
L7.2 Value-based RL

Zonghua Gu 2021

1
Acknowledgement: slides based on https://www.coursera.org/specializations/reinforcement-learning

And textbook by Sutton and Barto http://incompleteideas.net/book/the-book-2nd.html

The Big Picture

2

Problem Bellman
Equation

Algo (known
MDP)

Algo (unknown MDP,
sample-based)

Prediction (compute
𝑣𝜋 𝑠)

Bellman Exp.
Equation for 𝑣

Policy Evaluation
(PE)

MC Prediction, TD
Learning (on-policy)

Control (compute
𝑣𝜋 𝑠 , then 𝜋 𝑠 =
argmax

𝑎
𝑞(𝑠, 𝑎)) for

known MDP

Bellman Exp.
Equation for 𝑣 +
Greedy Policy
Improvement (GPI)

Policy Iteration
(PI=PE+GPI)

Cannot do GPI, since
cannot get 𝑄(𝑠, 𝑎) from
𝑉(𝑠) without MDP

Control (compute
𝑣∗ 𝑠 , then 𝜋∗ 𝑠 =
argmax

𝑎
𝑞∗(𝑠, 𝑎)) for

known MDP

Bellman Opt.
Equation for 𝑣

Value Iteration
(VI) (a form of
Generalized PI)

Cannot compute 𝑉∗(𝑠) w.
sample-based method
due to max

𝑎
in front;

cannot get 𝑄(𝑠, 𝑎) from
𝑉(𝑠) without MDP

Control (compute
𝑞∗(𝑠, 𝑎), then 𝜋∗ 𝑠 =
argmax

𝑎
𝑞∗(𝑠, 𝑎))

Bellman Opt.
Equation for 𝑞

Q Value
Iteration (QVI)

Sarsa (on-policy)
Q Learning, Expected
Sarsa (off-policy)

Important

Value-based RL

3

MDP

state 𝑠 action 𝑎

next

state 𝑠′
reward 𝑟

𝑉 𝑠 ,𝑄(𝑠, 𝑎)

state 𝑠 action 𝑎

Policy 𝜋(𝑠)

state 𝑠 action 𝑎

action 𝑎 = 𝜋(𝑠)

MDP Planning Value-based RL Policy-based RL

action

a = argmaxa𝑄(𝑠, 𝑎)

Reinforcement Learning

• Recall: an MDP consists of:
– Set of states 𝑆
– Start state s0
– Set of actions 𝐴
– Transitions and rewards 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (w. discount )

• But now the model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 is unknown
– Unknown reward 𝑟 and next state 𝑠′, denoted as state

transition (𝑠, 𝑎, 𝑟, 𝑠′), if agent takes action 𝑎 in state 𝑠.

– Agent must learn the optimal policy 𝜋(𝑎|𝑠) by trial-and-
error.

𝑝 𝑟, 𝑠′ 𝑠, 𝑎

4

Characteristics of RL

• There is no supervisor, only a reward

signal (may be sparse)

• Feedback is delayed, not instantaneous

• Sequential, non i.i.d data

– Agent's actions affect the subsequent data it

receives

5

Model-based vs. Model-Free RL
• Model-based RL

– Learn MDP model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 then use Value Iteration or Policy Iteration
to solve for the optimal value function and policy

• Model-free
– Learn the optimal value function and/or policy directly without learning

the MDP

6

Model-Based vs. Model-Free by Analogy
Goal: Compute expected age of a group of 𝑀 students

Unknown P(A): “Model-Based” Unknown P(A): “Model-Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

• If we have the model 𝑃(𝐴) (probability/percentage of students with a certain age
𝑎), we can compute expected (average) age by a weighted sum. But without
𝑃(𝐴):

– Model-based: randomly sample 𝑁 < 𝑀 students and asking for their ages, in order to build
an estimated model ෠𝑃(𝐴) (𝑛𝑢𝑚(𝑎) is the number of sampled students with age 𝑎.). Then use
෠𝑃(𝐴) to compute the expected age.

– Model-free: randomly sample 𝑁 < 𝑀 students and ask for their ages, then compute their
expected age directly.

Model-Based vs. Model-Free Example
• We want to compute expected age of a group of 𝑀 students. We

use random variable 𝐴 to denote student age. If we knew the

group consists of two age groups, 20 and 22, with ground truth

distribution P a = 20 = P a = 22 = .5. We can then compute

expectation of 𝐴 as 𝐸 𝐴 = σ𝑎𝑃 𝑎 ⋅ 𝑎 = . 5 ⋅ 20 + .5 ⋅ 22 = 21. But

the ground truth distribution is unknown in general
– Model−based: randomly sample 𝑁 < 𝑀 students to build an estimated model

෠𝑃(𝐴), e.g., ෡P a = 20 = .6, ෡P a = 22 = .4 (different from ground truth distribution

of .5: . 5). Then use ෠𝑃(𝐴) to compute the expected age 𝐸 𝐴 ≈ σ𝑎
෠𝑃 𝑎 ⋅ 𝑎 = . 6 ⋅

20 + .4 ⋅ 22 = 20.8

– Model-free: randomly sample 𝑁 < 𝑀 students, and compute their expected age

directly, e.g., we sample 5 students with ages 20, 20, 22, 22, 20 , then 𝐸 𝐴 ≈
1

𝑁
σ𝑖 𝑎𝑖 =

1

5
20 + 20 + 22 + 22 + 20 = 20.8.

• Analogously for RL:

– Given sufficient samples, both model-based RL and model-free RL should give

the same optimal solution. In practice, model-based RL is typically more sample

efficient than model-free RL.

8

20

50% 50%

22

Ground truth

distribution 𝑃 𝐴

Outline

• Monte Carlo Methods

• TD-Learning

• Sarsa & Q-Learning

• Function Approximation

9

Outline: Monte Carlo Methods

• MC prediction

• On-policy MC control

– Exploring Starts

– 𝜖-Soft

• Off-policy MC Prediction via Importance

Sampling

• Off-policy MC control (omitted)

10

Recall: Definitions of Terms

• Return (cumulative discounted reward) at time 𝑡: 𝐺𝑡 ≐ 𝑅𝑡+1 +
𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯+ 𝛾𝑇−1𝑅𝑇 = σ𝑘=0

𝑇−𝑡−1 𝛾𝑘 𝑅𝑡+𝑘+1
– At each step 𝑡 ∈ [0, 𝑇 − 1], agent takes an action 𝐴𝑡 in state 𝑆𝑡; at

step 𝑡 + 1, agent receives a reward 𝑅𝑡+1 and transitions into the
next state 𝑆𝑡+1

– We assume episodic tasks, and this specific episode has length
of 𝑇 steps. (𝑇 = ∞ for continuous tasks)

• State Value Function: expected return under policy 𝜋: 𝑣𝜋 𝑠 ≐
𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

• Action Value Function: expected return from taking action 𝑎, then
follow policy 𝜋: 𝑞𝜋 𝑠, 𝑎 ≐ 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• The RL problem: find the optimal policy that maximizes the return
from each state

11

𝑝(𝑆𝑡+1|𝑆𝑡 , 𝐴𝑡)

Reward 𝑅𝑡+1
State 𝑆𝑡+1

Action 𝐴𝑡

Environment

RL Agent

Monte Carlo (MC) Prediction (Policy Evaluation)

• Collect episodes/trajectories under policy 𝜋;

After each episode, compute return 𝐺𝑡 for

each state 𝑆𝑡 encountered in the episode

(either first-visit or every-visit); estimate

expected return 𝑣𝜋 𝑠 with empirical mean

return by averaging over all episodes.

12

MC Prediction Details
• State 𝑠 may be visited multiple times in the same episode

– First-visit MC method estimates 𝑣𝜋(𝑠) as the average of the returns following first visits to 𝑠
in each episode,

– Every-visit MC method estimates 𝑣𝜋(𝑠) as the average of the returns following all visits to 𝑠
in each episode, computed by going backwards from last non-terminal 𝑆𝑇−1 (show below),

• For every-visit MC, instead of keeping all the sampled returns in a list, we can
incrementally update 𝑣𝜋(𝑠) as a moving average with learning rate (step size) 𝛼
(more recent visits are given higher weight): 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)],
where 𝛼 can be a constant, or be typically reduced gradually until convergence.

13

Example: Computing Returns for

One Episode
• Working backward is more efficient than working

forward as it avoids redundant computations.

14

543210Step 𝑡

Reward 𝑅𝑡+1

𝑅1 𝑅2 𝑅3 𝑅4 𝑅5

Exploration in MC Prediction for 𝑞𝜋 𝑠, 𝑎

• For any policy (det or sto):
exploring starts

– Specify that the episodes start in
(𝑠0, 𝑎0), and that every possible
(𝑠, 𝑎) has a nonzero probability
of being selected as the start.

– From (𝑠1, 𝑎1) follow policy 𝜋 for
action selection

• 𝑠0, 𝑎0, 𝑠1, 𝑎1, 𝑠2, 𝑎2, …

– May not be always feasible for
complex environments.

• For stochastic policy

– 𝜖-greedy (or 𝜖-soft)

15

Outline: Monte Carlo Methods

• MC prediction

• On-policy MC control

– Exploring Starts

– 𝜖-Soft

• Off-policy MC Prediction via Importance

Sampling

• Off-policy MC control (omitted)

16

Recall: Policy Iteration for Known MDP

17

Repeat until policy converges:
Policy Evaluation: Estimate state value function 𝑣𝜋 for

some fixed policy 𝜋 with Iterative Policy Evaluation (or

solving linear equations).

Policy Improvement: generate new policy based on

the newly estimated 𝑣𝜋: 𝜋 = greedy(𝑣𝜋).

Generalized Policy Iteration with MC ES

(Exploring Starts)
• GPI w. MC ES: After each episode, the observed

returns are used for policy evaluation, and then
the policy is improved at all the states visited in
the episode.

18

GPI w. MC Example

• Agent initially has uniform random policy of
going left or right. In each episode, it
wanders around until it hits the goal and
gets a reward, then 𝑄(𝑠, 𝑎) for all the states
visited in the episode are updated, and
policy is improved based on argmax

a
𝑄(𝑠, 𝑎).

– In the fig, agent starts from state S, and
happens to go right to hit the goal, then only
policy of state S is changed. In general,
policies of all states visited in the episode
are updated.

• After sufficient exploration, all states’
policies may converge to the optimal policy
𝜋∗.

• If some states are not explored enough,
e.g., the leftmost state is never visited, or
they are visited only a few times, and the
updates to 𝑄(𝑠, 𝑎) is not enough to
overcome badly initialized 𝑄𝑖𝑛𝑖𝑡(𝑠, 𝑎)
values, then their policies may not be
optimal.

19

Policy Evaluation

Policy Improvement

S

Exploration-Exploitation Dilemma

• The agent has to exploit what it has
already experienced in order to obtain
reward, but it also has to explore in order
to make better action selections in the
future.

– Exploitation: to obtain a lot of reward, the
agent must prefer actions that it has tried in
the past and found to be effective in
producing reward.

– Exploration: to discover such actions, it has to
try actions that it has not selected before.

20

𝜖-Greedy as One Type Of 𝜖-Soft

• 𝜖-greedy policy: select a random action w. prob 𝜖 (exploration);
select the greedy action argmax

𝑎
𝑄(𝑠, 𝑎) with prob 1 − 𝜖 (exploitation)

– With 𝒜(𝑠) possible actions in state 𝑠, select each non-greedy action
w. prob

𝜖

𝒜 𝑠
; the greedy action w. prob 1 − 𝜖 +

𝜖

𝒜 𝑠

• 𝜖-soft policy: 𝜋 𝑎 𝑠 ≥
𝜖

𝒜 𝑠
for all (𝑠, 𝑎), and for some 𝜖 > 0

• 𝜖-greedy policy is a special case of 𝜖-soft policy

21

Optimal 𝜖-Soft Policy

• The optimal 𝜖-soft policy is the policy with the
highest value in each state among all 𝜖-soft
policies. It performs worse than the optimal greedy
deterministic policy 𝜋∗ in general.

• But it often performs reasonably well, and avoids
exploring starts.

22

Generalized Policy Iteration with

MC 𝜖-soft

23

No exploring starts

𝜖-soft policy (not det policy)

𝜖-soft policy

Outline: Monte Carlo Methods

• MC prediction

• On-policy MC control

– Exploring Starts

– 𝜖-Soft

• Off-policy MC Prediction via Importance

Sampling

• Off-policy MC control (omitted)

24

On-Policy and Off-Policy

• Off-Policy: Improve and evaluate a different target
policy 𝜋(𝑎|𝑠) from the behavior policy 𝑏(𝑎|𝑠) that
is used to select actions.
– Behavior policy may be more random, and more

exploratory/adventurous than target policy, to
facilitate exploration

– 𝜋 𝑎 𝑠 > 0 ⇒ 𝑏 𝑎 𝑠 > 0 (𝑏(𝑎|𝑠) must cover 𝜋(𝑎|𝑠). If
𝑎 is possible in target policy, it must be possible in
behavior policy. Otherwise agent will never
experience (s, 𝑎)

– “Look over someone's shoulder”

• On-Policy: Improve and evaluate the behavior
policy 𝑏(𝑎|𝑠) that is being used to select actions.

– 𝑏 𝑎 𝑠 == 𝜋 𝑎 𝑠
– “Learn on the job”

25

Importance Sampling

• We want to estimate 𝔼𝜋 𝑋 , expected value of
random var 𝑋 with distribution 𝜋, by sampling from
another distribution 𝑥 ∼ 𝜌.

– Capital letter (𝑋) denotes a random variable; lower-
case letter (𝑥) denotes a sampled value of the
random var 𝑋.

• 𝔼𝜋 𝑋 ≐ σ𝑥∈𝑋 𝜋 𝑥 𝑥 = σ𝑥∈𝑋 𝑏 𝑥 𝜌 𝑥 𝑥 =

𝔼𝑏 𝜌 𝑋 𝑋 ≈
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖𝜌(𝑥𝑖)

– 𝜌 𝑥𝑖 =
𝜋 𝑥𝑖

𝑏 𝑥𝑖
, 𝑥𝑖 ∼ 𝑏

• We compute 𝔼𝜋 𝑋 by sampling from 𝑏, then
performing weighted average with weight 𝜌 𝑥 .

26

Importance Sampling Example

• 𝔼𝜋 𝑋 = .3 ⋅ 1 + .4 ⋅ 2 + .1 ⋅ 3 + .2 ⋅
4 = 2.2

• 1st sample from 𝑏(𝑥): get 𝑥 = 1 w.
prob 0.85

– 𝔼𝑏 𝑋 =
1

1
σ1
1 𝑥𝜌(𝑥) = 1 ×

.3

.85
=

0.35

• 2nd sample from 𝑏(𝑥): get 𝑥 = 3
w. prob 0.05

– 𝔼𝑏 𝑋 =
1

2
σ1
2 𝑥𝜌(𝑥) =

1

2
ቀ

ቁ

1 ×
.3

.85
+

3 ×
.1

.05
≈ 3.18

• 3rd sample from 𝑏(𝑥): get 𝑥 = 1 w.
prob 0.85

– 𝔼𝑏 𝑋 =
1

3
σ1
3 𝑥𝜌(𝑥) =

1

3
ቀ

ቁ

1 ×
.3

.85
+

3 ×
.1

.05
+ 1 ×

.3

.85
≈ 2.24

27

Computing Weighting Factors

• Prob of each off-policy trajectory under behavior
policy 𝑏: ℙ traj under 𝑏 ≐
ℙ 𝐴𝑡, 𝑆𝑡+1, 𝐴𝑡+1, … , 𝑆𝑇 𝑆𝑡, 𝐴𝑡:𝑇 =
ς𝑘=𝑡
𝑇−1 𝑏 𝐴𝑘 𝑆𝑘 𝑝 𝑆𝑘+1 𝑆𝑘, 𝐴𝑘

– Due to the Markov property.

• 𝜌𝑡:𝑇−1 ≐
ℙ traj under 𝜋

ℙ traj under 𝑏
=

ς𝑘=𝑡
𝑇−1 𝜋 𝐴𝑘 𝑆𝑘 𝑝 𝑆𝑘+1 𝑆𝑘, 𝐴𝑘

𝑏 𝐴𝑘 𝑆𝑘 𝑝 𝑆𝑘+1 𝑆𝑘, 𝐴𝑘
= ς𝑘=𝑡

𝑇−1 𝜋 𝐴𝑘 𝑆𝑘
𝑏 𝐴𝑘 𝑆𝑘

– Work backwards to compute incrementally 𝑊1 ←
𝜌𝑇−1;𝑊2 ← 𝑊1𝜌𝑇−2;𝑊3 ← 𝑊2𝜌𝑇−3

• Value function update w. importance sampling:

– 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝜌𝑡:𝑇−1𝐺𝑡 − 𝑉(𝑆𝑡))

28

On-Policy vs. Off-

Policy MC

Prediction

• Improve and

evaluate a

different

target policy

𝜋(𝑎|𝑠) from

the behavior

policy 𝑏(𝑎|𝑠)
that is used to

select actions.

29

Use behavior policy 𝑏

Add weighting factor 𝑊

Outline

• Monte Carlo Methods

• TD-Learning

• Sarsa & Q-Learning

• Function Approximation

30

Exponential Moving Average
• The running average update: ҧ𝑥𝑛 ← 1 − 𝛼 ҧ𝑥𝑛−1 + 𝛼𝑥𝑛 =

ҧ𝑥𝑛−1 + 𝛼(𝑥𝑛 − ҧ𝑥𝑛−1)
– Shorthand notation ҧ𝑥𝑛 ←𝛼 𝑥𝑛

• Makes recent samples more important (since later ones
are more accurate estimates)

• ҧ𝑥𝑛 = 𝛼 𝑥𝑛 + 1 − 𝛼 (𝛼𝑥𝑛−1 + 1 − 𝛼 (…))
= 𝛼 𝑥𝑛 + 1 − 𝛼 𝑥𝑛−1 + 1 − 𝛼 2𝑥𝑛−2 +⋯

=
𝑥𝑛 + 1 − 𝛼 𝑥𝑛−1 + 1 − 𝛼 2𝑥𝑛−2 +⋯

1 + 1 − 𝛼 + 1 − 𝛼 2 +⋯

• Since
1

𝛼
= 1 + 1 − 𝛼 + 1 − 𝛼 2 +⋯

• Forgets about the past gradually (distant past values are
likely to be wrong, esp. for changing env.)

• Decreasing learning rate 𝛼 gradually can give converging
average.

TD Learning

• Recall Bellman Exp. Equation:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 [

]

𝑟 +

𝛾𝑣𝜋 𝑠′ = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]

– To solve it with dynamic programming, we
need the MDP model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 .

• TD Learning: compute 𝑣𝜋 𝑠 in model-free
way by sampling. At every timestep 𝑡,
update 𝑉 𝑆𝑡 for current state 𝑆𝑡:

– 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))

– TD Target: 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1
– TD Error: 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡)

32

Update Equations: MC vs. TD

• MC (every-visit): After every episode, update 𝑉 𝑆𝑡 for
all states encountered in the episode:
– On-policy MC: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝐺𝑡 − 𝑉(𝑆𝑡))
– Off-policy MC w. Importance Sampling: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 +
𝛼(𝜌𝑡:𝑇−1𝐺𝑡 − 𝑉(𝑆𝑡))

• 𝜌𝑡:𝑇−1 = ς𝑘=𝑡
𝑇−1 𝜋 𝐴𝑘 𝑆𝑘

𝑏 𝐴𝑘 𝑆𝑘

• TD: At every timestep 𝑡, update 𝑉 𝑆𝑡 for current state
𝑆𝑡:
– On-policy TD: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))
– Off-policy TD w. Importance Sampling: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 +
𝛼(𝜌𝑡(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1) − 𝑉(𝑆𝑡))

• 𝜌𝑡 =
𝜋 𝐴𝑡 𝑆𝑡
𝑏 𝐴𝑡 𝑆𝑡

• Much lower variance than MC w. Importance Sampling: 𝑉 𝑆𝑡 ←
𝑉 𝑆𝑡 .

33

Tabular TD(0)

• MC updates 𝑉(𝑆) at the end of each episode.

• TD updates 𝑉(𝑆) at every time step.

– Bootstrapping 𝑉(𝑆) from 𝑉(𝑆′)

34

TD vs. MC: Random Walk Example
• Agent has uniform random policy, w. equal prob of going left or right at each timestep. Env is

deterministic. All episodes start in state 𝐶. Episodes terminate either on the left or on the
right. The reward is 0 on all transitions except 1 for terminating on the right. Discount factor 𝛾 =
1: learning rate 𝛼 = 0.5.

• Value of state V(𝑠) is the probability of terminating on the right when starting from state 𝑠. For
known MDP, they can be computed by Policy Evaluation w. the set of Bellman Exp
Equations,w. solution shown in the figure:

– 𝑉 𝐴 = 0.5𝑉(𝐵)

– 𝑉 𝐵 = 0.5𝑉 𝐴 + 0.5𝑉(𝐶)

– 𝑉 𝐶 = 0.5𝑉 𝐵 + 0.5𝑉(𝐷)

– 𝑉 𝐷 = 0.5𝑉 𝐶 + 0.5𝑉(𝐸)

– 𝑉 𝐸 = 0.5𝑉 𝐷 + 0.5 ⋅ 1

• Next, for unknown MDP, we use TD or MC to learn 𝑉(𝑠). Initialize all V(⋅) = 0.5.

35

Episode1 (𝐶, 𝑟, 0, 𝐷, 𝑟, 0, 𝐸, 𝑟, 1, 𝑇)
• TD:

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐷 − 𝑉 𝐶 = .5 + .5 0 + .5 − .5 = 0.5

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐸 − 𝑉 𝐷 = .5 + .5 0 + .5 − .5 = 0.5

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑇 − 𝑉 𝐸 = .5 + .5 1 + 0 − .5 = 0.75

• MC: (every-visit. when used as subscript, 𝑇 denotes the time instant of reaching the terminal
state)

– 𝐺 𝐸 = 𝑅𝑇 = 1, 𝐺 𝐷 = 𝑅𝑇−1 + 𝛾𝐺 𝐸 = 0 + 1 ⋅ 1 = 1, 𝐺 𝐶 = 𝑅𝑇−2 + 𝛾𝐺 𝐷 = 0 + 1 ⋅ 1 = 1

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝐺(𝐶) − 𝑉 𝐶 = .5 + .5 1 − .5 = 0.75

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝐺(𝐷) − 𝑉 𝐷 = .5 + .5 1 − .5 = 0.75

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝐺(𝐸) − 𝑉 𝐸 = .5 + .5 1 − .5 = 0.75

36

t=T-3 t=T-2 t=T-1

t=T

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝐺𝑡 − 𝑉(𝑆𝑡))

Quiz on TD vs. MC

• Q: Is the following a more efficient TD update sequence with backward, in-
place updates?

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑇 − 𝑉 𝐸 = .5 + .5 1 + 0 − .5 = 0.75

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐸 − 𝑉 𝐷 = .5 + .5 0 + .75 − .5 = 0.625

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐷 − 𝑉 𝐶 = .5 + .5 0 + .625 − .5 = 0.5625

• A: This is not feasible since TD updates 𝑉(𝑆) at every time step, and does
not keep track of the history of visited states

• Q: Can we use backward, in-place updates for MC?

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝐺(𝐸) − 𝑉 𝐸 = .5 + .5 1 − .5 = 0.75

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝐺(𝐷) − 𝑉 𝐷 = .5 + .5 1 − .5 = 0.75

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝐺(𝐶) − 𝑉 𝐶 = .5 + .5 1 − .5 = 0.75

• A: Yes, but it makes no difference in this example whether you use forward
or backward update for 𝑉(𝑆𝑡), which is based on 𝐺(𝑆𝑡), not bootstrapped off
𝑉(𝑆𝑡+1).

• For every-visit MC using 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)] to update each
state’s value function, we should use forward update to give more recent
visits higher weight, in case the same state is visited multiple times in one
episode (refer to p.13 “MC Prediction Details”)

37

Episode2 Pt1 (𝐶, 𝑟, 0, 𝐷, 𝑟, 0, 𝐸)
• TD:

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐷 − 𝑉 𝐶 = .5 + .5 0 + .5 − .5 = 0.5

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐸 − 𝑉 𝐷 = .5 + .5 0 + .75 − .5 = 0.625

• MC:
– No update since episode has not ended.

38

Episode2 Pt2 (𝐸, 𝑙, 0, 𝐷, 𝑙, 0, 𝐶)
• TD:

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐷 − 𝑉 𝐸 = .75 + .5 0 + .625 − .75 ≈ 0.688

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐶 − 𝑉 𝐷 = .625 + .5 0 + .5 − .625 ≈ 0.563

• MC:

– No update since episode has not ended.

39

Episode2 Pt3 (𝐶, 𝑟, 0, 𝐷, 𝑟, 0, 𝐸)
• TD:

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐷 − 𝑉 𝐶 = .5 + .5 0 + .563 − .5 ≈ 0.531

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐸 − 𝑉 𝐷 = .563 + .5 0 + .688 − .563 ≈ 0.625

• MC:
– No update since episode has not ended.

40

Episode2 Pt4 (𝐸, 𝑟, 1, 𝑇)

41

0.8440.6250.531

0.9380.9690.938

• TD:

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑇 − 𝑉 𝐸 = .688 + .5 1 + 0 − .688 = 0.844

Episode2 Pt4 (𝐸, 𝑟, 1, 𝑇)

• MC (every-visit w. episode 𝐶′ → 𝐷′′ → 𝐸′ → 𝐷′ → 𝐶 → 𝐷 → 𝐸 → 𝑇):

• Update 𝐺 𝑠 backward:

– 𝐺 𝐸 = 𝑅𝑇 = 1, 𝐺 𝐷 = 𝑅𝑇−1 + 𝛾𝐺 𝐸 = 0 + 1 = 1, 𝐺 𝐶 = 𝑅𝑇−2 +
𝛾𝐺 𝐷 = 0 + 1 = 1

– 𝐺(𝐷′) = 𝑅𝑇−1 + 𝛾𝐺 𝐶 = 0 + 1 = 1 , 𝐺(𝐸′) = 𝑅𝑇−1 + 𝛾𝐺 𝐷′ = 0 + 1 = 1

– 𝐺(𝐷′′) = 𝑅𝑇−1 + 𝛾𝐺(𝐸′) = 0 + 1 = 1, 𝐺(𝐶′) = 𝑅𝑇−1 + 𝛾𝐺(𝐷′′) = 0 + 1 = 1

• Update 𝑉 𝑠 forward:

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝐺(𝐶′) − 𝑉 𝐶 = .75 + .5 1 − .75 = 0.875

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝐺(𝐷′′) − 𝑉 𝐷 = .75 + .5 1 − .75 = 0.875

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝐺(𝐸′) − 𝑉 𝐸 = .75 + .5 1 − .75 = 0.875

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝐺(𝐷′) − 𝑉 𝐷 = .875 + .5 1 − .875 ≈ 0.938

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝐺 𝐶 − 𝑉 𝐶 = .875 + .5 1 − .875 ≈ 0.938

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝐺 𝐷 − 𝑉 𝐷 = 0.938 + .5 1 − 0.938 = 0.969

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝐺 𝐸 − 𝑉 𝐸 = .875 + .5 1 − .875 ≈ 0.938

42

TD vs. MC: Random Walk Performance
• Left fig shows values learned after various numbers of episodes on a single

run of TD(0),
– They are very close to the true values after 100 episodes, but they fluctuate

indefinitely in response to the outcomes of the most recent episodes.

• Right fig shows Root Mean-Squared (RMS) error between the value
function learned and the true value function, averaged over the five states,
then averaged over 100 runs.

– TD converges faster than MC. Higher learning rate 𝛼 helps achieve faster
convergence, but has large fluctuations.

43

MC Prediction for MiniGW
Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

• State A:
– Episode 4: 𝐺𝑡 𝐴 = −10

– ෠𝑉 𝐴 =
−10

1
= −10,

• State D:
– Episodes 1,2, 4: 𝐺𝑡 𝐷 = 10

– ෠𝑉 𝐷 =
10⋅3

3
= 10,

• State 𝐵:
– Episodes 1 and 2: 𝐺𝑡 𝐵 = −1 − 1 + 10 =

8; ෠𝑉 𝐵 =
1

2
8 + 8 = 8

• State 𝐶:
– Episodes 1,2,3: 𝐺𝑡 𝐶 = −1 + 10 = 9
– Episode 4: 𝐺𝑡 𝐶 = −1 − 10 = −11

– ෠𝑉 𝐶 =
1

4
9 + 9 + 9 − 11 = 4

• State 𝐸:
– Episode 3: 𝐺𝑡 𝐸 = −1 − 1 + 10 = 8
– Episode 4: 𝐺𝑡 𝐸 = −1 − 1 − 10 = −12

– ෠𝑉 𝐸 =
1

2
8 − 12 = −2

MC Prediction for MiniGW

• From Policy Evaluation, we have
derived 𝑉 𝐵 = 𝑉(𝐸). But the MC
predicted value functions are
inaccurate due to limited sampling:
– ෠𝑉 𝐵 = 8, since both episodes 1 and 2

start from 𝐵 and end in 𝐷 with 𝑉 𝐷 =
10;

– ෠𝑉 𝐸 = −2, since episodes 3 and 4 start
from 𝐸 and end in either 𝐷 or 𝐴 with
𝑉 𝐷 = 10, 𝑉 𝐴 = −10.

• If we sample more data, then we can
estimate more accurate values.

• MC learning is not sample-efficient,
since value function of each state must
be learned separately.

45

Output Values

If B and E both go to C
under this policy, how can
their values be different?

A

B C D

E

+8 +4 +10

-10

-2

TD Learning, 𝛼 = 0.5
• 4 episodes with transitions {(B, east, C), (C, east, D)}.

• TD update: 𝑣𝜋 𝐵 ←𝛼 −1 + 𝛾𝑣𝜋 𝐶 ; 𝑣𝜋 𝐵 ←𝛼 −1 + 𝛾𝑣𝜋 𝐷
• EP1:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 0 + 𝛼 −1 + 0 − 0 = −.5
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 0 + 𝛼 −1 + 10 − 0 = 4.5
• EP2:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← −.5 + 𝛼 −1 + 4.5 − (−.5) = 1.5
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 4.5 + 𝛼 −1 + 10 − 4.5 = 6.75
• EP3:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 1.5 + 𝛼 −1 + 6.75 − 1.5 = 3.625
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 6.75 + 𝛼 −1 + 10 − 6.75 = 7.875
• EP4:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 3.625 + 𝛼 −1 + 7.875 − 3.625 =
5.25

• Transition (C, east, D): 𝑉𝜋 𝐶 ← 7.875 + 𝛼 −1 + 10 − 7.875 =
8.4375

• After many repetitions of the episode {(B, east, C), (C, east, D)},
𝑉𝜋 𝐵 ≈ 7, 𝑉𝜋 𝐶 ≈ 9

46

TD Learning, 𝛼 = 0.9

• 4 episodes with transitions {(B, east, C), (C, east, D)}.

• TD update: 𝑣𝜋 𝐵 ←𝛼 −1 + 𝛾𝑣𝜋 𝐶 ; 𝑣𝜋 𝐵 ←𝛼 −1 + 𝛾𝑣𝜋 𝐷
• EP1:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 0 + 𝛼 −1 + 0 − 0 = −.9
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 0 + 𝛼 −1 + 10 − 0 = 8.1
• EP2:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← −.9 + 𝛼 −1 + 8.1 − (−.9) = 3.1
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 8.1 + 𝛼 −1 + 10 − 8.1 = 8.91
• EP3:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 3.1 + 𝛼 −1 + 8.91 − 3.1 = 5.505
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 8.91 + 𝛼 −1 + 10 − 8.91 = 8.991
• EP4:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 5.505 + 𝛼 −1 + 8.991 − 5.505 =
6.748

• Transition (C, east, D): 𝑉𝜋 𝐶 ← 8.991 + 𝛼 −1 + 10 − 8.991 =
8.9991

• After many repetitions of the episode {(B, east, C), (C, east, D)},
𝑉𝜋 𝐵 ≈ 7, 𝑉𝜋 𝐶 ≈ 9. Converges faster than 𝛼 = 0.5

47

Backup Diagrams: MC vs. TD vs. DP

48

Important

MC vs. TD
• TD can learn before knowing the final outcome

– TD can learn online after every step

– MC must wait until end of each episode before return is known

• TD can learn without the final outcome
– TD can learn from incomplete episodes

– MC can only learn from complete episodes

– TD works in continuing (non-terminating) environments

– MC only works for episodic (terminating) environments

• MC has high variance, zero bias
– Return 𝐺𝑡 ≐ σ𝑘=0

𝑇−1 𝛾𝑘𝑅𝑡+𝑘+1 is unbiased estimate of 𝑣𝜋(𝑆𝑡); converges to 𝑣𝜋(𝑆𝑡) (even
with function approximation)

– Return depends on many random actions, transitions, rewards in each episode

– Not very sensitive to initial value

• TD has low variance, some bias
– TD target 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 is biased estimate of 𝑣𝜋(𝑆𝑡); TD(0) converges to 𝑣𝜋(𝑆𝑡) (but

not always with function approximation)

– TD target depends on one random action, transition, reward

– More sensitive to initial value

• MC does not exploit Markov property
– More effective in non-Markov environments, e.g., Partially Observed MDP (POMDP)

• TD exploits Markov property
– Does not work well for POMPDP

49

Outline

• Monte Carlo Methods

• TD-Learning

• Sarsa & Q-Learning

• Function Approximation

50

Problems with TD Learning
• TD is a model-free way to learn 𝑉 𝑆 by sampling

• However, if we want to get the optimal policy, we need the

MDP model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 to go from 𝑉(𝑆) to 𝑄(𝑆, 𝐴)
– 𝑞 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣 𝑠′

• Then use greedy action selection

– 𝜋(𝑠) = argmax
𝑎

𝑞(𝑠, 𝑎)

• Sarsa and Q learning: learn 𝑄(𝑆, 𝐴) instead of 𝑉 𝑆 , for use

in Generalized Policy Iteration (GPI) for control. This makes

action selection model-free too.

TD, Sarsa, Q Learning
• TD solves [BEV] by sampling:

– 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))

• Sarsa and Expected Sarsa solve [BEA] by sampling:

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄 𝑆𝑡 , 𝐴𝑡)

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾σ𝑎′𝜋(𝑎′|𝑆𝑡+1)𝑄 𝑆𝑡+1, 𝑎′ −
𝑄 𝑆𝑡 , 𝐴𝑡)

• Q Learning solves [BOA] by sampling:

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾max
𝑎′

𝑄 𝑆𝑡+1, 𝑎′ − 𝑄 𝑆𝑡 , 𝐴𝑡)

52

• [BEV] Bellman Expectation Equation for State Value Function:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

• [BEA] Bellman Expectation Equation for Action Value Function

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾 σ𝑎′𝜋 𝑎′ 𝑠′ 𝑞𝜋 𝑠′, 𝑎′

• [BOA] Bellman Optimality Equation for Optimal Action Value
Function:

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′

Important

53

Backup Diagrams

Bellman Exp Eqn for 𝑞𝜋 𝑠, 𝑎 Bellman Opt Eqn for 𝑞∗ 𝑠, 𝑎

maxmax

Bellman Exp Eqn for 𝑣𝜋 𝑠

TD

(on-policy,

𝑎 is taken)

Expected

Sarsa

(off-policy,

𝑎′ may not be

taken)

QL (off-policy,

𝑎′ may not be

taken)

Bellman Exp Eqn for 𝑞𝜋 𝑠, 𝑎

Sarsa

(on-policy,

𝑎′ is taken)

exp

Important

Did We Miss One Bellman Equation?

• [BEV] Bellman Optimality Equation for
Optimal State Value Function:
– 𝑣∗ 𝑠 = max

𝑎
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠

′

• Due to max
𝑎

in front, it is not an expectation

over a distribution, hence cannot solve for
𝑣∗(𝑠) by sampling.

54Bellman Opt Eqn for 𝑣∗ 𝑠

max

Another View

From https://www.davidsilver.uk/teaching/. Expected Sarsa is missing here.
55

https://www.davidsilver.uk/teaching/

Sarsa

56

Off-policy, Value Iteration: in state 𝑆, Q update w. one-step lookahead

𝑄(𝑆′, 𝑎) by taking max
𝑎

𝑄(𝑆′, 𝑎) among all possible actions.

On-policy, Policy Iteration: in state 𝑆, Q update w. one-step

lookahead 𝑄(𝑆′, 𝐴′) for a specific action 𝐴′ (e.g., based on 𝜖-greedy).

QL is Off-Policy

• QL’s target policy 𝜋 is always greedy w.r.t
𝑄(𝑠, 𝑎)

– σ𝑎′𝜋(𝑎′|𝑆𝑡+1) 𝑄 𝑆𝑡+1, 𝑎′ = max
𝑎′

𝑄 𝑆𝑡+1, 𝑎′

• Behavior policy b is typically more
exploratory, e.g., 𝜖-greedy, or uniform
random, or even arbitrary policy.

• No need for Importance Sampling.

57

Expected Sarsa and QL

• Expected Sarsa and QL are both off-

policy.

– Target for Expected Sarsa: 𝑅𝑡+1 +
𝛾 σ𝑎′𝜋(𝑎′|𝑆𝑡+1) 𝑄 𝑆𝑡+1, 𝑎′

– Target for QL: 𝑅𝑡+1 + 𝛾max
𝑎′

𝑄 𝑆𝑡+1, 𝑎′

• Expected Sarsa improves over Sarsa by

eliminating variance due to the random

selection of 𝐴𝑡+1, with cost of increased

computation overhead.

58

Example 6.6: Cliff Walking

• Reward is −1 on all transitions except those into the region marked “The
Cliff.” Stepping into this region incurs a reward of −100 and sends the agent
instantly back to the start. Env is deterministic.

• Graph shows the performance of the Sarsa and Q-learning methods with 𝜖-
greedy action selection, 𝜖 = 0.1. After an initial transient, Q-learning learns
values for the optimal policy, that which travels right along the edge of the
cliff. Unfortunately, this results in its occasionally falling off the cliff because
of the 𝜖- greedy action selection. Sarsa, on the other hand, takes the action
selection into account and learns the longer but safer path through the
upper part of he grid. Although Q-learning learns the values of the optimal
policy, its online performance is worse than that of Sarsa.

• If 𝜖 were gradually reduced to 0, then both methods would asymptotically
converge to the optimal policy.

59

Model-Based RL

• If MDP is not available, we
can use Model-Based RL:

• Step 1: Learn empirical MDP
model
– Execute some policy 𝜋 (may be

random), and keeping track of
outcomes 𝑟, s′ for each 𝑠, 𝑎 in
the observed episodes. These
form the training set for
supervised learning of the
model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 .

• Step 2: Do planning w. the
learned MDP w. Dynamic
Programming (Value Iteration
or Policy Iteration)

60

Recall

Two Types of Models
• Sample models: produce just one of the possible outcomes, sampled

according to the probabilities.
– Can approximate probability of each outcome; requires little memory.

• Distribution models: produce the complete probability distribution of all
possible outcomes.

– Can compute exact probability of each expected outcome; requires more memory for
storage.

– Ex. Table Lookup, Linear Expectation, Linear Gaussian, Gaussian Process, Deep
Belief Network…

• Dynamic Programming approaches (Value Iteration and Policy Iteration)
require distribution models for state-space planning. Q-planning can use
either type of model.

61

Random-sample one-step tabular

Q-planning
• Planning uses

simulated/imagined
experience generated
by a model.

• Learning uses real
experience generated
by the environment.

• They can be combined
(in Dyna-Q): an agent
uses planning to learn
that moving right and
falling off the cliff is
bad, so it avoids the
moving right action
without actually doing
it.

62

Dyna-Q: Integrated Planning,

Acting, and Learning
• Indirect RL (model-learning then Q planning): real experience is used to

improve the model (to make it more accurately match the real environment),
which is used for planning.

• Direct RL w Q learning: real experience is used to directly improve the value
function and policy.

• Tabular Dyna-Q = Q learning + Q planning
– Model-learning is table-based and assumes deterministic environment. After each

transition 𝑆𝑡 , 𝐴𝑡 → 𝑅𝑡+1, 𝑆𝑡+1, the model records in its table entry for 𝑆𝑡 , 𝐴𝑡 the prediction
that 𝑅𝑡+1, 𝑆𝑡+1 will deterministically follow. If the model is queried with a state–action
pair that has been experienced before, it simply returns the last-observed next state
and next reward as its prediction.

– During planning, the Q-planning algorithm randomly samples from state–action pairs
that have previously been experienced.

63

Dyna-Q Maze Example
• 1st episode: agent follows random policy and stumbles upon the goal

G. Afterwards, policy of only one state leading to G is updated.
– QL (𝑛 = 0): all experience before reaching G is discarded.

– Dyna-Q (𝑛 > 0): learn a model by keeping track of all experience before
reaching G: makes better use of env interactions.

• Future episodes:
– QL (𝑛 = 0): each episode adds only one additional step to the policy

(influences the neighboring states)

– Dyna (𝑛 > 0): agent uses the learned model to plan better policies for all
previously-visited states. By the end of the 3rd episode a complete
optimal policy has been found (right fig.).

64

65

Dyna-Q Maze Example (𝑛 = 100)

Prioritized Sweeping
• Prioritized sweeping focuses backward on the predecessors of states whose values have

recently changed

• A queue is maintained of every state–action pair whose estimated value would change
nontrivially if updated , prioritized by the size of the change. When the top pair in the queue is
updated, the effect (TD error) on each of its predecessor pairs is computed. If the effect is greater
than some small threshold, then the pair is inserted in the queue with the new priority In this way
the effects of changes are efficiently propagated backward until quiescence.

• e.g., for Maze example, work backward from the goal state by giving higher priority to states
leading to the goal state than those far away from it.

66

Planning w. Inaccurate Model
• Models may be incorrect because the environment is stochastic and only a

limited number of samples have been observed, or because the model was
learned using function approximation that has generalized imperfectly, or
simply because the environment has changed and its new behavior has not
yet been observed.

• When the model is incorrect, the planning process is likely to compute a
suboptimal policy. But the error will be later discovered and corrected by
real experience by exploration.

67

Dyna-Q+
• Exploration (explore env to improve model accuracy) vs exploitation (use

current model to improve policy).

• Dyna-Q+ is Dyna-Q with an exploration bonus that encourages exploration.
– If the modeled reward for a transition is 𝑟, and the transition has not been tried in 𝜏

time steps, then planning updates are done as if that transition produced a reward of
𝑟 + 𝜅 𝜏, for some small 𝜅.

• Right fig: The left environment was used for the first 1000 steps, the right
environment for the rest.

68

Tabular Methods Summary

69

Outline

• Monte Carlo Methods

• TD-Learning

• Sarsa & Q-Learning

• Function Approximation

70

Q Learning vs. DQN

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/

Function Approximations of Value

Functions
• Upper:

– Left: state value function
ො𝑣(𝑠,𝐰) with params 𝐰.

– Middle: action value
function ො𝑞(𝑠, 𝑎,𝐰) with
params 𝐰.

– Right: action value
functions ො𝑞(𝑠, 𝑎𝑖 , 𝐰) with
params 𝐰, since we need
all Q-values for computing
greedy policy
argmaxa𝑄(𝑠, 𝑎).

• Lower:
– Use Neural Network as

action value functions
(corresponds to upper
middle and right).

72

Mean Squared Error

• Optimization objective is to minimize Value Error

– 𝑉𝐸 = 𝔼𝜋 𝑣𝜋 𝑠 − ො𝑣 𝑠,𝒘 2 = σ𝑠∈𝒮 𝜇 𝑠 𝑣𝜋 𝑠 − ො𝑣 𝑠,𝒘 2

– 𝜇 𝑠 is the fraction of time spent in state 𝑠 when following policy 𝜋,
called the on-policy distribution under policy 𝜋, σ𝑠∈𝒮 𝜇 𝑠 = 1. A larger
𝜇 𝑠 denotes state 𝑠 is visited more frequently, hence estimation error
of 𝑣𝜋 𝑠 is given more weight

Gradient Descent

• The 𝑥-axis corresponds to weight vector 𝒘, and the 𝑦-axis
to the objective value (i.e., loss function) 𝐿(𝒘) for weight
𝒘.

• To minimize 𝐿(𝒘), we adjust weight vector 𝒘 in the
direction of the negative of the gradient 𝒘 ← 𝒘− 𝛼∇𝐿 𝒘
– 𝛼 is step-size parameter that is typically gradually reduced

𝐿(𝑤)

Stochastic Gradient Descent (SGD)

• Gradient Descent for minimizing Mean Squared

Value Error (impractical for a large number of

states)

– ∇𝑉𝐸 = ∇σ𝑠∈𝒮 𝜇𝜋 𝑠 𝑣𝜋 𝑠 − ො𝑣 𝑠,𝒘 2 =
σ𝑠∈𝒮 𝜇𝜋∇ 𝑣𝜋 𝑠 − ො𝑣 𝑠,𝒘 2 = −2σ𝑠∈𝒮 𝜇𝜋[

]
𝑣𝜋(𝑠) −

ො𝑣 𝑠,𝐰 ∇ො𝑣 𝑠,𝒘

– 𝒘 ← 𝒘−
1

2
𝛼∇𝑉𝐸 = 𝒘+ 𝛼σ𝑠∈𝒮 𝜇𝜋[

]

𝑣𝜋(𝑠) −

ො𝑣 𝑠,𝒘 ∇ො𝑣 𝑠,𝒘

• SGD: on each step, update 𝒘 based on a single

new state 𝑆𝑡 and its value 𝑣𝜋(𝑆𝑡):

– 𝒘 ← 𝒘+ 𝛼[𝑣𝜋 𝑆𝑡 − ො𝑣 𝑆𝑡 , 𝒘]∇ො𝑣 𝑆𝑡 , 𝒘

Gradient Monte Carlo

• Gradient Monte Carlo: Use MC target 𝐺𝑡
as unbiased estimate of 𝑣𝜋 𝑆𝑡 .

– 𝒘 ← 𝒘 + 𝛼[𝐺𝑡 − ො𝑣 𝑆𝑡 , 𝒘]∇ො𝑣 𝑆𝑡 , 𝒘

– Recall 𝐺𝑡 ≐ σ𝑘=0
𝑇−1 𝛾𝑘 𝑅𝑡+𝑘+1

Semi-Gradient TD(0) for Estimating ො𝑣 ≈ 𝑣𝜋
• Use TD target 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 as biased estimate of 𝑣𝜋 𝑆𝑡 .

• 𝒘 ← 𝒘−
1

2
𝛼∇ 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 − ො𝑣 𝑆𝑡, 𝒘

2 ≠ 𝒘+ 𝛼[𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 −

ො𝑣 𝑆𝑡 , 𝒘]∇ො𝑣 𝑆𝑡, 𝒘
– Since ∇ 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 ≠ 0

• Semi-Gradient TD(0): use the semi-gradient as approximation to the real gradient

– 𝐰 ← 𝐰+ 𝛼[𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝐰 − ො𝑣 𝑆𝑡 , 𝐰]∇ො𝑣 𝑆𝑡, 𝐰

• It may not converge to local minimum, but it converges faster than Gradient MC
due to more frequent (per timestep instead of per episode) and less noisy
updates.

TD vs. Supervised Learning

• TD tries to learn parametrize value
function ො𝑣 𝑠, 𝒘 ≈ 𝑣𝜋(𝑠)
– Learn mapping 𝑆𝑡 → 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝒘) from

training dataset: ሼ
ሽ

𝑆1, 𝑅2 + 𝛾 ො𝑣(𝑆2, 𝐰) , (
)

𝑆2, 𝑅3 +
𝛾 ො𝑣(𝑆3, 𝒘) , 𝑆3, 𝑅4 + 𝛾 ො𝑣(𝑆4, 𝒘) , …

– Target 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝒘) depends on 𝒘. (non
i.i.d)

• c.f. Supervised Learning, with fixed and
given target (i.i.d)

– Learn mapping 𝑋𝑖 → ො𝑦(𝑋𝑖 , 𝒘) from training
dataset: 𝑋1, 𝑌1 , 𝑋2, 𝑌2 , 𝑋3, 𝑌3 …

TD w. Linear Function

Approximation
• For linear value function approximation ො𝑣 𝑠,𝒘 ≐ 𝒘𝑇𝒙(𝑠), we have

∇ො𝑣 𝑠,𝒘 = 𝒙(𝑠)
– e.g. for feature vector of size 2:

– ො𝑣 𝑠,𝒘 ≐ 𝑤1 𝑤2
𝑥1 𝑠

𝑥2 𝑠
= 𝑤1𝑥1 𝑠 + 𝑤2𝑥2 𝑠

– ∇ො𝑣 𝑠,𝒘 =

𝜕ො𝑣 𝑠,𝐰

𝜕𝑤1

𝜕ො𝑣 𝑠,𝐰

𝜕𝑤2

=
𝑥1 𝑠

𝑥2 𝑠

• Semi-gradient TD:

– 𝒘 ← 𝒘+ 𝛼[𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 − ො𝑣 𝑆𝑡 , 𝒘]𝒙(𝑆𝑡)
– Weight update = step size × TD error × feature value

• A theorem relating Linear TD’s fixed-point and minimum of Value
Error:

– 𝑉𝐸 𝒘𝑇𝐷 ≤
1

1−𝛾
min
𝒘

𝑉𝐸(𝒘)

Tabular TD is a Special Case of

Linear TD
• For Tabular TD, feature vector is one-hot encoding of states:

𝒙 𝑠𝑖 = 0 …0 1 0 …0 𝑇, with 1 for the 𝑖-th element and 0 for all
others. This assigns a value to each individual state ො𝑣 𝑠𝑖 , 𝒘 = 𝑤𝑖

– e.g., for 2 states 𝑠1, 𝑠2, we have 2 features: 𝒙 𝑠1 =
1
0
, 𝒙 𝑠2 =

0
1

– ො𝑣 𝑠1, 𝒘 ≐ 𝒘𝑇𝒙 𝑠1 = 𝑤1 𝑤2
1
0

= 𝑤1

– ො𝑣 𝑠2, 𝒘 ≐ 𝒘𝑇𝒙 𝑠2 = 𝑤1 𝑤2
0
1

= 𝑤2

• Semi-gradient TD becomes:

– 𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 − ො𝑣 𝑆𝑡 , 𝒘 ⋅ 1
– Same as Tabular TD: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))

• Similarly, tabular MC is a special case of Linear Gradient MC.

CH10 On-policy Control with

Approximation
• Top: Generalized

Policy Iteration (GPI)
for tabular setting,
updating 𝑄 𝑆𝑡 , 𝐴𝑡 for
each 𝑆𝑡 , 𝐴𝑡 in each
iteration.

• Bottom: GPI for
function
approximation setting,
updating 𝒘 in
ො𝑞 𝑠, 𝑎,𝒘 for any 𝑠, 𝑎
in each iteration

Action Value Function Update

Equations• Recall Sarsa:

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄 𝑆𝑡 , 𝐴𝑡)

• Semi-Gradient Sarsa w. function approximation:

– 𝒘 ← 𝒘+ 𝛼(𝑅𝑡+1 + 𝛾ො𝑞 𝑆𝑡+1, 𝐴𝑡+1, 𝐰 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝒘)∇ො𝑞 𝑆𝑡, 𝐴𝑡 , 𝒘

• Recall Expected Sarsa:

– 𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾σ𝑎′𝜋(𝑎′|𝑆𝑡+1)𝑄 𝑆𝑡+1, 𝑎′ − 𝑄 𝑆𝑡, 𝐴𝑡)

• Semi-Gradient Expected Sarsa w. Function Approximation:

– 𝒘 ← 𝒘+ 𝛼(𝑅𝑡+1 + 𝛾σ𝑎′ 𝜋 𝑎′ 𝑆𝑡+1 ො𝑞 𝑆𝑡+1, 𝑎
′, 𝒘 −

ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝒘)∇ො𝑞 𝑆𝑡 , 𝐴𝑡 , 𝐰

• Recall QL:

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾max
𝑎′

𝑄 𝑆𝑡+1, 𝑎′ − 𝑄 𝑆𝑡 , 𝐴𝑡)

• Semi-Gradient QL w. Function Approximation:

– 𝒘 ← 𝒘+ 𝛼(𝑅𝑡+1 + 𝛾max
𝑎′

ො𝑞 𝑆𝑡+1, 𝑎
′, 𝒘 − ො𝑞 𝑆𝑡 , 𝐴𝑡 , 𝒘)∇ො𝑞 𝑆𝑡, 𝐴𝑡 , 𝒘

• (Optional) linear function approximation ො𝑞 𝑠, 𝑎,𝒘 ≐ 𝒘𝑇𝒙(𝑠, 𝑎)

