝜋 𝑠, 𝑎

– 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎 = max
𝑎

𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎)[𝑟 + 𝛾𝑣∗ 𝑠′]

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′ = 𝔼𝑟, 𝑠′∼𝑝(𝑟,𝑠′|𝑠,𝑎)[𝑟 + 𝛾𝑣∗ 𝑠′]

20

21

𝜋 𝑎 𝑠 : agent

takes action 𝑎

𝑝 𝑟, 𝑠′ 𝑠, 𝑎 : env

gives reward 𝑟
and moves agent

to 𝑠′

𝜋 𝑎 𝑠

𝑝 𝑟, 𝑠′ 𝑠, 𝑎

Backup Diagrams

Bellman Exp Eqn for 𝑞𝜋 𝑠, 𝑎 Bellman Opt Eqn for 𝑞∗ 𝑠, 𝑎

maxmax

Bellman Exp Eqn for 𝑣𝜋 𝑠 Bellman Opt Eqn for 𝑣∗ 𝑠

max

Important

(state, action)

state

𝑣(𝑠) vs. 𝑞(𝑠, 𝑎)

22

• State-action Value Function 𝑞(𝑠, 𝑎) contains more
information than State value function 𝑣(𝑠). Given
𝑞∗ 𝑠, 𝑎 , optimal policy 𝜋∗ s = argmax

𝑎
𝑞∗ 𝑠, 𝑎 .

• Can always go from 𝑞𝜋(𝑠, 𝑎) to 𝑣𝜋(𝑠), or from 𝑞∗(𝑠, 𝑎)
to 𝑣∗(𝑠):

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 ; 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎

• With known MDP (𝑝 𝑟, 𝑠′ 𝑠, 𝑎 , i.e., model-based): can
go from 𝑣𝜋(𝑠) to 𝑞𝜋(𝑠, 𝑎), or from 𝑣∗(𝑠) to 𝑞∗(𝑠, 𝑎):

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′

• With unknown MDP (unknown 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 , i.e.,
model-free) : cannot go from 𝑣𝜋(𝑠) to 𝑞𝜋(𝑠, 𝑎), or from
𝑣∗(𝑠) to 𝑞∗(𝑠, 𝑎)

Important

Simplified Bellman Equations for

Deterministic Env

• Bellman Equations:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

– 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′

• For Deterministic Env: there is only one possible
(𝑟, 𝑠′) for a given (𝑠, 𝑎) (we use 𝑅𝑠

𝑎 to
emphasize that reward 𝑟 is specific to this
(𝑠, 𝑎)):

– 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣𝜋 𝑠′

– 𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣∗ 𝑠

′

23

Important

Policy Evaluation

• The prediction problem: predict Value Function for
given policy 𝜋 by solving Bellman Exp. Equation
for State Value Function

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

= 𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]

• Can also be written as:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ denotes the

State-Action Value Function for taking action 𝑎 in
state 𝑠, then follow policy 𝜋 afterwards

• A set of linear equations that can be solved
analytically for small system

– # unknowns = # equations = # states
24

Grid World1: Policy Evaluation
• Non-episodic MDP w. deterministic env: Agent in state 𝑠 ∈ 𝐴,𝐵, 𝐶, 𝐷 taking action 𝑎 ∈

𝑙, 𝑟, 𝑢, 𝑑 always moves to the next state in the movement direction, unless it is blocked
by the walls. Discount factor 𝛾 = 0.7.

• Random policy: Agent in state 𝑠 ∈ 𝐴, 𝐵, 𝐶, 𝐷 takes a random action 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑 with
equal probability of 0.25 each.

• Bellman Exp. Equation for det env: 𝑣𝜋 𝑠 = σ𝑎𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣𝜋 𝑠′

• 𝑣𝜋 𝐴 = 0.25 𝑞𝜋 𝐴, 𝑙 + 𝑞𝜋 𝐴, 𝑟 + 𝑞𝜋 𝐴, 𝑢 + 𝑞𝜋(𝐴, 𝑑) = 0.5 ⋅ 0.7𝑣𝜋 𝐴 + 0.25 ⋅ ൫

൯

5 +

0.7𝑣𝜋 𝐵 + 0.25 ⋅ 0.7𝑣𝜋 𝐶

– 𝑞𝜋 𝐴, 𝑙 = 𝑞𝜋 𝐴, 𝑢 = 0 + 0.7𝑣𝜋 𝐴

– 𝑞𝜋 𝐴, 𝑟 = 5 + 0.7𝑣𝜋 𝐵

– 𝑞𝜋 𝐴, 𝑑 = 0 + 0.7𝑣𝜋 𝐶

• 𝑣𝜋 𝐵 = 0.25 𝑞𝜋 𝐵, 𝑙 + 𝑞𝜋 𝐵, 𝑟 + 𝑞𝜋 𝐵, 𝑢 + 𝑞𝜋(𝐵, 𝑑) = 0.25 ⋅ 0.7𝑣𝜋 𝐴 + 0.5 ⋅

5 + 0.7𝑣𝜋 𝐵 + 0.25 ⋅ 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐵, 𝑙 = 0 + 0.7𝑣𝜋 𝐴

– 𝑞𝜋 𝐵, 𝑟 = 𝑞𝜋 𝐴, 𝑢 = 5 + 0.7𝑣𝜋 𝐵

– 𝑞𝜋 𝐵, 𝑑 = 0 + 0.7𝑣𝜋 𝐷

• 𝑣𝜋 𝐶 = 0.25 𝑞𝜋 𝐶, 𝑙 + 𝑞𝜋 𝐶, 𝑟 + 𝑞𝜋 𝐶, 𝑢 + 𝑞𝜋(𝐶, 𝑑) = 0.25 ⋅ 0.7𝑣𝜋 𝐴 + 0.5 ⋅
0.7𝑣𝜋 𝐶 + 0.25 ⋅ 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐶, 𝑙 = 𝑞𝜋 𝐶, 𝑑 = 0 + 0.7𝑣𝜋 𝐶

– 𝑞𝜋 𝐶, 𝑟 = 0 + 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐶, 𝑢 = 0 + 0.7𝑣𝜋 𝐴

• 𝑣𝜋 𝐷 = 0.25 𝑞𝜋 𝐷, 𝑙 + 𝑞𝜋 𝐷, 𝑟 + 𝑞𝜋 𝐷, 𝑢 + 𝑞𝜋(𝐷, 𝑑) = 0.25 ⋅ (5 + 0.7𝑣𝜋 𝐵) + 0.25 ⋅
0.7𝑣𝜋 𝐶 + 0.5 ⋅ 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐷, 𝑙 = 0 + 0.7𝑣𝜋 𝐶

– 𝑞𝜋 𝐷, 𝑟 = 𝑞𝜋 𝐷, 𝑑 = 0 + 0.7𝑣𝜋 𝐷

– 𝑞𝜋 𝐷, 𝑢 = 5 + 0.7𝑣𝜋 𝐵

• Solution: 𝑣𝜋 𝐴 = 4.2, 𝑣𝜋 𝐵 = 6.1, 𝑣𝜋 𝐶 = 2.2, 𝑣𝜋 𝐷 = 4.2. 𝑞𝜋 𝑠, 𝑎 can also be
obtained.

25

BF=4

BF=1

(BF: Branching Factor)

Iterative Policy Evaluation
• If # states are too large, it may be too expensive to analytically solve the set of

linear Bellman Exp. Equations. We can use Iterative Policy Evaluation and
solve the recursive Bellman equations iteratively:

– 𝑣 𝑠 = 𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝑣 𝑠′ ⇒ 𝑣𝑘 𝑠 ← 𝐵𝑒𝑙𝑙𝑚𝑎𝑛(𝑣𝑘−1 𝑠′)

• In-place updates:
– For faster convergence, update 𝑣𝑘 𝑠 using the value of 𝑣𝑘 𝑠′ that has been updated in

the same iteration, instead of 𝑣𝑘−1 𝑠′ from the previous iteration.

– 𝑣𝑘 𝑠 ← 𝐵𝑒𝑙𝑙𝑚𝑎𝑛(𝑣𝑘 𝑠′)

26

Iterative Policy Evaluation Example

• An episodic MDP with terminal states with 𝑣 𝑠 = 0 located in the top left
and bottom right corners. Reward 𝑅 = −1 for every transition (agent is
punished for delays before reaching the terminal state and ending the
episode). Discount factor 𝛾 = 1. Four possible actions in each state:
up, down, left, and right. Environment is deterministic. If the action would
move the agent off the grid, it instead leaves the agent in the same state.

• Random policy: Agent in any state 𝑠 takes a random action 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑
with equal probability of 0.25 each.

27

Iterative Policy Evaluation Example
• For fixed random policy:

• Bellman Exp. Equation for Det Env:𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎

+ 𝛾𝑣𝜋 𝑠′

• 1st sweep:
– for all states 𝑣𝜋 𝑠 = .25(−1 + 0 + (−1 + 0) + −1 + 0 + −1 + 0) = −1

• 2nd sweep:
– For states marked −2: 𝑣𝜋 𝑠 = .25(−1 − 1 + (−1 − 1) + −1 − 1 + −1 − 1) = −2
– For states marked −1.7: 𝑣𝜋 𝑠 = .25(−1 + 0 + (−1 − 1) + −1 − 1 + −1 − 1) = −1.75

• 3rd sweep:
– For states marked −2.4: 𝑣𝜋 𝑠 = .25(−1 + 0 + (−1 − 2) + −1 − 1.75 + −1 − 2)

= −2.43
– For states marked −2.9: 𝑣𝜋 𝑠 = .25(−1 − 1.7 + (−1 − 2) + −1 − 1.75 + −1 − 2)

= −2.85
– For states marked −3: 𝑣𝜋 𝑠 = .25(−1 − 2 + (−1 − 2) + −1 − 2 + −1 − 2) = −3

• Influence of terminal states gradually spreads through the entire grid.

28

0 −1 −1 −1

−1 −1 −1 −1

−1 −1 −1 −1

−1 −1 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 −1.7 −2 −2

−1.7 −2 −2 −2

−2 −2 −2 −1.7

−2 −2 −1.7 0

0 −2.4−2.9 −3

−2.4−2.9 −3 −2.9

−2.9 −3 −2.9−2.4

−3 −2.9 −2.4 0

Initial After 1st sweep After 2nd sweep After 3rd sweep

Iterative Policy Evaluation Results
• Figure 4.1: Convergence of iterative policy evaluation on a small gridworld

with the random policy (all actions equally likely). The left column is the
sequence of approximations of the state-value function. The right column is
the sequence of greedy policies corresponding to the value function 𝑣𝜋(𝑠)
estimates.

• Note that we are not updating the policy (always the random policy) across
iterations. If you follow the greedy action at the current step, then follow the
random policy in the future, then it is better than following the random policy
from the current step.

29

Policy Iteration

30

Repeat until policy converges:
Policy Evaluation: Estimate state value function 𝑣𝜋 for

some fixed policy 𝜋 with Iterative Policy Evaluation (or

solving linear equations).

Policy Improvement: generate new policy based on

the newly estimated 𝑣𝜋: 𝜋 = greedy(𝑣𝜋).

Important

Policy Iteration Illustration

31

Policy Iteration Example
• An episodic MDP with terminal states with 𝑣 𝑠 =
0 located in the top left corner. Blue states are bad
states with large negative reward.

• Start with uniform random policy.

• Initialize 𝑣 𝑠 = 0 for all 𝑠.

32

33

After 1st sweep of PE+PI. Most state’s policies are not good since they

go towards blue states (darker colors denote low-value states).

After 2nd sweep of PE+PI. Policies are much better, but a few states’

policies still go towards blue states.

Bad policy Better policy

34

Higher value

Better policy

Higher value Better policy

35

Higher value Better policy

Value functions converged
(May not converge in general. Policy often

stable long before value functions converge.)

Policy stable, hence it is optimal policy)

Another PI Example

• The greedy policy converges to the optimal policy after 5th

iteration of Policy Iteration.

• Precise values of 𝑣(𝑠) are not necessary for computing
optimal policy with Policy Iteration.

36

Value Iteration
• Obtain optimal Value Function by solving Bellman Opt. Equation for

Optimal State Value Function iteratively (analytical solution is not
possible due to the max operator)
– 𝑣∗ 𝑠 = max

𝑎
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠

′

• Optimal policy 𝜋∗(𝑠) is output at the end; intermediate value function
𝑣(𝑠) may not correspond to any valid policy.

37

Important

Generalized Policy Iteration (GPI)
• GPI: 1. evaluate given policy; 2. Improve policy by acting greedily w.r.t its

value function. GPI is guaranteed to converge to the optimal deterministic
policy 𝜋∗.

• Two special cases of GPI:

• Policy Iteration (PI) (shown below):
– 1. Policy evaluation until convergence; 2. Improve policy

• Value Iteration (VI):
– 1. Policy evaluation with one single iteration; 2. improve policy (implicitly)

38

Modified Policy Iteration

• PI is slower per sweep (cycle), with complexity
𝑂 𝐴 𝑆 2 + 𝑆 3 , and requires fewer sweeps.

• VI is faster per sweep, with complexity 𝑂(𝐴 𝑆 2),
and requires more sweeps.

• Modified Policy Iteration: run Policy Evaluation for
steps between 1 for VI, and that needed for
convergence of 𝑣𝜋(𝑠), may achieve best
efficiency.

39

Toy Example

• Non-episodic MDP with a single state 𝑠 and single possible action
𝑎, with reward 𝑟 𝑠, 𝑎 = 1

• Policy Iteration:
– Policy Evaluation: initial policy 𝜋 𝑠 = 𝑎, 𝑣𝜋 𝑠 =

σ𝑎 𝜋 𝑎 𝑠 (1 + 𝛾𝑣𝜋 𝑠) = 1 + 𝛾𝑣𝜋 𝑠 ⇒ 𝑣𝜋 𝑠 =
1

1−𝛾

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ = 1 +
𝛾

1−𝛾
=

1

1−𝛾

– Policy Improvement: policy 𝜋 𝑠 = argmax
𝑎

𝑞𝜋 𝑠, 𝑎 = argmax
𝑎

1

1−𝛾
=

𝑎 = old-action. So policy is now stable.

• Value Iteration:

– 𝑣∗ 𝑠 = max
𝑎

1 + 𝛾𝑣∗ 𝑠 = 1 + 𝛾𝑣∗ 𝑠 ⇒ 𝑣∗ 𝑠 =
1

1−𝛾

– Value function 𝑣∗ 𝑠 is now stable

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′ =
1

1−𝛾

– Optimal policy 𝜋∗ 𝑠 = argmax
𝑎

𝑞∗ 𝑠, 𝑎 = argmax
𝑎

1

1−𝛾
= 𝑎.

• Both PI and VI converges in one step, since 𝑣𝜋 𝑠 = 𝑣∗ 𝑠 = 1 +
𝛾 + 𝛾2 +⋯ =

1

1−𝛾
40

𝑠

𝑠, 𝑎

𝑎

MiniGW Example

• Policy Iteration for Deterministic

Environment

• Policy Iteration for Stochastic Environment

• Value Iteration for Deterministic

Environment

• Value Iteration for Stochastic Environment

• Model learning

41

MiniGW Setup

• All transitions (𝑠, 𝑎, 𝑟, 𝑠′) for 𝑠 ∈ 𝐵, 𝐶, 𝐸 , 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑 have the same reward
𝑟 = −1.

• 𝐴 and 𝐷 are terminal states with fixed value function 𝑣 𝐴 = −10, 𝑣 𝐷 = 10
– Or equivalently, you can think of an extra terminal state 𝑥 with 𝑣 𝑥 = 0, the only

action in state 𝐴 or 𝐷 is 𝑒𝑥𝑖𝑡 that leads to 𝑥 with 𝑅𝐴
𝑎 = −10, 𝑅𝐷

𝑎 = 10.

• Dark squares denote obstacles which the agent cannot move into.

• Discount factor  = 1.
• Deterministic env: Agent in state 𝑠 ∈ 𝐵, 𝐶, 𝐸 taking action 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑

always moves to the next state in the movement direction, unless it is
blocked by an obstacle.

• Stochastic env: Agent in state 𝑠 ∈ 𝐵, 𝐶, 𝐸 taking action 𝑎 ∈ 𝑙, 𝑟, 𝑢, 𝑑
moves to the next state in the movement direction w. prob 0.8, or to the left
or right side, each w. prob 0.1. If it is blocked by an obstacle in any
direction, then it stays in the same state with prob of moving in the blocked
direction.

A

B C D

E

+10

−10

42

Iter1 Policy Evaluation of Random Policy

• Bellman Exp Equation for Det Env:𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣𝜋 𝑠′

• Random policy: 𝜋 𝑙 𝑠 = 𝜋 𝑟 𝑠 = 𝜋 𝑢 𝑠 = 𝜋 𝑑 𝑠 = 0.25

• 𝑣𝜋 𝐶 = .25 𝑞𝜋 𝐶, 𝑙 + 𝑞𝜋 𝐶, 𝑟 + 𝑞𝜋 𝐶, 𝑢 + 𝑞𝜋 𝐶, 𝑑 = .25(−4 + 𝑣𝜋 𝐵 + 𝑣𝜋 𝐸)

– 𝑞𝜋 𝐶, 𝑙 = −1 + 𝑣𝜋 𝐵

– 𝑞𝜋 𝐶, 𝑟 = −1 + 𝑣 𝐷 = −1 + 10 = 9

– 𝑞𝜋 𝐶, 𝑢 = −1 + 𝑣 𝐴 = −1 − 10 = −11

– 𝑞𝜋 𝐶, 𝑑 = −1 + 𝑣𝜋 𝐸

• 𝑣𝜋 𝐵 = .25 𝑞𝜋 𝐵, 𝑙 + 𝑞𝜋 𝐵, 𝑟 + 𝑞𝜋 𝐵, 𝑢 + 𝑞𝜋 𝐵, 𝑑 = .25(−4 + 3𝑣𝜋 𝐵 + 𝑣𝜋 𝐶)

– 𝑞𝜋 𝐵, 𝑙 = 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = −1 + 𝑣𝜋 𝐵

– 𝑞𝜋 𝐵, 𝑟 = −1 + 𝑣𝜋 𝐶

• 𝑣𝜋 𝐸 = .25 𝑞𝜋 𝐸, 𝑙 + 𝑞𝜋 𝐸, 𝑟 + 𝑞𝜋 𝐸, 𝑢 + 𝑞𝜋 𝐸, 𝑑 = .25(−4 + 3𝑣𝜋 𝐸 + 𝑣𝜋 𝐶)

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐸, 𝑟 = 𝑞𝜋 𝐸, 𝑑 = −1 + 𝑣𝜋 𝐸

– 𝑞𝜋 𝐸, 𝑢 = −1 + 𝑣𝜋 𝐶

• Analytic solution: 𝑣𝜋 𝐶 = −6, 𝑣𝜋 𝐵 = −10, 𝑣𝜋 𝐸 = −10

BF=4

BF=1

A

B C D

E

+10

−10

43

Policy

Eval

-10

-10

-6

A

B C D

E

+10

−10

𝑉𝜋 𝐵 𝑉𝜋 𝐶 𝑉𝜋 𝐸

Iter1 −6 −10 −10

Iter2

Iter1 Policy Improvement

• Plug in values from PE: 𝑣𝜋 𝐶 = −6, 𝑣𝜋 𝐵 = −10, 𝑣𝜋 𝐸 = −10, to get new policy 𝜋′

• 𝜋′ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐶, 𝑎 = 𝑟

– 𝑞𝜋 𝐶, 𝑙 = −1 + 𝑣𝜋 𝐵 = −1 − 10 = −11

– 𝑞𝜋 𝐶, 𝑟 = 9

– 𝑞𝜋 𝐶, 𝑢 = −11

– 𝑞𝜋 𝐶, 𝑑 = −1 + 𝑣𝜋 𝐸 = −1 − 10 = −11

• 𝜋′ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐵, 𝑎 = 𝑟

– 𝑞𝜋 𝐵, 𝑙 = 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = −1 + 𝑣𝜋 𝐵 = −1 − 10 = −11

– 𝑞𝜋 𝐵, 𝑟 = −1 + 𝑣𝜋 𝐶 = −1 − 6 = −7

• 𝜋′ 𝐸 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐸, 𝑎 = 𝑢

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐸, 𝑟 = 𝑞𝜋 𝐸, 𝑑 = −1 + 𝑣𝜋 𝐸 = −1 − 10 = −11

– 𝑞𝜋 𝐸, 𝑢 = −1 + 𝑣𝜋 𝐶 = −1 − 6 = −7

A

B C D

E

+10

−10

44

A

B C D

E

+10

−10Policy

Improv

-10

-10

-6-10

-10

-6

Iter2 Policy Evaluation of Det Policy

• Bellman Exp Equation for Det Env:𝑣𝜋 𝑠 =
σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠

𝑎 + 𝛾𝑣𝜋 𝑠′

• Det policy: 𝜋 𝑟 𝐵 = 1; 𝜋 𝑟 𝐶 = 1; 𝜋 𝑢 𝐸 = 1

• 𝑣𝜋 𝐶 = 1.0𝑞𝜋 𝐶, 𝑟

– 𝑞𝜋 𝐶, 𝑟 = 9

• 𝑣𝜋 𝐵 = 1.0𝑞𝜋 𝐵, 𝑟

– 𝑞𝜋 𝐵, 𝑟 = −1 + 𝑣𝜋 𝐶

• 𝑣𝜋 𝐸 = 1.0𝑞𝜋 𝐸, 𝑢

– 𝑞𝜋 𝐸, 𝑢 = −1 + 𝑣𝜋 𝐶

• Analytic solution: 𝑣𝜋 𝐶 = 9; 𝑣𝜋 𝐵 = 8; 𝑣𝜋 𝐸 = 8

A

B C D

E

+10

−10 BF=1

BF=1

45

8

8

9

A

B C D

E

+10

−10

-10

-10

-6

Policy

Eval

𝑉𝜋 𝐵 𝑉𝜋 𝐶 𝑉𝜋 𝐸

Iter1 −6 −10 −10

Iter2 8 9 8

Iter2 Policy Improvement

• Plug in values from PE: 𝑣𝜋 𝐶 = 9, 𝑣𝜋 𝐵 = 8, 𝑣𝜋 𝐸 = 8, to get new policy 𝜋′

• 𝜋′ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐶, 𝑎 = 𝑟

– 𝑞𝜋 𝐶, 𝑙 = −1 + 𝑣𝜋 𝐵 = −1 + 8 = 7

– 𝑞𝜋 𝐶, 𝑟 = 9

– 𝑞𝜋 𝐶, 𝑢 = −11

– 𝑞𝜋 𝐶, 𝑑 = −1 + 𝑣𝜋 𝐸 = −1 + 8 = 7

• 𝜋′ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐵, 𝑎 = 𝑟

– 𝑞𝜋 𝐵, 𝑙 = 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = −1 + 𝑣𝜋 𝐵 = 7

– 𝑞𝜋 𝐵, 𝑟 = −1 + 𝑣𝜋 𝐶 = −1 + 9 = 8

• 𝜋′ 𝐸 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐸, 𝑎 = 𝑢

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐸, 𝑟 = 𝑞𝜋 𝐸, 𝑑 = −1 + 𝑣𝜋 𝐸 = 7

– 𝑞𝜋 𝐸, 𝑢 = −1 + 𝑣𝜋 𝐶 = −1 + 9 = 8

• Policy is now stable (𝜋′ = 𝜋), so we have found the optimal policy. (We do not need to re-
run Policy Evaluation, since we do not care if the value functions converge as long as the
policy is stable.)

A

B C D

E

+10

−10

46

A

B C D

E

+10

−10Policy

Improv

8

8

98

8

9

MiniGW Example

• Policy Iteration for Deterministic

Environment

• Policy Iteration for Stochastic Environment

• Value Iteration for Deterministic

Environment

• Value Iteration for Stochastic Environment

• Model learning

47

Iter1 Policy Evaluation of Random Policy

• Bellman Exp Equation: 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

• Random policy: 𝜋 𝑙 𝑠 = 𝜋 𝑟 𝑠 = 𝜋 𝑢 𝑠 = 𝜋 𝑑 𝑠 = 0.25
• Set of equations:

• 𝑣𝜋 𝐶 = .25 𝑞𝜋 𝐶, 𝑙 + 𝑞𝜋 𝐶, 𝑟 + 𝑞𝜋 𝐶, 𝑢 + 𝑞𝜋 𝐶, 𝑑 = .25(−4 + 𝑣𝜋 𝐵 + 𝑣𝜋 𝐸)

– 𝑞𝜋 𝐶, 𝑙 = .8[−1 + 𝑣𝜋 𝐵] + .1[−1 + 𝑣(𝐴)] + .1[−1 + 𝑣𝜋 𝐸] = −2 + .8𝑣𝜋 𝐵 + .1𝑣𝜋 𝐸

– 𝑞𝜋 𝐶, 𝑟 = .8[−1 + 𝑣 𝐷] + .1[−1 + 𝑣 𝐴] + .1[−1 + 𝑣𝜋 𝐸] = 6 + .1𝑣𝜋 𝐸

– 𝑞𝜋 𝐶, 𝑢 = .8[−1 + 𝑣 𝐴] + .1[−1 + 𝑣𝜋 𝐵] + .1[−1 + 𝑣 𝐷] = −8 + .1𝑣𝜋 𝐵

– 𝑞𝜋 𝐶, 𝑑 = .8[−1 + 𝑣𝜋 𝐸] + .1[−1 + 𝑣𝜋 𝐵] + .1[−1 + 𝑣 𝐷] = .8𝑣𝜋 𝐸 + .1𝑣𝜋 𝐵

• 𝑣𝜋 𝐵 = .25 𝑞𝜋 𝐵, 𝑙 + 𝑞𝜋 𝐵, 𝑟 + 𝑞𝜋 𝐵, 𝑢 + 𝑞𝜋 𝐵, 𝑑 = .25(−4 + 3𝑣𝜋 𝐵 + 𝑣𝜋 𝐶)

– 𝑞𝜋 𝐵, 𝑙 = 1.0 −1 + 𝑣𝜋 𝐵 = −1 + 𝑣𝜋 𝐵

– 𝑞𝜋 𝐵, 𝑟 = .8 −1 + 𝑣𝜋 𝐶 + .2 −1 + 𝑣𝜋 𝐵 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐵

– 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = .9 −1 + 𝑣𝜋 𝐵 + .1 −1 + 𝑣𝜋 𝐶 = −1 + .9𝑣𝜋 𝐵 + .1𝑣𝜋 𝐶

• 𝑣𝜋 𝐸 = 0.25(𝑞𝜋 𝐸, 𝑙 + 𝑞𝜋 𝐸, 𝑟 + 𝑞𝜋 𝐸, 𝑢 + 𝑞𝜋 𝐸, 𝑑) = .25(−4 + 3𝑣𝜋 𝐸 + 𝑣𝜋 𝐶)

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐵, 𝑟 = .9 −1 + 𝑣𝜋 𝐸 + .1 −1 + 𝑉𝜋 𝐶 = −1 + .9𝑣𝜋 𝐸 + .1𝑉𝜋 𝐶

– 𝑞𝜋 𝐸, 𝑢 = .8 −1 + 𝑣𝜋 𝐶 + .2 −1 + 𝑣𝜋 𝐸 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐸

– 𝑞𝜋 𝐸, 𝑑 = 1.0 −1 + 𝑣𝜋 𝐸 = −1 + 𝑣𝜋 𝐸

• Analytic solution: 𝑣𝜋 𝐶 = −6, 𝑣𝜋 𝐵 = −10, 𝑣𝜋 𝐸 = −10

BF=4

BF=3

48

A

B C D

E

+10

−10Policy

Eval

-10

-10

-6

A

B C D

E

+10

−10

𝑉𝜋 𝐵 𝑉𝜋 𝐶 𝑉𝜋 𝐸

Iter1 −6 −10 −10

Iter2

Iter1 Policy Improvement

• Plug in values from PE: 𝑣𝜋 𝐶 = −6, 𝑣𝜋 𝐵 = −10, 𝑣𝜋 𝐸 = −10, to get new policy 𝜋′

• 𝜋′ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐶, 𝑎 = 𝑟

– 𝑞𝜋 𝐶, 𝑙 = −2 + .8𝑣𝜋 𝐵 + .1𝑣𝜋 𝐸 = −2 + .8 ⋅ (−10) + .1 ⋅ (−10) = −11

– 𝑞𝜋 𝐶, 𝑟 = 6 + .1𝑣𝜋 𝐸 = 6 + .1 ⋅ (−10) = 5

– 𝑞𝜋 𝐶, 𝑢 = −8 + .1𝑣𝜋 𝐵 = −8 + .1 ⋅ (−10) = −9

– 𝑞𝜋 𝐶, 𝑑 = .8𝑣𝜋 𝐸 + .1𝑣𝜋 𝐵 = .8 ⋅ (−10) + 0.1 ⋅ (−10) = −9

• 𝜋′ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐵, 𝑎 = 𝑟

– 𝑞𝜋 𝐵, 𝑙 = −1 + 𝑣𝜋 𝐵 = −1 + (−10) = −11

– 𝑞𝜋 𝐵, 𝑟 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐵 = −1 + .8 ⋅ (−6) + .2 ⋅ (−10) = −7.8

– 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = −1 + .9𝑣𝜋 𝐵 + .1𝑣𝜋 𝐶 = −1 + .9 ⋅ (−10) + .1 ⋅ (−6) = −10.6

• 𝜋′ 𝐸 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐸, 𝑎 = 𝑢

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐵, 𝑟 = −1 + .9𝑣𝜋 𝐸 + .1𝑉𝜋 𝐶 = −1 + .9 ⋅ (−10) + .1 ⋅ (−6) = −10.6

– 𝑞𝜋 𝐸, 𝑢 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐸 = −1 + .8 ⋅ (−6) + .2 ⋅ (−10) = −7.8

– 𝑞𝜋 𝐸, 𝑑 = −1 + 1.0𝑣𝜋 𝐸 = −1 + 1.0 ⋅ (−10) = −11

A

B C D

E

+10

−10

49

A

B C D

E

+10

−10Policy

Improv

-10

-10

-6-10

-10

-6

Iter2 Policy Evaluation of Det Policy

• Bellman Exp Equation: 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 =
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

• Det policy: 𝜋 𝑟 𝐵 = 1; 𝜋 𝑟 𝐶 = 1; 𝜋 𝑢 𝐶 = 1
• Set of equations:

• 𝑣𝜋 𝐶 = 1.0𝑞𝜋 𝐶, 𝑟
– 𝑞𝜋 𝐶, 𝑟 = 6 + 0.1𝑣𝜋 𝐸

• 𝑣𝜋 𝐵 = 1.0𝑞𝜋 𝐵, 𝑟
– 𝑞𝜋 𝐵, 𝑟 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐵

• 𝑣𝜋 𝐸 = 1.0𝑞𝜋 𝐸, 𝑢
– 𝑞𝜋 𝐸, 𝑢 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐸

• Analytic solution: 𝑣𝜋 𝐶 ≈ 6.5, 𝑣𝜋 𝐵 ≈ 5.3, 𝑣𝜋 𝐸 ≈ 5.3

A

B C D

E

+10

−10 BF=1

BF=3

50

5.3

5.3

6.5

A

B C D

E

+10

−10

-10

-10

-6

Policy

Eval

𝑉𝜋 𝐵 𝑉𝜋 𝐶 𝑉𝜋 𝐸

Iter1 −6 −10 −10

Iter2 5.3 6.5 5.3

Iter2 Policy Improvement

• Plugging in values from PE: 𝑉𝜋 𝐶 = 6.5, 𝑉𝜋 𝐵 = 5.3, 𝑉𝜋 𝐸 = 5.3, we get new policy 𝜋′

• 𝜋′ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐶, 𝑎 = 𝑟

– 𝑞𝜋 𝐶, 𝑙 = −2 + .8𝑣𝜋 𝐵 + .1𝑣𝜋 𝐸 = −2 + .8 ⋅ 5.3 + .1 ⋅ 5.3 ≈ 2.8

– 𝑞𝜋 𝐶, 𝑟 = 6 + .1𝑣𝜋 𝐸 = 6 + .1 ⋅ 5.3 ≈ 6.5

– 𝑞𝜋 𝐶, 𝑢 = −8 + .1𝑣𝜋 𝐵 = −8 + .1 ⋅ 5.3 ≈ −7.5

– 𝑞𝜋 𝐶, 𝑑 = .8𝑣𝜋 𝐸 + .1𝑣𝜋 𝐵 = .8 ⋅ 5.3 + 0.1 ⋅ 5.3 ≈ 4.8

• 𝜋′ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐵, 𝑎 = 𝑟

– 𝑞𝜋 𝐵, 𝑙 = −1 + 𝑣𝜋 𝐵 = −1 + 5.3 = 4.3

– 𝑞𝜋 𝐵, 𝑟 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐵 = −1 + .8 ⋅ 6.5 + .2 ⋅ 5.3 ≈ 5.3

– 𝑞𝜋 𝐵, 𝑢 = 𝑞𝜋 𝐵, 𝑑 = −1 + .9𝑣𝜋 𝐵 + .1𝑣𝜋 𝐶 = −1 + .9 ⋅ 5.3 + .1 ⋅ 6.5 ≈ 4.4

• 𝜋′ 𝐸 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞𝜋 𝐸, 𝑎 = 𝑢

– 𝑞𝜋 𝐸, 𝑙 = 𝑞𝜋 𝐵, 𝑟 = −1 + .9𝑣𝜋 𝐸 + .1𝑉𝜋 𝐶 = −1 + .9 ⋅ 5.3 + .1 ⋅ 6.5 ≈ 4.4

– 𝑞𝜋 𝐸, 𝑢 = −1 + .8𝑣𝜋 𝐶 + .2𝑣𝜋 𝐸 = −1 + .8 ⋅ 6.5 + .2 ⋅ 5.3 ≈ 5.3

– 𝑞𝜋 𝐸, 𝑑 = −1 + 𝑣𝜋 𝐸 = −1 + 5.3 = 4.3

• New policy is now stable (𝜋′ = 𝜋), so we have found the optimal policy. 51

A

B C D

E

+10

−10
A

B C D

E

+10

−10Policy

Improv

5.3

5.3

6.5 5.3

5.3

6.5

MiniGW Example

• Policy Iteration for Deterministic

Environment

• Policy Iteration for Stochastic Environment

• Value Iteration for Deterministic

Environment

• Value Iteration for Stochastic Environment

• Model learning

52

Bellman Opt Equation for Det Env

• Bellman Opt Equation for Det Env: 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎 ; 𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣∗ 𝑠′

• 𝑣∗ 𝐶 = max
𝑎

𝑞∗ 𝐶, 𝑎 = max{−1 + 𝑣∗ 𝐵 , 9,−11,−1 + 𝑣∗ 𝐸 }

– 𝑞∗ 𝐶, 𝑙 = −1 + 𝑣∗ 𝐵

– 𝑞∗ 𝐶, 𝑟 = −1 + 𝑣 𝐷 = 9

– 𝑞∗ 𝐶, 𝑢 = −1 + 𝑣 𝐴 = −11

– 𝑞∗ 𝐶, 𝑑 = −1 + 𝑣∗ 𝐸

• 𝑣∗ 𝐵 = max
𝑎

𝑞∗ 𝐵, 𝑎 = max{−1 + 𝑣∗ 𝐵 ,−1 + 𝑣∗ 𝐶 ,−1 + 𝑣∗ 𝐵 ,−1 + 𝑣∗ 𝐵 }

– 𝑞∗ 𝐵, 𝑙 = 𝑞∗ 𝐵, 𝑢 = 𝑞∗ 𝐵, 𝑑 = −1 + 𝑣∗ 𝐵

– 𝑞∗ 𝐵, 𝑟 = −1 + 𝑣∗ 𝐶

• 𝑣∗ 𝐸 = max
𝑎

𝑞∗ 𝐸, 𝑎 = max{−1 + 𝑣∗ 𝐸 ,−1 + 𝑣∗ 𝐸 ,−1 + 𝑣∗ 𝐶 ,−1 + 𝑣∗ 𝐸 }

– 𝑞∗ 𝐸, 𝑙 = 𝑞∗ 𝐸, 𝑟 = 𝑞∗ 𝐸, 𝑑 = −1 + 𝑣∗ 𝐸
– 𝑞∗ 𝐸, 𝑢 = −1 + 𝑣∗ 𝐶

• The set of non-linear equations cannot be solved analytically due to the max operator, so we
need to use Value Iteration to find 𝑣∗ 𝐶 , 𝑣∗ 𝐵 , 𝑣∗ 𝐸

A

B C D

E

+10

−10
BF=4

BF=1

53

Iter1 Value Iteration w. Det Env

• Value Iteration: 𝑣𝑘+1 𝑠 = max
𝑎

𝑞𝑘+1 𝑠, 𝑎 = max
𝑎

𝑟 + 𝛾𝑣𝑘 𝑠′ w. in-place updates.

• Initialize 𝑣0 𝐵 = 𝑣0 𝐶 = 𝑣0 𝐸 = 0.

• 𝑣1 𝐶 = max
𝑎

𝑞1 𝐶, 𝑎 = max −1, 9,−11,−1 = 9

– 𝑞1 𝐶, 𝑙 = −1 + 𝑣0 𝐵 = −1 + 0 = −1

– 𝑞1 𝐶, 𝑟 = 9

– 𝑞1 𝐶, 𝑢 = −11

– 𝑞1 𝐶, 𝑑 = −1 + 𝑣0 𝐸 = −1 + 0 = −1

• 𝑣1 𝐵 = max
𝑎

𝑞1 𝐵, 𝑎 = max(−1, 8, −1, −1) = 8

– 𝑞1 𝐵, 𝑙 = 𝑞1 𝐵, 𝑢 = 𝑞1 𝐵, 𝑑 = −1 + 𝑣0 𝐵 = −1 + 0 = −1
– 𝑞1 𝐵, 𝑟 = 𝑟 + 𝑣1 𝐶 = −1 + 9 = 8 (𝑣1 𝐶 computed in the current iteration is used instead of 𝑣0 𝐶)

• 𝑣1 𝐸 = max
𝑎

𝑞1 𝐸, 𝑎 = max(−1,−1, 8, −1) = 8

– 𝑞1 𝐸, 𝑙 = 𝑞1 𝐸, 𝑟 = 𝑞1 𝐸, 𝑑 = 𝑟 + 𝑣0 𝐸 = −1 + 0 = −1
– 𝑞1 𝐸, 𝑢 = 𝑟 + 𝑣1 𝐶 = −1 + 9 = 8 (𝑣1 𝐶 is used)

• After 1st iteration: 𝑣1 𝐶 = 9, 𝑣1 𝐵 = 8, 𝑣1 𝐸 = 8

A

B C D

E

+10

−10
BF=4

BF=1

54

8

8

9

A

B C D

E

+10

−10

0

0

0

Value

Iter1

𝑉𝜋 𝐵 𝑉𝜋 𝐶 𝑉𝜋 𝐸

Iter1 8 9 8

Iter2

Iter2 Value Iteration w. Det Env

• Value Iteration: 𝑣𝑘+1 𝑠 = max
𝑎

𝑞𝑘+1 𝑠, 𝑎 = max
𝑎

𝑟 + 𝛾𝑣𝑘 𝑠′ w. in-place updates.

• We have now 𝑣1 𝐵 = 𝑣1 𝐸 = 8, 𝑣1 𝐶 = 9.

• 𝑣2 𝐶 = max
𝑎

𝑞2 𝐶, 𝑎 = max 7, 9, −11, 7 = 9

– 𝑞2 𝐶, 𝑙 = −1 + 𝑣1 𝐵 = −1 + 8 = 7

– 𝑞2 𝐶, 𝑟 = 9

– 𝑞2 𝐶, 𝑢 = −11

– 𝑞2 𝐶, 𝑑 = −1 + 𝑣1 𝐸 = −1 + 8 = 7

• 𝑣2 𝐵 = max
𝑎

𝑞2 𝐵, 𝑎 = max(7, 8, 7, 7) = 8

– 𝑞2 𝐵, 𝑙 = 𝑞2 𝐵, 𝑢 = 𝑞2 𝐵, 𝑑 = −1 + 𝑣1 𝐵 = −1 + 8 = 7
– 𝑞2 𝐵, 𝑟 = −1 + 𝑣2 𝐶 = −1 + 9 = 8 (𝑣2 𝐶 is used, which happens to be equal to 𝑣1 𝐶)

• 𝑣2 𝐸 = max
𝑎

𝑞2 𝐸, 𝑎 = max(7, 7, 8, 7) = 8

– 𝑞2 𝐸, 𝑙 = 𝑞2 𝐸, 𝑟 = 𝑞2 𝐸, 𝑑 = −1 + 𝑣1 𝐸 = −1 + 8 = 7
– 𝑞2 𝐸, 𝑢 = −1 + 𝑣2 𝐶 = −1 + 9 = 8 (𝑣2 𝐶 is used)

• After 2nd iteration: 𝑣2 𝐶 = 9, 𝑣2 𝐵 = 8, 𝑣2 = 8. VI has converged， so 𝑣∗ ⋅ = 𝑣2(⋅).

• Optimal policy: 𝜋∗ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐶, 𝑎 = 𝑟; 𝜋∗ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐵, 𝑎 = 𝑟; 𝜋∗ 𝐸 =

argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐸, 𝑎 = 𝑢

BF=4

BF=1

55

A

B C D

E

+10

−10

8

8

9

A

B C D

E

+10

−10

8

8

9

Value

Iter2

Value Function

converged

Optimal Policy

argmax
𝑎

𝑄∗(𝑠, 𝑎)

A

B C D

E

+10

−10

8

8

9

𝑉𝜋 𝐵 𝑉𝜋 𝐶 𝑉𝜋 𝐸

Iter1 8 9 8

Iter2 8 9 8

MiniGW Example

• Policy Iteration for Deterministic

Environment

• Policy Iteration for Stochastic Environment

• Value Iteration for Deterministic

Environment

• Value Iteration for Stochastic Environment

• Model learning

56

Bellman Opt Equation for Stochastic Env

• Bellman Opt Equation: 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎 , 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′

• 𝑣∗ 𝐶 = max
𝑎

𝑞∗ 𝐶, 𝑎

– 𝑞∗ 𝐶, 𝑙 = .8[−1 + 𝑣∗ 𝐵] + .1[−1 + 𝑣(𝐴)] + .1[−1 + 𝑣∗ 𝐸] = −2 + .8𝑣∗ 𝐵 + .1𝑣∗ 𝐸

– 𝑞∗ 𝐶, 𝑟 = .8[−1 + 𝑣 𝐷] + .1[−1 + 𝑣 𝐴] + .1[−1 + 𝑣∗ 𝐸] = 6 + .1𝑣∗ 𝐸

– 𝑞∗ 𝐶, 𝑢 = .8[−1 + 𝑣 𝐴] + .1[−1 + 𝑣∗ 𝐵] + .1[−1 + 𝑣 𝐷] = −8 + .1𝑣∗ 𝐵

– 𝑞∗ 𝐶, 𝑑 = .8[−1 + 𝑣∗ 𝐸] + .1[−1 + 𝑣∗ 𝐵] + .1[−1 + 𝑣 𝐷] = .8𝑣∗ 𝐸 + .1𝑣∗ 𝐵

• 𝑣1 𝐵 = max
𝑎

𝑞∗ 𝐵, 𝑎

– 𝑞∗ 𝐵, 𝑙 = 1.0 −1 + 𝑣∗ 𝐵 = −1 + 𝑣∗ 𝐵

– 𝑞∗ 𝐵, 𝑟 = .8 −1 + 𝑣∗ 𝐶 + .2 −1 + 𝑣∗ 𝐵 = −1 + .8𝑣∗ 𝐶 + .2𝑣∗ 𝐵

– 𝑞∗ 𝐵, 𝑢 = 𝑞∗ 𝐵, 𝑑 = .9 −1 + 𝑣∗ 𝐵 + .1 −1 + 𝑣𝜋 𝐶 = −1 + .9𝑣∗ 𝐵 + .1𝑣∗ 𝐶

• 𝑣1 𝐸 = max
𝑎

𝑞∗ 𝐸, 𝑎

– 𝑞∗ 𝐸, 𝑙 = 𝑞∗ 𝐵, 𝑟 = .9 −1 + 𝑣∗ 𝐸 + .1 −1 + 𝑣∗ 𝐶 = −1 + .9𝑣∗ 𝐸 + .1𝑣∗ 𝐶

– 𝑞∗ 𝐸, 𝑢 = .8 −1 + 𝑣∗ 𝐶 + .2 −1 + 𝑣∗ 𝐸 = −1 + .8𝑣∗ 𝐶 + .2𝑣∗ 𝐸

– 𝑞∗ 𝐸, 𝑑 = 1.0 −1 + 𝑣∗ 𝐸 = −1 + 𝑣∗ 𝐸

• The set of non-linear equations cannot be solved analytically due to the max operator, so we need
to use Value Iteration to find 𝑣∗ 𝐶 , 𝑣∗ 𝐵 , 𝑣∗ 𝐸

A

B C D

E

+10

−10 BF=4

BF=3

57

Iter1 Value Iteration w. Sto Env

• Value Iteration: 𝑣𝑘+1 𝑠 = max
𝑎

𝑞𝑘+1 𝑠, 𝑎 = max
𝑎

𝑟 + 𝛾σ𝑠′ 𝑝 𝑠′ 𝑠, 𝑎 𝑣𝑘 𝑠′ w. in-place updates.

• Initialize 𝑣0 𝐵 = 𝑣0 𝐶 = 𝑣0 𝐸 = 0.

• 𝑣1 𝐶 = max
𝑎

𝑞1 𝐶, 𝑎 = max −2, 6,−8, 0 = 6

– 𝑞1 𝐶, 𝑙 = −2 + .8𝑣0 𝐵 + .1𝑣0 𝐸 = −2 + .8 ⋅ 0 + 0.1 ⋅ 0 = −2

– 𝑞1 𝐶, 𝑟 = 6 + .1𝑣0 𝐸 = 6 + 0.1 ⋅ 0 = 6

– 𝑞1 𝐶, 𝑢 = −8 + .1𝑣0 𝐵 = −8 + 0.1 ⋅ 0 = −8

– 𝑞1 𝐶, 𝑑 = .8𝑣0 𝐸 + .1𝑣0 𝐵 = 0.8 ⋅ 0 + 0.1 ⋅ 0 = 0

• 𝑣1 𝐵 = max
𝑎

𝑞1 𝐵, 𝑎 = max −1, 3.8, −0.4, −0.4 = 3.8

– 𝑞1 𝐵, 𝑙 = −1 + 𝑣0 𝐵 = −1 + 0 = −1

– 𝑞1 𝐵, 𝑟 = −1 + .8𝑣1 𝐶 + .2𝑣0 𝐵 = −1 + .8 ⋅ 6 + .2 ⋅ 0 = 3.8

– 𝑞1 𝐵, 𝑢 = 𝑞1 𝐵, 𝑑 = −1 + .9𝑣0 𝐵 + .1𝑣1 𝐶 = −1 + .9 ⋅ 0 + .1 ⋅ 6 = −0.4

• 𝑣1 𝐸 = max
𝑎

𝑞1 𝐸, 𝑎 = max −0.4,−0.4, 3.8, −1 = 3.8

– 𝑞1 𝐸, 𝑙 = 𝑞1 𝐸, 𝑟 = −1 + .9𝑣0 𝐸 + .1𝑣1 𝐶 = −1 + .9 ⋅ 0 + .1 ⋅ 6 = −0.4

– 𝑞1 𝐸, 𝑢 = −1 + .8𝑣1 𝐶 + .2𝑣0 𝐸 = −1 + .8 ⋅ 6 + .2 ⋅ 0 = 3.8

– 𝑞1 𝐸, 𝑑 = −1 + 𝑣0 𝐸 = −1 + 1.0 ⋅ 0 = −1

• After 1st iteration: 𝑉𝜋 𝐶 = 6, 𝑉𝜋 𝐵 = 3.8, 𝑉𝜋 𝐸 = 3.8

A

B C D

E

+10

−10 BF=4

BF=3

58

3.8

3.8

6

A

B C D

E

+10

−10

0

0

0

Value

Iter1

𝑉𝜋 𝐵 𝑉𝜋 𝐶 𝑉𝜋 𝐸

Iter1 3.80 6 3.80

Iter2

Iter3

Iter4

Iter5

Iter6

Iter2 Value Iteration w. Sto Env

• Value Iteration: 𝑣𝑘+1 𝑠 = max
𝑎

𝑞𝑘+1 𝑠, 𝑎 = max
𝑎

𝑟 + 𝛾σ𝑠′ 𝑝 𝑠′ 𝑠, 𝑎 𝑣𝑘 𝑠′ w. in-place updates.

• Now: 𝑣1 𝐵 = 𝑣1 𝐸 = 3.8, 𝑣1 𝐶 = 6.

• 𝑣2 𝐶 = max
𝑎

𝑞2 𝐶, 𝑎 = max 1.42, 6.38,−7.62, 3.42 = 6.38

– 𝑞2 𝐶, 𝑙 = −2 + .8𝑣1 𝐵 + .1𝑣1 𝐸 = −2 + .8 ⋅ 3.8 + .1 ⋅ 3.8 = 1.42
– 𝑞2 𝐶, 𝑟 = 6 + .1𝑣1 𝐸 = 6 + .1 ⋅ 3.8 =6.38

– 𝑞2 𝐶, 𝑢 = −8 + .1𝑣1 𝐵 = −8 + .1 ⋅ 3.8 = −7.62

– 𝑞2 𝐶, 𝑑 = .8𝑣1 𝐸 + .1𝑣1 𝐵 = .8 ⋅ 3.8 + .1 ⋅ 3.8 = 3.42

• 𝑣2 𝐵 = max
𝑎

𝑞2 𝐵, 𝑎 = max 2.8, 4.86, 3.06, 3.06 = 4.86

– 𝑞2 𝐵, 𝑙 = −1 + 𝑣1 𝐵 = −1 + 1.0 ⋅ 3.8 = 2.8

– 𝑞2 𝐵, 𝑟 = −1 + .8𝑣2 𝐶 + .2𝑣1 𝐵 = −1 + .8 ⋅ 6.38 + .2 ⋅ 3.8 = 4.86

– 𝑞2 𝐵, 𝑢 = 𝑞2 𝐵, 𝑑 = −1 + .9𝑣1 𝐵 + .1𝑣2 𝐶 = −1 + .9 ⋅ 3.8 + .1 ⋅ 6.38 ≈ 3.06

• 𝑣2 𝐸 = max
𝑎

𝑞2 𝐸, 𝑎 = max 3.06, 3.06, 4.86, 2.8 = 4.86

– 𝑞2 𝐸, 𝑙 = 𝑞2 𝐸, 𝑟 = −1 + .9𝑣1 𝐸 + .1𝑣2 𝐶 = −1 + .9 ⋅ 3.8 + .1 ⋅ 6.38 ≈ 3.06

– 𝑞2 𝐸, 𝑢 = −1 + .8𝑣2 𝐶 + .2𝑣1 𝐸 = −1 + .8 ⋅ 6.38 + .2 ⋅ 3.8 ≈ 4.86

– 𝑞1 𝐸, 𝑑 = −1 + 𝑣1 𝐸 = −1 + 3.8 = 2.8

• After 2nd iteration: 𝑉𝜋 𝐶 = 6.38, 𝑉𝜋 𝐵 = 4.86, 𝑉𝜋 𝐸 = 4.86

A

B C D

E

+10

−10 BF=4

BF=3

59

4.86

4.86

6.38

A

B C D

E

+10

−10 Value

Iter2

3.8

3.8

6

𝑉𝜋 𝐵 𝑉𝜋 𝐶 𝑉𝜋 𝐸

Iter1 3.80 6 3.80

Iter2 4.86 6.38 4.86

Iter3

Iter4

Iter5

Iter6

Iter6 Value Iteration w. Sto Env

• Value functions 𝑣∗(𝑠)
converged to 𝑣∗ 𝐶 =
6.53, 𝑣∗ 𝐵 = 𝑣∗ 𝐸 = 5.28
after 6 iterations with

threshold condition Δ ≤ 𝜃 =
0.01. We can get the optimal

policy:

– 𝜋∗ 𝐶 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐶, 𝑎 = 𝑟

– 𝜋∗ 𝐵 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐵, 𝑎 = 𝑟;

– 𝜋∗ 𝐸 = argmax
a∈ 𝑙,𝑟,𝑢,𝑑

𝑞∗ 𝐸, 𝑎 = 𝑢

60

Optimal Policy

argmax
𝑎

𝑄∗(𝑠, 𝑎)

A

B C D

E

+10

−10

5.28

5.28

6.53

Value Function

converged

𝑉𝜋 𝐵 𝑉𝜋 𝐶 𝑉𝜋 𝐸

Iter1 3.80 6 3.80

Iter2 4.86 6.38 4.86

Iter3 5.16 6.49 5.16

Iter4 5.25 6.52 5.25

Iter5 5.27 6.52 5.27

Iter6 5.28 6.53 5.28

Policy Iteration w. Deterministic Env

61

A

B C D

E

+10

−10Policy

Eval

-10

-10

-6

A

B C D

E

+10

−10
A

B C D

E

+10

−10Policy

Improv

-10

-10

-6

A

B C D

E

+10

−10

8

8

9

Policy

Eval

A

B C D

E

+10

−10

8

8

9

argmax
𝑎

𝑞𝜋(𝑠, 𝑎)

Policy

Improv

argmax
𝑎

𝑞𝜋(𝑠, 𝑎)

Policy

converged

𝑣𝜋(𝑠)
𝑞𝜋(𝑠, 𝑎)

𝑣𝜋(𝑠)
𝑞𝜋(𝑠, 𝑎)

Policy Iteration w. Stochastic Env

62

A

B C D

E

+10

−10Policy

Eval

-10

-10

-6

A

B C D

E

+10

−10
A

B C D

E

+10

−10Policy

Improv

-10

-10

-6

A

B C D

E

+10

−10Policy

Eval

A

B C D

E

+10

−10

argmax
𝑎

𝑞𝜋(𝑠, 𝑎)

Policy

Improv

argmax
𝑎

𝑞𝜋(𝑠, 𝑎)

𝑣𝜋(𝑠)
𝑞𝜋(𝑠, 𝑎)

𝑣𝜋(𝑠)
𝑞𝜋(𝑠, 𝑎)

5.3

5.3

6.5 5.3

5.3

6.5

Policy

converged

Value Iteration w. Deterministic Env

63

A

B C D

E

+10

−10

8

8

9

A

B C D

E

+10

−10

0

0

0

Value

Iter1

Value

Iter2

A

B C D

E

+10

−10

8

8

9

Value Function

converged

Optimal Policy

argmax
𝑎

𝑞∗(𝑠, 𝑎)

A

B C D

E

+10

−10

8

8

9

𝑣1(𝑠)
𝑞1(𝑠, 𝑎)

𝑣2(𝑠)
𝑞2(𝑠, 𝑎)

Value Iteration w. Stochastic Env

64

A

B C D

E

+10

−10
A

B C D

E

+10

−10

0

0

0

Value

Iter1

Value

Iter2

A

B C D

E

+10

−10

Optimal Policy

argmax
𝑎

𝑞∗(𝑠, 𝑎)

A

B C D

E

+10

−10

𝑣1(𝑠)
𝑞1(𝑠, 𝑎)

𝑣2(𝑠)
𝑞2(𝑠, 𝑎)

3.8

3.8

6 4.86

4.86

6.38

Value

Iter3

𝑣3(𝑠)
𝑞3(𝑠, 𝑎)

Value

Iter6

𝑣6(𝑠)
𝑞6(𝑠, 𝑎)

…
5.28

5.28

6.53

A

B C D

E

+10

−10

5.28

5.28

6.53

Value Function

converged

MiniGW Example

• Policy Iteration for Deterministic

Environment

• Policy Iteration for Stochastic Environment

• Value Iteration for Deterministic

Environment

• Value Iteration for Stochastic Environment

• Model learning

65

Model-Based RL

• If MDP is not available, we can use Model-
Based RL:

• Step 1: Learn empirical MDP model
– Estimate the model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 by executing some

policy 𝜋 (may be random), and keeping track of
outcomes 𝑟, s′ for each 𝑠, 𝑎 in the observed
episodes.

• Step 2: Do planning w. the learned MDP for
the optimal policy
– Dynamic Programming w. Value Iteration or Policy

Iteration

66

MiniGW: Model Learning
Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

(𝐵, 𝑟, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)
(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, 10)

(𝐵, 𝑟, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)

(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, +10)

(𝐸, 𝑢, 𝐶, −1)
(𝐶, 𝑟, 𝐴, −1)
(𝐴, 𝑒𝑥𝑖𝑡, 𝑥, −10)

Episode 1 Episode 2

Episode 3 Episode 4

(𝐸, 𝑢, 𝐶, −1)
(𝐶, 𝑟, 𝐷, −1)
(𝐷, 𝑒𝑥𝑖𝑡, 𝑥, 10)

𝑝 −1, 𝐶 𝐵, 𝑟 = 1.0
𝑝 −1,𝐷 𝐶, 𝑟 = 0.75
𝑝 −1, 𝐴 𝐶, 𝑟 = 0.25
𝑝 10, 𝑥 𝐷, 𝑒𝑥𝑖𝑡 = 1.0
𝑝 −10, 𝑥 𝐴, 𝑒𝑥𝑖𝑡 = 1.0

• In the 4 episodes, we see 4 transitions from
(𝑠 = 𝐶, 𝑎 = 𝑟). 3 of them go to next state 𝑠′ =
𝐷, and one goes to next state 𝑠′ = 𝐴, each w.
reward −1. Hence 𝑝 −1,𝐷 𝐶, 𝑟 =
0.75; 𝑝 −1, 𝐴 𝐶, 𝑟 = 0.25.

𝑝 𝑠′ 𝑠, 𝑎

67

Extra Reading

• Reinforcement Learning Tutorial by

javatpoint

– https://www.javatpoint.com/reinforcement-

learning

68

https://www.javatpoint.com/reinforcement-learning

