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The Big Picture
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Problem Bellman 
Equation

Algo (known 
MDP)

Algo (unknown MDP, 
sample-based)

Prediction (compute 
𝑣𝜋 𝑠 )

Bellman Exp. 
Equation for 𝑣

Policy Evaluation 
(PE)

MC Prediction, TD 
Learning (on-policy)

Control (compute 
𝑣𝜋 𝑠 , then 𝜋 𝑠 =
argmax

𝑎
𝑞(𝑠, 𝑎)) for 

known MDP

Bellman Exp. 
Equation for 𝑣 + 
Greedy Policy 
Improvement (GPI)

Policy Iteration 
(PI=PE+GPI)

Cannot do GPI, since 
cannot get 𝑄(𝑠, 𝑎) from 
𝑉(𝑠) without MDP

Control (compute 
𝑣∗ 𝑠 , then 𝜋∗ 𝑠 =
argmax

𝑎
𝑞∗(𝑠, 𝑎)) for 

known MDP

Bellman Opt. 
Equation for 𝑣

Value Iteration 
(VI) (a form of 
Generalized PI)

Cannot compute 𝑉∗(𝑠) w. 
sample-based method 
due to max

𝑎
in front; 

cannot get 𝑄(𝑠, 𝑎) from 
𝑉(𝑠) without MDP

Control (compute 
𝑞∗(𝑠, 𝑎), then 𝜋∗ 𝑠 =
argmax

𝑎
𝑞∗(𝑠, 𝑎))

Bellman Opt. 
Equation for 𝑞

Q Value 
Iteration (QVI)

Sarsa (on-policy)
Q Learning, Expected 
Sarsa (off-policy)

Important



Value-based RL
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MDP

state 𝑠 action 𝑎

next

state 𝑠′
reward 𝑟

𝑉 𝑠 ,𝑄(𝑠, 𝑎)

state 𝑠 action 𝑎

Policy 𝜋(𝑠)

state 𝑠 action 𝑎

action 𝑎 = 𝜋(𝑠)

MDP Planning Value-based RL Policy-based RL

action

a = argmaxa𝑄(𝑠, 𝑎)



Reinforcement Learning

• Recall: an MDP consists of:
– Set of states 𝑆
– Start state s0
– Set of actions 𝐴
– Transitions and rewards 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 (w. discount )

• But now the model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 is unknown
– Unknown reward 𝑟 and next state 𝑠′, denoted as state 

transition (𝑠, 𝑎, 𝑟, 𝑠′), if agent takes action 𝑎 in state 𝑠. 

– Agent must learn the optimal policy 𝜋(𝑎|𝑠) by trial-and-
error.

𝑝 𝑟, 𝑠′ 𝑠, 𝑎
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Characteristics of RL

• There is no supervisor, only a reward 

signal (may be sparse)

• Feedback is delayed, not instantaneous

• Sequential, non i.i.d data

– Agent's actions affect the subsequent data it 

receives
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Model-based vs. Model-Free RL
• Model-based RL

– Learn MDP model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 then use Value Iteration or Policy Iteration 
to solve for the optimal value function and policy 

• Model-free
– Learn the optimal value function and/or policy directly without learning 

the MDP
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Model-Based vs. Model-Free by Analogy
Goal: Compute expected age of a group of 𝑀 students

Unknown P(A): “Model-Based” Unknown P(A): “Model-Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.

• If we have the model 𝑃(𝐴) (probability/percentage of students with a certain age 
𝑎), we can compute expected (average) age by a weighted sum. But without 
𝑃(𝐴):

– Model-based: randomly sample 𝑁 < 𝑀 students and asking for their ages, in order to build 
an estimated model ෠𝑃(𝐴) (𝑛𝑢𝑚(𝑎) is the number of sampled students with age 𝑎.). Then use 
෠𝑃(𝐴) to compute the expected age.

– Model-free: randomly sample 𝑁 < 𝑀 students and ask for their ages, then compute their 
expected age directly.



Model-Based vs. Model-Free Example
• We want to compute expected age of a group of 𝑀 students. We 

use random variable 𝐴 to denote student age. If we knew the 

group consists of two age groups, 20 and 22, with ground truth 

distribution P a = 20 = P a = 22 = .5. We can then compute 

expectation of 𝐴 as 𝐸 𝐴 = σ𝑎𝑃 𝑎 ⋅ 𝑎 = . 5 ⋅ 20 + .5 ⋅ 22 = 21. But 

the ground truth distribution is unknown in general
– Model−based: randomly sample 𝑁 < 𝑀 students to build an estimated model

෠𝑃(𝐴), e.g., ෡P a = 20 = .6, ෡P a = 22 = .4 (different from ground truth distribution 

of .5: . 5). Then use ෠𝑃(𝐴) to compute the expected age 𝐸 𝐴 ≈ σ𝑎
෠𝑃 𝑎 ⋅ 𝑎 = . 6 ⋅

20 + .4 ⋅ 22 = 20.8

– Model-free: randomly sample 𝑁 < 𝑀 students, and compute their expected age 

directly, e.g., we sample 5 students with ages 20, 20, 22, 22, 20 , then 𝐸 𝐴 ≈
1

𝑁
σ𝑖 𝑎𝑖 =

1

5
20 + 20 + 22 + 22 + 20 = 20.8.

• Analogously for RL: 

– Given sufficient samples, both model-based RL and model-free RL should give 

the same optimal solution. In practice, model-based RL is typically more sample 

efficient than model-free RL.
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Outline

• Monte Carlo Methods

• TD-Learning

• Sarsa & Q-Learning

• Function Approximation
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Outline: Monte Carlo Methods 

• MC prediction

• On-policy MC control

– Exploring Starts

– 𝜖-Soft

• Off-policy MC Prediction via Importance 

Sampling

• Off-policy MC control (omitted)
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Recall: Definitions of Terms

• Return (cumulative discounted reward) at time 𝑡: 𝐺𝑡 ≐ 𝑅𝑡+1 +
𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯+ 𝛾𝑇−1𝑅𝑇 = σ𝑘=0

𝑇−𝑡−1 𝛾𝑘 𝑅𝑡+𝑘+1
– At each step 𝑡 ∈ [0, 𝑇 − 1], agent takes an action 𝐴𝑡 in state 𝑆𝑡; at 

step 𝑡 + 1, agent receives a reward 𝑅𝑡+1 and transitions into the 
next state 𝑆𝑡+1

– We assume episodic tasks, and this specific episode has length 
of 𝑇 steps. (𝑇 = ∞ for continuous tasks)

• State Value Function: expected return under policy 𝜋: 𝑣𝜋 𝑠 ≐
𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

• Action Value Function: expected return from taking action 𝑎, then 
follow policy 𝜋: 𝑞𝜋 𝑠, 𝑎 ≐ 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• The RL problem: find the optimal policy that maximizes the return 
from each state
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𝑝(𝑆𝑡+1|𝑆𝑡 , 𝐴𝑡)

Reward 𝑅𝑡+1
State 𝑆𝑡+1

Action 𝐴𝑡

Environment

RL Agent



Monte Carlo (MC) Prediction (Policy Evaluation)

• Collect episodes/trajectories under policy 𝜋; 

After each episode, compute return 𝐺𝑡 for 

each state 𝑆𝑡 encountered in the episode 

(either first-visit or every-visit); estimate 

expected return 𝑣𝜋 𝑠 with empirical mean 

return by averaging over all episodes. 
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MC Prediction Details
• State 𝑠 may be visited multiple times in the same episode

– First-visit MC method estimates 𝑣𝜋(𝑠) as the average of the returns following first visits to 𝑠
in each episode,

– Every-visit MC method estimates 𝑣𝜋(𝑠) as the average of the returns following all visits to 𝑠
in each episode, computed by going backwards from last non-terminal 𝑆𝑇−1 (show below),

• For every-visit MC, instead of keeping all the sampled returns in a list, we can 
incrementally update 𝑣𝜋(𝑠) as a moving average with learning rate (step size) 𝛼
(more recent visits are given higher weight): 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)], 
where 𝛼 can be a constant, or be typically reduced gradually until convergence.
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Example: Computing Returns for 

One Episode
• Working backward is more efficient than working 

forward as it avoids redundant computations.
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Reward 𝑅𝑡+1

𝑅1 𝑅2 𝑅3 𝑅4 𝑅5



Exploration in MC Prediction for 𝑞𝜋 𝑠, 𝑎

• For any policy (det or sto): 
exploring starts

– Specify that the episodes start in 
(𝑠0, 𝑎0), and that every possible 
(𝑠, 𝑎) has a nonzero probability 
of being selected as the start.

– From (𝑠1, 𝑎1) follow policy 𝜋 for 
action selection

• 𝑠0, 𝑎0, 𝑠1, 𝑎1, 𝑠2, 𝑎2, …

– May not be always feasible for 
complex environments.

• For stochastic policy

– 𝜖-greedy (or 𝜖-soft)
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Outline: Monte Carlo Methods 

• MC prediction

• On-policy MC control

– Exploring Starts

– 𝜖-Soft

• Off-policy MC Prediction via Importance 

Sampling

• Off-policy MC control (omitted)
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Recall: Policy Iteration for Known MDP
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Repeat until policy converges:
Policy Evaluation: Estimate state value function 𝑣𝜋 for 

some fixed policy 𝜋 with Iterative Policy Evaluation (or 

solving linear equations).

Policy Improvement: generate new policy based on 

the newly estimated 𝑣𝜋: 𝜋 = greedy(𝑣𝜋).



Generalized Policy Iteration with MC ES 

(Exploring Starts)
• GPI w. MC ES: After each episode, the observed 

returns are used for policy evaluation, and then 
the policy is improved at all the states visited in 
the episode. 
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GPI w. MC Example

• Agent initially has uniform random policy of 
going left or right. In each episode, it 
wanders around until it hits the goal and 
gets a reward, then 𝑄(𝑠, 𝑎) for all the states 
visited in the episode are updated, and 
policy is improved based on argmax

a
𝑄(𝑠, 𝑎). 

– In the fig, agent starts from state S, and 
happens to go right to hit the goal, then only 
policy of state S is changed. In general, 
policies of all states visited in the episode 
are updated.

• After sufficient exploration, all states’ 
policies may converge to the optimal policy 
𝜋∗. 

• If some states are not explored enough, 
e.g., the leftmost state is never visited, or 
they are visited only a few times, and the 
updates to 𝑄(𝑠, 𝑎) is not enough to 
overcome badly initialized 𝑄𝑖𝑛𝑖𝑡(𝑠, 𝑎)
values, then their policies may not be 
optimal.
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Policy Evaluation

Policy Improvement
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Exploration-Exploitation Dilemma

• The agent has to exploit what it has 
already experienced in order to obtain 
reward, but it also has to explore in order 
to make better action selections in the 
future. 

– Exploitation: to obtain a lot of reward, the 
agent must prefer actions that it has tried in 
the past and found to be effective in 
producing reward. 

– Exploration: to discover such actions, it has to
try actions that it has not selected before. 
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𝜖-Greedy as One Type Of 𝜖-Soft

• 𝜖-greedy policy: select a random action w. prob 𝜖 (exploration); 
select the greedy action argmax

𝑎
𝑄(𝑠, 𝑎) with prob 1 − 𝜖 (exploitation)

– With 𝒜(𝑠) possible actions in state 𝑠, select each non-greedy action 
w. prob 

𝜖

𝒜 𝑠
; the greedy action w. prob 1 − 𝜖 +

𝜖

𝒜 𝑠

• 𝜖-soft policy: 𝜋 𝑎 𝑠 ≥
𝜖

𝒜 𝑠
for all (𝑠, 𝑎), and for some 𝜖 > 0

• 𝜖-greedy policy is a special case of 𝜖-soft policy
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Optimal 𝜖-Soft Policy

• The optimal 𝜖-soft policy is the policy with the 
highest value in each state among all 𝜖-soft 
policies. It performs worse than the optimal greedy 
deterministic policy 𝜋∗ in general. 

• But it often performs reasonably well, and avoids 
exploring starts.
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Generalized Policy Iteration with 

MC 𝜖-soft
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No exploring starts

𝜖-soft policy (not det policy)

𝜖-soft policy



Outline: Monte Carlo Methods 

• MC prediction

• On-policy MC control

– Exploring Starts

– 𝜖-Soft

• Off-policy MC Prediction via Importance 

Sampling

• Off-policy MC control (omitted)
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On-Policy and Off-Policy

• Off-Policy: Improve and evaluate a different target 
policy 𝜋(𝑎|𝑠) from the behavior policy 𝑏(𝑎|𝑠) that 
is used to select actions.
– Behavior policy may be more random, and more 

exploratory/adventurous than target policy, to 
facilitate exploration

– 𝜋 𝑎 𝑠 > 0 ⇒ 𝑏 𝑎 𝑠 > 0 (𝑏(𝑎|𝑠) must cover 𝜋(𝑎|𝑠). If 
𝑎 is possible in target policy, it must be possible in 
behavior policy. Otherwise agent will never 
experience (s, 𝑎)

– “Look over someone's shoulder”

• On-Policy: Improve and evaluate the behavior 
policy 𝑏(𝑎|𝑠) that is being used to select actions.

– 𝑏 𝑎 𝑠 == 𝜋 𝑎 𝑠
– “Learn on the job”
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Importance Sampling

• We want to estimate 𝔼𝜋 𝑋 , expected value of 
random var 𝑋 with distribution 𝜋, by sampling from 
another distribution 𝑥 ∼ 𝜌. 

– Capital letter (𝑋) denotes a random variable; lower-
case letter (𝑥) denotes a sampled value of the 
random var 𝑋.

• 𝔼𝜋 𝑋 ≐ σ𝑥∈𝑋 𝜋 𝑥 𝑥 = σ𝑥∈𝑋 𝑏 𝑥 𝜌 𝑥 𝑥 =

𝔼𝑏 𝜌 𝑋 𝑋 ≈
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖𝜌(𝑥𝑖)

– 𝜌 𝑥𝑖 =
𝜋 𝑥𝑖

𝑏 𝑥𝑖
, 𝑥𝑖 ∼ 𝑏

• We compute 𝔼𝜋 𝑋 by sampling from 𝑏, then 
performing weighted average with weight 𝜌 𝑥 .
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Importance Sampling Example

• 𝔼𝜋 𝑋 = .3 ⋅ 1 + .4 ⋅ 2 + .1 ⋅ 3 + .2 ⋅
4 = 2.2

• 1st sample from 𝑏(𝑥): get 𝑥 = 1 w. 
prob 0.85

– 𝔼𝑏 𝑋 =
1

1
σ1
1 𝑥𝜌(𝑥) = 1 ×

.3

.85
=

0.35

• 2nd sample from 𝑏(𝑥): get 𝑥 = 3
w. prob 0.05

– 𝔼𝑏 𝑋 =
1

2
σ1
2 𝑥𝜌(𝑥) =

1

2
ቀ

ቁ

1 ×
.3

.85
+

3 ×
.1

.05
≈ 3.18

• 3rd sample from 𝑏(𝑥): get 𝑥 = 1 w. 
prob 0.85

– 𝔼𝑏 𝑋 =
1

3
σ1
3 𝑥𝜌(𝑥) =

1

3
ቀ

ቁ

1 ×
.3

.85
+

3 ×
.1

.05
+ 1 ×

.3

.85
≈ 2.24
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Computing Weighting Factors

• Prob of each off-policy trajectory under behavior 
policy 𝑏: ℙ traj under 𝑏 ≐
ℙ 𝐴𝑡, 𝑆𝑡+1, 𝐴𝑡+1, … , 𝑆𝑇 𝑆𝑡, 𝐴𝑡:𝑇 =
ς𝑘=𝑡
𝑇−1 𝑏 𝐴𝑘 𝑆𝑘 𝑝 𝑆𝑘+1 𝑆𝑘, 𝐴𝑘

– Due to the Markov property.

• 𝜌𝑡:𝑇−1 ≐
ℙ traj under 𝜋

ℙ traj under 𝑏
=

ς𝑘=𝑡
𝑇−1 𝜋 𝐴𝑘 𝑆𝑘 𝑝 𝑆𝑘+1 𝑆𝑘, 𝐴𝑘

𝑏 𝐴𝑘 𝑆𝑘 𝑝 𝑆𝑘+1 𝑆𝑘, 𝐴𝑘
= ς𝑘=𝑡

𝑇−1 𝜋 𝐴𝑘 𝑆𝑘
𝑏 𝐴𝑘 𝑆𝑘

– Work backwards to compute incrementally 𝑊1 ←
𝜌𝑇−1;𝑊2 ← 𝑊1𝜌𝑇−2;𝑊3 ← 𝑊2𝜌𝑇−3

• Value function update w. importance sampling:

– 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝜌𝑡:𝑇−1𝐺𝑡 − 𝑉(𝑆𝑡))
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On-Policy vs. Off-

Policy MC 

Prediction

• Improve and 

evaluate a 

different 

target policy 

𝜋(𝑎|𝑠) from 

the behavior 

policy 𝑏(𝑎|𝑠)
that is used to 

select actions.

29

Use behavior policy 𝑏

Add weighting factor 𝑊



Outline

• Monte Carlo Methods

• TD-Learning

• Sarsa & Q-Learning

• Function Approximation
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Exponential Moving Average
• The running average update: ҧ𝑥𝑛 ← 1 − 𝛼 ҧ𝑥𝑛−1 + 𝛼𝑥𝑛 =

ҧ𝑥𝑛−1 + 𝛼(𝑥𝑛 − ҧ𝑥𝑛−1)
– Shorthand notation ҧ𝑥𝑛 ←𝛼 𝑥𝑛

• Makes recent samples more important (since later ones 
are more accurate estimates)

• ҧ𝑥𝑛 = 𝛼 𝑥𝑛 + 1 − 𝛼 (𝛼𝑥𝑛−1 + 1 − 𝛼 (… ) )
= 𝛼 𝑥𝑛 + 1 − 𝛼 𝑥𝑛−1 + 1 − 𝛼 2𝑥𝑛−2 +⋯

=
𝑥𝑛 + 1 − 𝛼 𝑥𝑛−1 + 1 − 𝛼 2𝑥𝑛−2 +⋯

1 + 1 − 𝛼 + 1 − 𝛼 2 +⋯

• Since 
1

𝛼
= 1 + 1 − 𝛼 + 1 − 𝛼 2 +⋯

• Forgets about the past gradually (distant past values are 
likely to be wrong, esp. for changing env.)

• Decreasing learning rate 𝛼 gradually can give converging 
average.



TD Learning

• Recall Bellman Exp. Equation:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 [

]

𝑟 +

𝛾𝑣𝜋 𝑠′ = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]

– To solve it with dynamic programming, we 
need the MDP model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 .

• TD Learning: compute 𝑣𝜋 𝑠 in model-free 
way by sampling. At every timestep 𝑡, 
update 𝑉 𝑆𝑡 for current state 𝑆𝑡:

– 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))

– TD Target: 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1
– TD Error: 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡)
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Update Equations: MC vs. TD

• MC (every-visit): After every episode, update 𝑉 𝑆𝑡 for 
all states encountered in the episode:
– On-policy MC: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝐺𝑡 − 𝑉(𝑆𝑡))
– Off-policy MC w. Importance Sampling: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 +
𝛼(𝜌𝑡:𝑇−1𝐺𝑡 − 𝑉(𝑆𝑡))

• 𝜌𝑡:𝑇−1 = ς𝑘=𝑡
𝑇−1 𝜋 𝐴𝑘 𝑆𝑘

𝑏 𝐴𝑘 𝑆𝑘

• TD: At every timestep 𝑡, update 𝑉 𝑆𝑡 for current state 
𝑆𝑡:
– On-policy TD: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))
– Off-policy TD w. Importance Sampling: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 +
𝛼(𝜌𝑡(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 ) − 𝑉(𝑆𝑡))

• 𝜌𝑡 =
𝜋 𝐴𝑡 𝑆𝑡
𝑏 𝐴𝑡 𝑆𝑡

• Much lower variance than MC w. Importance Sampling: 𝑉 𝑆𝑡 ←
𝑉 𝑆𝑡 . 
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Tabular TD(0)

• MC updates 𝑉(𝑆) at the end of each episode.

• TD updates 𝑉(𝑆) at every time step.

– Bootstrapping 𝑉(𝑆) from 𝑉(𝑆′)
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TD vs. MC: Random Walk Example
• Agent has uniform random policy, w. equal prob of going left or right at each timestep. Env is 

deterministic. All episodes start in state 𝐶. Episodes terminate either on the left or on the 
right. The reward is 0 on all transitions except 1 for terminating on the right. Discount factor 𝛾 =
1: learning rate 𝛼 = 0.5.

• Value of state V(𝑠) is the probability of terminating on the right when starting from state 𝑠. For 
known MDP, they can be computed by Policy Evaluation w. the set of Bellman Exp 
Equations,w. solution shown in the figure:

– 𝑉 𝐴 = 0.5𝑉(𝐵)

– 𝑉 𝐵 = 0.5𝑉 𝐴 + 0.5𝑉(𝐶)

– 𝑉 𝐶 = 0.5𝑉 𝐵 + 0.5𝑉(𝐷)

– 𝑉 𝐷 = 0.5𝑉 𝐶 + 0.5𝑉(𝐸)

– 𝑉 𝐸 = 0.5𝑉 𝐷 + 0.5 ⋅ 1

• Next, for unknown MDP, we use TD or MC to learn 𝑉(𝑠). Initialize all V(⋅) = 0.5.
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Episode1 (𝐶, 𝑟, 0, 𝐷, 𝑟, 0, 𝐸, 𝑟, 1, 𝑇)
• TD:

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐷 − 𝑉 𝐶 = .5 + .5 0 + .5 − .5 = 0.5

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐸 − 𝑉 𝐷 = .5 + .5 0 + .5 − .5 = 0.5

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑇 − 𝑉 𝐸 = .5 + .5 1 + 0 − .5 = 0.75

• MC: (every-visit. when used as subscript, 𝑇 denotes the time instant of reaching the terminal 
state)

– 𝐺 𝐸 = 𝑅𝑇 = 1, 𝐺 𝐷 = 𝑅𝑇−1 + 𝛾𝐺 𝐸 = 0 + 1 ⋅ 1 = 1, 𝐺 𝐶 = 𝑅𝑇−2 + 𝛾𝐺 𝐷 = 0 + 1 ⋅ 1 = 1

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝐺(𝐶) − 𝑉 𝐶 = .5 + .5 1 − .5 = 0.75

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝐺(𝐷) − 𝑉 𝐷 = .5 + .5 1 − .5 = 0.75

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝐺(𝐸) − 𝑉 𝐸 = .5 + .5 1 − .5 = 0.75
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𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝐺𝑡 − 𝑉(𝑆𝑡))



Quiz on TD vs. MC

• Q: Is the following a more efficient TD update sequence with backward, in-
place updates?

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑇 − 𝑉 𝐸 = .5 + .5 1 + 0 − .5 = 0.75

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐸 − 𝑉 𝐷 = .5 + .5 0 + .75 − .5 = 0.625

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐷 − 𝑉 𝐶 = .5 + .5 0 + .625 − .5 = 0.5625

• A: This is not feasible since TD updates 𝑉(𝑆) at every time step, and does 
not keep track of the history of visited states

• Q: Can we use backward, in-place updates for MC?

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝐺(𝐸) − 𝑉 𝐸 = .5 + .5 1 − .5 = 0.75

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝐺(𝐷) − 𝑉 𝐷 = .5 + .5 1 − .5 = 0.75

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝐺(𝐶) − 𝑉 𝐶 = .5 + .5 1 − .5 = 0.75

• A: Yes, but it makes no difference in this example whether you use forward 
or backward update for 𝑉(𝑆𝑡), which is based on 𝐺(𝑆𝑡), not bootstrapped off 
𝑉(𝑆𝑡+1). 

• For every-visit MC using 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)] to update each 
state’s value function, we should use forward update to give more recent 
visits higher weight, in case the same state is visited multiple times in one 
episode (refer to p.13 “MC Prediction Details”)
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Episode2 Pt1 (𝐶, 𝑟, 0, 𝐷, 𝑟, 0, 𝐸)
• TD:

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐷 − 𝑉 𝐶 = .5 + .5 0 + .5 − .5 = 0.5

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐸 − 𝑉 𝐷 = .5 + .5 0 + .75 − .5 = 0.625

• MC:
– No update since episode has not ended.
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Episode2 Pt2 (𝐸, 𝑙, 0, 𝐷, 𝑙, 0, 𝐶)
• TD:

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐷 − 𝑉 𝐸 = .75 + .5 0 + .625 − .75 ≈ 0.688

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐶 − 𝑉 𝐷 = .625 + .5 0 + .5 − .625 ≈ 0.563

• MC:

– No update since episode has not ended.

39



Episode2 Pt3 (𝐶, 𝑟, 0, 𝐷, 𝑟, 0, 𝐸)
• TD:

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐷 − 𝑉 𝐶 = .5 + .5 0 + .563 − .5 ≈ 0.531

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝐸 − 𝑉 𝐷 = .563 + .5 0 + .688 − .563 ≈ 0.625

• MC:
– No update since episode has not ended.
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Episode2 Pt4 (𝐸, 𝑟, 1, 𝑇)
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0.8440.6250.531

0.9380.9690.938

• TD:

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑇 − 𝑉 𝐸 = .688 + .5 1 + 0 − .688 = 0.844



Episode2 Pt4 (𝐸, 𝑟, 1, 𝑇)

• MC (every-visit w. episode 𝐶′ → 𝐷′′ → 𝐸′ → 𝐷′ → 𝐶 → 𝐷 → 𝐸 → 𝑇):

• Update 𝐺 𝑠 backward: 

– 𝐺 𝐸 = 𝑅𝑇 = 1, 𝐺 𝐷 = 𝑅𝑇−1 + 𝛾𝐺 𝐸 = 0 + 1 = 1, 𝐺 𝐶 = 𝑅𝑇−2 +
𝛾𝐺 𝐷 = 0 + 1 = 1

– 𝐺(𝐷′) = 𝑅𝑇−1 + 𝛾𝐺 𝐶 = 0 + 1 = 1 , 𝐺(𝐸′) = 𝑅𝑇−1 + 𝛾𝐺 𝐷′ = 0 + 1 = 1

– 𝐺(𝐷′′) = 𝑅𝑇−1 + 𝛾𝐺(𝐸′) = 0 + 1 = 1, 𝐺(𝐶′) = 𝑅𝑇−1 + 𝛾𝐺(𝐷′′) = 0 + 1 = 1

• Update 𝑉 𝑠 forward:

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝐺(𝐶′) − 𝑉 𝐶 = .75 + .5 1 − .75 = 0.875

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝐺(𝐷′′) − 𝑉 𝐷 = .75 + .5 1 − .75 = 0.875

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝐺(𝐸′) − 𝑉 𝐸 = .75 + .5 1 − .75 = 0.875

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝐺(𝐷′) − 𝑉 𝐷 = .875 + .5 1 − .875 ≈ 0.938

– 𝑉 𝐶 ← 𝑉 𝐶 + 𝛼 𝐺 𝐶 − 𝑉 𝐶 = .875 + .5 1 − .875 ≈ 0.938

– 𝑉 𝐷 ← 𝑉 𝐷 + 𝛼 𝐺 𝐷 − 𝑉 𝐷 = 0.938 + .5 1 − 0.938 = 0.969

– 𝑉 𝐸 ← 𝑉 𝐸 + 𝛼 𝐺 𝐸 − 𝑉 𝐸 = .875 + .5 1 − .875 ≈ 0.938
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TD vs. MC: Random Walk Performance
• Left fig shows values learned after various numbers of episodes on a single 

run of TD(0), 
– They are very close to the true values after 100 episodes, but they fluctuate 

indefinitely in response to the outcomes of the most recent episodes.

• Right fig shows Root Mean-Squared (RMS) error between the value 
function learned and the true value function, averaged over the five states, 
then averaged over 100 runs.

– TD converges faster than MC. Higher learning rate 𝛼 helps achieve faster 
convergence, but has large fluctuations.
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MC Prediction for MiniGW
Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

• State A:
– Episode 4: 𝐺𝑡 𝐴 = −10

– ෠𝑉 𝐴 =
−10

1
= −10,

• State D:
– Episodes 1,2, 4: 𝐺𝑡 𝐷 = 10

– ෠𝑉 𝐷 =
10⋅3

3
= 10,

• State 𝐵: 
– Episodes 1 and 2: 𝐺𝑡 𝐵 = −1 − 1 + 10 =

8; ෠𝑉 𝐵 =
1

2
8 + 8 = 8

• State 𝐶: 
– Episodes 1,2,3: 𝐺𝑡 𝐶 = −1 + 10 = 9
– Episode 4: 𝐺𝑡 𝐶 = −1 − 10 = −11

– ෠𝑉 𝐶 =
1

4
9 + 9 + 9 − 11 = 4

• State 𝐸: 
– Episode 3: 𝐺𝑡 𝐸 = −1 − 1 + 10 = 8
– Episode 4: 𝐺𝑡 𝐸 = −1 − 1 − 10 = −12

– ෠𝑉 𝐸 =
1

2
8 − 12 = −2



MC Prediction for MiniGW

• From Policy Evaluation, we have 
derived 𝑉 𝐵 = 𝑉(𝐸). But the MC 
predicted value functions are 
inaccurate due to limited sampling: 
– ෠𝑉 𝐵 = 8, since both episodes 1 and 2 

start from 𝐵 and end in 𝐷 with 𝑉 𝐷 =
10; 

– ෠𝑉 𝐸 = −2, since episodes 3 and 4 start 
from 𝐸 and end in either 𝐷 or 𝐴 with 
𝑉 𝐷 = 10, 𝑉 𝐴 = −10.

• If we sample more data, then we can 
estimate more accurate values.

• MC learning is not sample-efficient, 
since value function of each state must 
be learned separately.
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Output Values

If B and E both go to C 
under this policy, how can 
their values be different?

A

B C D

E

+8 +4 +10

-10

-2



TD Learning, 𝛼 = 0.5
• 4 episodes with transitions {(B, east, C), (C, east, D)}.

• TD update: 𝑣𝜋 𝐵 ←𝛼 −1 + 𝛾𝑣𝜋 𝐶 ; 𝑣𝜋 𝐵 ←𝛼 −1 + 𝛾𝑣𝜋 𝐷
• EP1:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 0 + 𝛼 −1 + 0 − 0 = −.5
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 0 + 𝛼 −1 + 10 − 0 = 4.5
• EP2:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← −.5 + 𝛼 −1 + 4.5 − (−.5) = 1.5
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 4.5 + 𝛼 −1 + 10 − 4.5 = 6.75
• EP3:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 1.5 + 𝛼 −1 + 6.75 − 1.5 = 3.625
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 6.75 + 𝛼 −1 + 10 − 6.75 = 7.875
• EP4:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 3.625 + 𝛼 −1 + 7.875 − 3.625 =
5.25

• Transition (C, east, D): 𝑉𝜋 𝐶 ← 7.875 + 𝛼 −1 + 10 − 7.875 =
8.4375

• After many repetitions of the episode {(B, east, C), (C, east, D)}, 
𝑉𝜋 𝐵 ≈ 7, 𝑉𝜋 𝐶 ≈ 9
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TD Learning, 𝛼 = 0.9

• 4 episodes with transitions {(B, east, C), (C, east, D)}.

• TD update: 𝑣𝜋 𝐵 ←𝛼 −1 + 𝛾𝑣𝜋 𝐶 ; 𝑣𝜋 𝐵 ←𝛼 −1 + 𝛾𝑣𝜋 𝐷
• EP1:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 0 + 𝛼 −1 + 0 − 0 = −.9
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 0 + 𝛼 −1 + 10 − 0 = 8.1
• EP2:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← −.9 + 𝛼 −1 + 8.1 − (−.9) = 3.1
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 8.1 + 𝛼 −1 + 10 − 8.1 = 8.91
• EP3:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 3.1 + 𝛼 −1 + 8.91 − 3.1 = 5.505
• Transition (C, east, D): 𝑉𝜋 𝐶 ← 8.91 + 𝛼 −1 + 10 − 8.91 = 8.991
• EP4:

• Transition (B, east, C): 𝑉𝜋 𝐵 ← 5.505 + 𝛼 −1 + 8.991 − 5.505 =
6.748

• Transition (C, east, D): 𝑉𝜋 𝐶 ← 8.991 + 𝛼 −1 + 10 − 8.991 =
8.9991

• After many repetitions of the episode {(B, east, C), (C, east, D)}, 
𝑉𝜋 𝐵 ≈ 7, 𝑉𝜋 𝐶 ≈ 9. Converges faster than 𝛼 = 0.5
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Backup Diagrams: MC vs. TD vs. DP
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Important



MC vs. TD
• TD can learn before knowing the final outcome

– TD can learn online after every step

– MC must wait until end of each episode before return is known

• TD can learn without the final outcome
– TD can learn from incomplete episodes

– MC can only learn from complete episodes

– TD works in continuing (non-terminating) environments

– MC only works for episodic (terminating) environments

• MC has high variance, zero bias
– Return 𝐺𝑡 ≐ σ𝑘=0

𝑇−1 𝛾𝑘𝑅𝑡+𝑘+1 is unbiased estimate of 𝑣𝜋(𝑆𝑡); converges to 𝑣𝜋(𝑆𝑡) (even 
with function approximation)

– Return depends on many random actions, transitions, rewards in each episode

– Not very sensitive to initial value

• TD has low variance, some bias
– TD target 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 is biased estimate of 𝑣𝜋(𝑆𝑡); TD(0) converges to 𝑣𝜋(𝑆𝑡) (but 

not always with function approximation)

– TD target depends on one random action, transition, reward

– More sensitive to initial value

• MC does not exploit Markov property
– More effective in non-Markov environments, e.g., Partially Observed MDP (POMDP)

• TD exploits Markov property
– Does not work well for POMPDP
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Outline

• Monte Carlo Methods

• TD-Learning

• Sarsa & Q-Learning

• Function Approximation
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Problems with TD Learning
• TD is a model-free way to learn 𝑉 𝑆 by sampling

• However, if we want to get the optimal policy, we need the 

MDP model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 to go from 𝑉(𝑆) to 𝑄(𝑆, 𝐴)
– 𝑞 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣 𝑠′

• Then use greedy action selection

– 𝜋(𝑠) = argmax
𝑎

𝑞(𝑠, 𝑎)

• Sarsa and Q learning: learn 𝑄(𝑆, 𝐴) instead of 𝑉 𝑆 , for use 

in Generalized Policy Iteration (GPI) for control. This makes 

action selection model-free too.



TD, Sarsa, Q Learning
• TD solves [BEV] by sampling:

– 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))

• Sarsa and Expected Sarsa solve [BEA] by sampling:

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄 𝑆𝑡 , 𝐴𝑡 )

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾σ𝑎′𝜋(𝑎′|𝑆𝑡+1)𝑄 𝑆𝑡+1, 𝑎′ −
𝑄 𝑆𝑡 , 𝐴𝑡 )

• Q Learning solves [BOA] by sampling:

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾max
𝑎′

𝑄 𝑆𝑡+1, 𝑎′ − 𝑄 𝑆𝑡 , 𝐴𝑡 )
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• [BEV] Bellman Expectation Equation for State Value Function:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

• [BEA] Bellman Expectation Equation for Action Value Function

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾 σ𝑎′𝜋 𝑎′ 𝑠′ 𝑞𝜋 𝑠′, 𝑎′

• [BOA] Bellman Optimality Equation for Optimal Action Value 
Function:

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′

Important
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Backup Diagrams

Bellman Exp Eqn for 𝑞𝜋 𝑠, 𝑎 Bellman Opt Eqn for 𝑞∗ 𝑠, 𝑎

maxmax

Bellman Exp Eqn for 𝑣𝜋 𝑠

TD

(on-policy,

𝑎 is taken)

Expected

Sarsa

(off-policy,

𝑎′ may not be 

taken)

QL (off-policy,

𝑎′ may not be 

taken)

Bellman Exp Eqn for 𝑞𝜋 𝑠, 𝑎

Sarsa

(on-policy,

𝑎′ is taken)

exp

Important



Did We Miss One Bellman Equation?

• [BEV] Bellman Optimality Equation for 
Optimal State Value Function:
– 𝑣∗ 𝑠 = max

𝑎
σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠

′

• Due to max
𝑎

in front, it is not an expectation 

over a distribution, hence cannot solve for 
𝑣∗(𝑠) by sampling.

54Bellman Opt Eqn for 𝑣∗ 𝑠

max



Another View

From https://www.davidsilver.uk/teaching/. Expected Sarsa is missing here.
55
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Sarsa
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Off-policy, Value Iteration: in state 𝑆, Q update w. one-step lookahead 

𝑄(𝑆′, 𝑎) by taking max
𝑎

𝑄(𝑆′, 𝑎) among all possible actions.

On-policy, Policy Iteration: in state 𝑆, Q update w. one-step 

lookahead 𝑄(𝑆′, 𝐴′) for a specific action 𝐴′ (e.g., based on 𝜖-greedy).



QL is Off-Policy

• QL’s target policy 𝜋 is always greedy w.r.t 
𝑄(𝑠, 𝑎)

– σ𝑎′𝜋(𝑎′|𝑆𝑡+1) 𝑄 𝑆𝑡+1, 𝑎′ = max
𝑎′

𝑄 𝑆𝑡+1, 𝑎′

• Behavior policy b is typically more 
exploratory, e.g., 𝜖-greedy, or uniform 
random, or even arbitrary policy.

• No need for Importance Sampling.
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Expected Sarsa and QL

• Expected Sarsa and QL are both off-

policy. 

– Target for Expected Sarsa: 𝑅𝑡+1 +
𝛾 σ𝑎′𝜋(𝑎′|𝑆𝑡+1) 𝑄 𝑆𝑡+1, 𝑎′

– Target for QL: 𝑅𝑡+1 + 𝛾max
𝑎′

𝑄 𝑆𝑡+1, 𝑎′

• Expected Sarsa improves over Sarsa by 

eliminating variance due to the random 

selection of 𝐴𝑡+1, with cost of increased 

computation overhead.
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Example 6.6: Cliff Walking

• Reward is −1 on all transitions except those into the region marked “The 
Cliff.” Stepping into this region incurs a reward of −100 and sends the agent 
instantly back to the start. Env is deterministic. 

• Graph shows the performance of the Sarsa and Q-learning methods with 𝜖-
greedy action selection, 𝜖 = 0.1. After an initial transient, Q-learning learns 
values for the optimal policy, that which travels right along the edge of the 
cliff. Unfortunately, this results in its occasionally falling off the cliff because 
of the 𝜖- greedy action selection. Sarsa, on the other hand, takes the action 
selection into account and learns the longer but safer path through the 
upper part of he grid. Although Q-learning learns the values of the optimal 
policy, its online performance is worse than that of Sarsa.

• If 𝜖 were gradually reduced to 0, then both methods would asymptotically 
converge to the optimal policy.
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Model-Based RL

• If MDP is not available, we 
can use Model-Based RL:

• Step 1: Learn empirical MDP 
model
– Execute some policy 𝜋 (may be 

random), and keeping track of 
outcomes 𝑟, s′ for each 𝑠, 𝑎 in 
the observed episodes. These 
form the training set for 
supervised learning of the 
model 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 . 

• Step 2: Do planning w. the 
learned MDP w. Dynamic 
Programming (Value Iteration 
or Policy Iteration)

60
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Two Types of Models
• Sample models: produce just one of the possible outcomes, sampled 

according to the probabilities.
– Can approximate probability of each outcome; requires little memory.

• Distribution models: produce the complete probability distribution of all 
possible outcomes. 

– Can compute exact probability of each expected outcome; requires more memory for 
storage.

– Ex. Table Lookup, Linear Expectation, Linear Gaussian, Gaussian Process, Deep 
Belief Network…

• Dynamic Programming approaches (Value Iteration and Policy Iteration) 
require distribution models for state-space planning. Q-planning can use 
either type of model.

61



Random-sample one-step tabular 

Q-planning
• Planning uses 

simulated/imagined 
experience generated 
by a model.

• Learning uses real  
experience generated 
by the environment.

• They can be combined 
(in Dyna-Q): an agent 
uses planning to learn 
that moving right and 
falling off the cliff is 
bad, so it avoids the 
moving right action 
without actually doing 
it.
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Dyna-Q: Integrated Planning, 

Acting, and Learning
• Indirect RL (model-learning then Q planning): real experience is used to 

improve the model (to make it more accurately match the real environment), 
which is used for planning.

• Direct RL w Q learning: real experience is used to directly improve the value 
function and policy.

• Tabular Dyna-Q = Q learning + Q planning
– Model-learning is table-based and assumes deterministic environment. After each 

transition 𝑆𝑡 , 𝐴𝑡 → 𝑅𝑡+1, 𝑆𝑡+1, the model records in its table entry for 𝑆𝑡 , 𝐴𝑡 the prediction 
that 𝑅𝑡+1, 𝑆𝑡+1 will deterministically follow. If the model is queried with a state–action 
pair that has been experienced before, it simply returns the last-observed next state 
and next reward as its prediction.

– During planning, the Q-planning algorithm randomly samples from state–action pairs 
that have previously been experienced.
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Dyna-Q Maze Example
• 1st episode: agent follows random policy and stumbles upon the goal 

G. Afterwards, policy of only one state leading to G is updated.
– QL (𝑛 = 0): all experience before reaching G is discarded.

– Dyna-Q (𝑛 > 0): learn a model by keeping track of all experience before 
reaching G: makes better use of env interactions.

• Future episodes: 
– QL (𝑛 = 0): each episode adds only one additional step to the policy 

(influences the neighboring states)

– Dyna (𝑛 > 0): agent uses the learned model to plan better policies for all 
previously-visited states. By the end of the 3rd episode a complete 
optimal policy has been found (right fig.).
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Dyna-Q Maze Example (𝑛 = 100)



Prioritized Sweeping
• Prioritized sweeping focuses backward on the predecessors of states whose values have 

recently changed

• A queue is maintained of every state–action pair whose estimated value would change 
nontrivially if updated , prioritized by the size of the change. When the top pair in the queue is 
updated, the effect (TD error) on each of its predecessor pairs is computed. If the effect is greater 
than some small threshold, then the pair is inserted in the queue with the new priority In this way 
the effects of changes are efficiently propagated backward until quiescence.

• e.g., for Maze example, work backward from the goal state by giving higher priority to states 
leading to the goal state than those far away from it.
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Planning w. Inaccurate Model
• Models may be incorrect because the environment is stochastic and only a 

limited number of samples have been observed, or because the model was 
learned using function approximation that has generalized imperfectly, or 
simply because the environment has changed and its new behavior has not 
yet been observed. 

• When the model is incorrect, the planning process is likely to compute a 
suboptimal policy. But the error will be later discovered and corrected by 
real experience by exploration.
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Dyna-Q+
• Exploration (explore env to improve model accuracy) vs exploitation (use 

current model to improve policy).

• Dyna-Q+ is Dyna-Q with an exploration bonus that encourages exploration.
– If the modeled reward for a transition is 𝑟, and the transition has not been tried in 𝜏

time steps, then planning updates are done as if that transition produced a reward of 
𝑟 + 𝜅 𝜏, for some small 𝜅.

• Right fig: The left environment was used for the first 1000 steps, the right 
environment for the rest.
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Tabular Methods Summary
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Outline

• Monte Carlo Methods

• TD-Learning

• Sarsa & Q-Learning

• Function Approximation

70



Q Learning vs. DQN

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/



Function Approximations of Value 

Functions
• Upper:

– Left: state value function 
ො𝑣(𝑠,𝐰) with params 𝐰.

– Middle: action value 
function ො𝑞(𝑠, 𝑎,𝐰) with 
params 𝐰.

– Right: action value 
functions ො𝑞(𝑠, 𝑎𝑖 , 𝐰) with 
params 𝐰, since we need 
all Q-values for computing 
greedy policy 
argmaxa𝑄(𝑠, 𝑎).

• Lower: 
– Use Neural Network as 

action value functions 
(corresponds to upper 
middle and right).
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Mean Squared Error

• Optimization objective is to minimize Value Error 

– 𝑉𝐸 = 𝔼𝜋 𝑣𝜋 𝑠 − ො𝑣 𝑠,𝒘 2 = σ𝑠∈𝒮 𝜇 𝑠 𝑣𝜋 𝑠 − ො𝑣 𝑠,𝒘 2

– 𝜇 𝑠 is the fraction of time spent in state 𝑠 when following policy 𝜋, 
called the on-policy distribution under policy 𝜋, σ𝑠∈𝒮 𝜇 𝑠 = 1. A larger 
𝜇 𝑠 denotes state 𝑠 is visited more frequently, hence estimation error 
of 𝑣𝜋 𝑠 is given more weight



Gradient Descent

• The 𝑥-axis corresponds to weight vector 𝒘, and the 𝑦-axis 
to the objective value (i.e., loss function) 𝐿(𝒘) for weight 
𝒘. 

• To minimize 𝐿(𝒘), we adjust weight vector 𝒘 in the 
direction of the negative of the gradient 𝒘 ← 𝒘− 𝛼∇𝐿 𝒘
– 𝛼 is step-size parameter that is typically gradually reduced

𝐿(𝑤)



Stochastic Gradient Descent (SGD)

• Gradient Descent for minimizing Mean Squared 

Value Error (impractical for a large number of 

states)

– ∇𝑉𝐸 = ∇σ𝑠∈𝒮 𝜇𝜋 𝑠 𝑣𝜋 𝑠 − ො𝑣 𝑠,𝒘 2 =
σ𝑠∈𝒮 𝜇𝜋∇ 𝑣𝜋 𝑠 − ො𝑣 𝑠,𝒘 2 = −2σ𝑠∈𝒮 𝜇𝜋[

]
𝑣𝜋(𝑠) −

ො𝑣 𝑠,𝐰 ∇ො𝑣 𝑠,𝒘

– 𝒘 ← 𝒘−
1

2
𝛼∇𝑉𝐸 = 𝒘+ 𝛼σ𝑠∈𝒮 𝜇𝜋[

]

𝑣𝜋(𝑠) −

ො𝑣 𝑠,𝒘 ∇ො𝑣 𝑠,𝒘

• SGD: on each step, update 𝒘 based on a single 

new state 𝑆𝑡 and its value 𝑣𝜋(𝑆𝑡):

– 𝒘 ← 𝒘+ 𝛼[𝑣𝜋 𝑆𝑡 − ො𝑣 𝑆𝑡 , 𝒘 ]∇ො𝑣 𝑆𝑡 , 𝒘



Gradient Monte Carlo

• Gradient Monte Carlo: Use MC target 𝐺𝑡
as unbiased estimate of 𝑣𝜋 𝑆𝑡 .

– 𝒘 ← 𝒘 + 𝛼[𝐺𝑡 − ො𝑣 𝑆𝑡 , 𝒘 ]∇ො𝑣 𝑆𝑡 , 𝒘

– Recall 𝐺𝑡 ≐ σ𝑘=0
𝑇−1 𝛾𝑘 𝑅𝑡+𝑘+1



Semi-Gradient TD(0) for Estimating ො𝑣 ≈ 𝑣𝜋
• Use TD target 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 as biased estimate of 𝑣𝜋 𝑆𝑡 .

• 𝒘 ← 𝒘−
1

2
𝛼∇ 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 − ො𝑣 𝑆𝑡, 𝒘

2 ≠ 𝒘+ 𝛼[𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 −

ො𝑣 𝑆𝑡 , 𝒘 ]∇ො𝑣 𝑆𝑡, 𝒘
– Since ∇ 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 ≠ 0

• Semi-Gradient TD(0): use the semi-gradient as approximation to the real gradient

– 𝐰 ← 𝐰+ 𝛼[𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝐰 − ො𝑣 𝑆𝑡 , 𝐰 ]∇ො𝑣 𝑆𝑡, 𝐰

• It may not converge to local minimum, but it converges faster than Gradient MC 
due to more frequent (per timestep instead of per episode) and less noisy 
updates.



TD vs. Supervised Learning

• TD tries to learn parametrize value 
function ො𝑣 𝑠, 𝒘 ≈ 𝑣𝜋(𝑠)
– Learn mapping 𝑆𝑡 → 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝒘) from 

training dataset: ሼ
ሽ

𝑆1, 𝑅2 + 𝛾 ො𝑣(𝑆2, 𝐰) , (
)

𝑆2, 𝑅3 +
𝛾 ො𝑣(𝑆3, 𝒘) , 𝑆3, 𝑅4 + 𝛾 ො𝑣(𝑆4, 𝒘) , …

– Target 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝒘) depends on 𝒘. (non 
i.i.d)

• c.f. Supervised Learning, with fixed and 
given target (i.i.d)

– Learn mapping 𝑋𝑖 → ො𝑦(𝑋𝑖 , 𝒘) from training 
dataset: 𝑋1, 𝑌1 , 𝑋2, 𝑌2 , 𝑋3, 𝑌3 …



TD w. Linear Function 

Approximation
• For linear value function approximation ො𝑣 𝑠,𝒘 ≐ 𝒘𝑇𝒙(𝑠), we have 

∇ො𝑣 𝑠,𝒘 = 𝒙(𝑠)
– e.g. for feature vector of size 2:

– ො𝑣 𝑠,𝒘 ≐ 𝑤1 𝑤2
𝑥1 𝑠

𝑥2 𝑠
= 𝑤1𝑥1 𝑠 + 𝑤2𝑥2 𝑠

– ∇ො𝑣 𝑠,𝒘 =

𝜕ො𝑣 𝑠,𝐰

𝜕𝑤1

𝜕ො𝑣 𝑠,𝐰

𝜕𝑤2

=
𝑥1 𝑠

𝑥2 𝑠

• Semi-gradient TD: 

– 𝒘 ← 𝒘+ 𝛼[𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 − ො𝑣 𝑆𝑡 , 𝒘 ]𝒙(𝑆𝑡)
– Weight update = step size × TD error × feature value

• A theorem relating Linear TD’s fixed-point and minimum of Value 
Error:

– 𝑉𝐸 𝒘𝑇𝐷 ≤
1

1−𝛾
min
𝒘

𝑉𝐸(𝒘)



Tabular TD is a Special Case of 

Linear TD
• For Tabular TD, feature vector is one-hot encoding of states: 

𝒙 𝑠𝑖 = 0 …0 1 0 …0 𝑇, with 1 for the 𝑖-th element and 0 for all 
others. This assigns a value to each individual state ො𝑣 𝑠𝑖 , 𝒘 = 𝑤𝑖

– e.g., for 2 states 𝑠1, 𝑠2, we have 2 features: 𝒙 𝑠1 =
1
0
, 𝒙 𝑠2 =

0
1

– ො𝑣 𝑠1, 𝒘 ≐ 𝒘𝑇𝒙 𝑠1 = 𝑤1 𝑤2
1
0

= 𝑤1

– ො𝑣 𝑠2, 𝒘 ≐ 𝒘𝑇𝒙 𝑠2 = 𝑤1 𝑤2
0
1

= 𝑤2

• Semi-gradient TD becomes:

– 𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝒘 − ො𝑣 𝑆𝑡 , 𝒘 ⋅ 1
– Same as Tabular TD: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))

• Similarly, tabular MC is a special case of Linear Gradient MC.



CH10 On-policy Control with 

Approximation
• Top: Generalized 

Policy Iteration (GPI) 
for tabular setting, 
updating 𝑄 𝑆𝑡 , 𝐴𝑡 for 
each 𝑆𝑡 , 𝐴𝑡 in each 
iteration.

• Bottom: GPI for 
function  
approximation setting, 
updating 𝒘 in 
ො𝑞 𝑠, 𝑎,𝒘 for any 𝑠, 𝑎
in each iteration



Action Value Function Update 

Equations• Recall Sarsa: 

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄 𝑆𝑡 , 𝐴𝑡 )

• Semi-Gradient Sarsa w. function approximation: 

– 𝒘 ← 𝒘+ 𝛼(𝑅𝑡+1 + 𝛾ො𝑞 𝑆𝑡+1, 𝐴𝑡+1, 𝐰 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝒘 )∇ො𝑞 𝑆𝑡, 𝐴𝑡 , 𝒘

• Recall Expected Sarsa:

– 𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾σ𝑎′𝜋(𝑎′|𝑆𝑡+1)𝑄 𝑆𝑡+1, 𝑎′ − 𝑄 𝑆𝑡, 𝐴𝑡 )

• Semi-Gradient Expected Sarsa w. Function Approximation:

– 𝒘 ← 𝒘+ 𝛼(𝑅𝑡+1 + 𝛾σ𝑎′ 𝜋 𝑎′ 𝑆𝑡+1 ො𝑞 𝑆𝑡+1, 𝑎
′, 𝒘 −

ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝒘 )∇ො𝑞 𝑆𝑡 , 𝐴𝑡 , 𝐰

• Recall QL:

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾max
𝑎′

𝑄 𝑆𝑡+1, 𝑎′ − 𝑄 𝑆𝑡 , 𝐴𝑡 )

• Semi-Gradient QL w. Function Approximation:

– 𝒘 ← 𝒘+ 𝛼(𝑅𝑡+1 + 𝛾max
𝑎′

ො𝑞 𝑆𝑡+1, 𝑎
′, 𝒘 − ො𝑞 𝑆𝑡 , 𝐴𝑡 , 𝒘 )∇ො𝑞 𝑆𝑡, 𝐴𝑡 , 𝒘

• (Optional) linear function approximation ො𝑞 𝑠, 𝑎,𝒘 ≐ 𝒘𝑇𝒙(𝑠, 𝑎)


