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Recall: Simplified Bellman Equations for 

Deterministic Env

• Bellman Equations:

– 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)

– 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

– 𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎

– 𝑞∗ 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠′

• For Deterministic Env: there is only one possible 
(𝑟, 𝑠′) for a given (𝑠, 𝑎) (we use 𝑅𝑠

𝑎 to 
emphasize that reward 𝑟 is specific to this 
(𝑠, 𝑎)):

– 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣𝜋 𝑠′

– 𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣∗ 𝑠′
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Recall: MC, TD, Sarsa, Q Learning
• MC (every-visit):

– 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝐺(𝑆𝑡) − 𝑉(𝑆𝑡))
• 𝐺(𝑆𝑡) can also be written as 𝐺𝑡

• TD:

– 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))

• Sarsa:

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 −
𝑄 𝑆𝑡 , 𝐴𝑡 )

• QL:

– 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾max
𝑎′

𝑄 𝑆𝑡+1, 𝑎′ −

𝑄 𝑆𝑡 , 𝐴𝑡 )
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MC, TD, Sarsa, QL w. 𝛼 = 1
• With learning rate 𝛼 = 1, each 𝑉 𝑆𝑡 or 𝑄 𝑆𝑡, 𝐴𝑡 is 

completely overwritten in each update
– The extreme case of “more recent visits are given more 

weight”

• update equations simplify to:

– MC (every-visit): 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝐺(𝑆𝑡) − 𝑉 𝑆𝑡 =
𝐺(𝑆𝑡)

– TD: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡 =
𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1

– Sarsa: 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼൫
൯

𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 −
𝑄 𝑆𝑡 , 𝐴𝑡 = 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1

– QL: 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 ቀ

ቁ

𝑅𝑡+1 + 𝛾max
𝑎′

𝑄 𝑆𝑡+1, 𝑎
′ −

𝑄 𝑆𝑡 , 𝐴𝑡 = 𝑅𝑡+1 + 𝛾max
𝑎′

𝑄 𝑆𝑡+1, 𝑎′
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Two-Branch Example
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Two-Branch Example
• Consider an episodic MDP with 

deterministic env, 3 states {𝐵, 𝐶, 𝐷} and 2 
actions {𝑎1, 𝑎2} at each state, plus a 
terminal state 𝑇. The start state of each 
episode is 𝐵. Assume discount factor 𝛾 =
1, learning rate 𝛼 = 1. All state and action 
value functions are initialized to 0. 
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Policy Iteration
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1.1 Policy Evaluation of 

Random Policy
• Bellman Exp Equation: 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠

𝑎 + 𝛾𝑣𝜋 𝑠′

• 𝑣𝜋 𝐵 = .5 𝑞𝜋 𝐵, 𝑎1 + 𝑞𝜋 𝐵, 𝑎2 = .5[1 + 𝑣𝜋 𝐶 + 𝑣𝜋(𝐷)]

– 𝑞𝜋 𝐵, 𝑎1 = 1 + 𝑣𝜋 𝐶 , 𝑞𝜋 𝐵, 𝑎2 = 0 + 𝑣𝜋 𝐷

• 𝑣𝜋 𝐶 = .5 𝑞𝜋 𝐶, 𝑎1 + 𝑞𝜋 𝐶, 𝑎2 = 2

– 𝑞𝜋 𝐶, 𝑎1 = 1, 𝑞𝜋 𝐶, 𝑎2 = 3

• 𝑣𝜋 𝐷 = .5 𝑞𝜋 𝐷, 𝑎1 + 𝑞𝜋 𝐷, 𝑎2 = −48

– 𝑞𝜋 𝐷, 𝑎1 = −100, 𝑞𝜋 𝐷, 𝑎2 = 4

• Solution: 𝑣𝜋 𝐵 = −22.5, 𝑣𝜋 𝐶 = 2, 𝑣𝜋 𝐷 = −48 (analytic solution, or iterative solution with in-place 

updates)
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1.2 Policy Improvement

• Plug in values from PE to get new policy

• 𝜋′ 𝐵 = argmaxa 𝑞𝜋 𝐵, 𝑎1 , 𝑞𝜋 𝐵, 𝑎2 = 𝑎1

– 𝑞𝜋 𝐵, 𝑎1 = 1 + 𝑣𝜋 𝐶 = 3, 𝑞𝜋 𝐵, 𝑎2 = 0 + 𝑣𝜋 𝐷 = −22.5

• 𝜋′ 𝐶 = argmaxa 𝑞𝜋 𝐶, 𝑎1 , 𝑞𝜋 𝐶, 𝑎2 = 𝑎2

– 𝑞𝜋 𝐶, 𝑎1 = 1, 𝑞𝜋 𝐶, 𝑎2 = 3

• 𝜋′ 𝐷 = argmaxa 𝑞𝜋 𝐷, 𝑎1 , 𝑞𝜋 𝐷, 𝑎2 = 𝑎2

– 𝑞𝜋 𝐶, 𝑎1 = −100, 𝑞𝜋 𝐶, 𝑎2 = 4
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2.1 Policy Evaluation of Det 

Policy
• Bellman Exp Equation: 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠

𝑎 + 𝛾𝑣𝜋 𝑠′

• 𝑣𝜋 𝐵 = 𝑞𝜋 𝐵, 𝑎1 = 1 + 𝑣𝜋 𝐶

– 𝑞𝜋 𝐵, 𝑎1 = 1 + 𝑣𝜋 𝐶

• 𝑣𝜋 𝐶 = 𝑞𝜋 𝐶, 𝑎2 = 3

– 𝑞𝜋 𝐶, 𝑎2 = 3

• 𝑣𝜋 𝐷 = 𝑞𝜋 𝐷, 𝑎2 = 4

– 𝑞𝜋 𝐷, 𝑎2 = 4

• Solution: 𝑣𝜋 𝐵 = 4, 𝑣𝜋 𝐶 = 3, 𝑣𝜋 𝐷 = 4
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2.2 Policy Improvement

• Plug in values from PE to get new policy

• 𝜋′ 𝐵 = argmaxa 𝑞𝜋 𝐵, 𝑎1 , 𝑞𝜋 𝐵, 𝑎2 = 𝑎1 or 𝑎2

– 𝑞𝜋 𝐵, 𝑎1 = 1 + 𝑣𝜋 𝐶 = 4, 𝑞𝜋 𝐵, 𝑎2 = 0 + 𝑣𝜋 𝐷 = 4

• 𝜋′ 𝐶 = argmaxa 𝑞𝜋 𝐶, 𝑎1 , 𝑞𝜋 𝐶, 𝑎2 = 𝑎2

– 𝑞𝜋 𝐶, 𝑎1 = 1, 𝑞𝜋 𝐶, 𝑎2 = 3

• 𝜋′ 𝐷 = argmaxa 𝑞𝜋 𝐷, 𝑎1 , 𝑞𝜋 𝐷, 𝑎2 = 𝑎2

– 𝑞𝜋 𝐶, 𝑎1 = −100, 𝑞𝜋 𝐶, 𝑎2 = 4
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3.1 Policy Evaluation

• Bellman Exp Equation: 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾𝑣𝜋 𝑠′

• 𝑣𝜋 𝐵 = .5 𝑞𝜋 𝐵, 𝑎1 + 𝑞𝜋 𝐵, 𝑎2 = .5[1 + 𝑣𝜋 𝐶 + 𝑣𝜋(𝐷)]

– 𝑞𝜋 𝐵, 𝑎1 = 1 + 𝑣𝜋 𝐶 , 𝑞𝜋 𝐵, 𝑎2 = 0 + 𝑣𝜋 𝐷

• 𝑣𝜋 𝐶 = 𝑞𝜋 𝐶, 𝑎2 = 3

– 𝑞𝜋 𝐶, 𝑎2 = 3

• 𝑣𝜋 𝐷 = 𝑞𝜋 𝐷, 𝑎2 = 4

– 𝑞𝜋 𝐷, 𝑎2 = 4

• Solution: 𝑣𝜋 𝐵 = 4, 𝑣𝜋 𝐶 = 3, 𝑣𝜋 𝐷 = 4
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3.2 Policy Improvement
• Plug in values from PE to get new policy

• 𝜋′ 𝐵 = argmaxa 𝑞𝜋 𝐵, 𝑎1 , 𝑞𝜋 𝐵, 𝑎2 = 𝑎1 or 𝑎2

– 𝑞𝜋 𝐵, 𝑎1 = 1 + 𝑣𝜋 𝐶 = 4, 𝑞𝜋 𝐵, 𝑎2 = 0 + 𝑣𝜋 𝐷 = 4

• 𝜋′ 𝐶 = argmaxa 𝑞𝜋 𝐶, 𝑎1 , 𝑞𝜋 𝐶, 𝑎2 = 𝑎2

– 𝑞𝜋 𝐶, 𝑎1 = 1, 𝑞𝜋 𝐶, 𝑎2 = 3

• 𝜋′ 𝐷 = argmaxa 𝑞𝜋 𝐷, 𝑎1 , 𝑞𝜋 𝐷, 𝑎2 = 𝑎2

– 𝑞𝜋 𝐶, 𝑎1 = −100, 𝑞𝜋 𝐶, 𝑎2 = 4

• Policy is now stable (𝜋′ = 𝜋), so we have found the optimal policy. (We do not need to 
re-run Policy Evaluation, since we do not care if the value functions converge as long as 
the policy is stable.)
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Value Iteration
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Value Iteration
• Bellman Opt Equation: 𝑣∗ 𝑠 = max

𝑎
𝑞∗ 𝑠, 𝑎 ; 𝑞∗ 𝑠, 𝑎 = 𝑅𝑠

𝑎 + 𝛾𝑣∗ 𝑠′

• 𝑣∗ 𝐵 = max
𝑎

[𝑞∗ 𝐵, 𝑎1 , 𝑞∗ 𝐵, 𝑎2 ] = max[1 + 𝑣∗ 𝐶 , 𝑣∗ 𝐷 ]

– 𝑞∗ 𝐵, 𝑎1 = 1 + 𝑣∗ 𝐶 , 𝑞∗ 𝐵, 𝑎2 = 0 + 𝑣∗ 𝐷

• 𝑣∗ 𝐶 = max
𝑎

[𝑞∗ 𝐶, 𝑎1 , 𝑞∗ 𝐶, 𝑎2 ] = 𝑞∗ 𝐶, 𝑎2 = 3

– 𝑞∗ 𝐶, 𝑎1 = 1, 𝑞∗ 𝐶, 𝑎2 = 3

• 𝑣∗ 𝐷 = max
𝑎

𝑞∗ 𝐷, 𝑎1 , 𝑞∗ 𝐷, 𝑎2 = 4

– 𝑞∗ 𝐷, 𝑎1 = −100, 𝑞∗ 𝐷, 𝑎2 = 4

• We use Value Iteration to solve it. Table shows the iteration process until convergence (not using in-place 

updates for clarity). Solution: 𝑣∗ 𝐵 = 4, 𝑣∗ 𝐶 = 3, 𝑣∗ 𝐷 = 4

• Optimal policy: 𝜋∗ B = argmax
a

𝑞∗ 𝐵, 𝑎 = 𝑎1 or 𝑎2; 𝜋∗ C = argmax
a

𝑞∗ C, 𝑎 = 𝑎2; 𝜋∗ D =

argmax
a

𝑞∗ 𝐷, 𝑎 = 𝑎2
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MC
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MC, Episodes 3 × (𝐵, 𝑎2, 0, 𝐷, 𝑎1, −100, 𝑇)

• MC update equation: 𝑉 𝑆𝑡 ← 𝐺𝑡
• EP1:

• 𝐺 𝐷 = −100 + 𝑉 𝑇 = −100, 𝐺 𝐵 = 0 + 𝐺 𝐷 =
− 100

• 𝑉 𝐵 = 𝐺 𝐵 = −100, 𝑉 𝐷 = 𝐺 𝐷 = −100

• EP2: same as EP1

• EP3: same as EP1
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MC, Episodes 3 × (𝐵, 𝑎2, 0, 𝐷, 𝑎2, 4, 𝑇)

• MC update equation: 𝑉 𝑆𝑡 ← 𝐺𝑡
• EP1:

• 𝐺 𝐷 = 4 + 𝑉 𝑇 = 4, 𝐺 𝐵 = 0 + 𝐺 𝐷 = 4,

• 𝑉 𝐵 = 𝐺 𝐵 = 4, 𝑉 𝐷 = 𝐺 𝐷 = 4

• EP2: same as EP1

• EP3: same as EP1
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TD, Episodes 3 × (𝐵, 𝑎2, 0, 𝐷, 𝑎1, −100, 𝑇)
• TD update equation: 𝑉 𝑆𝑡 ← 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1
• EP1:

• 𝑉 𝐵 ← 𝑅𝑡+1 + 𝛾𝑉 𝐷 = 0 + 0 = 0

• 𝑉 𝐷 ← 𝑅𝑡+1 + 𝛾𝑉 𝑇 = −100 − 0 = −100
• EP2:

• 𝑉 𝐵 ← 𝑅𝑡+1 + 𝛾𝑉 𝐷 = 0 − 100 = −100

• 𝑉 𝐷 ← 𝑅𝑡+1 + 𝛾𝑉 𝑇 = −100 − 0 = −100
• EP3:

• 𝑉 𝐵 ← 𝑅𝑡+1 + 𝛾𝑉 𝐷 = 0 − 100 = −100

• 𝑉 𝐷 ← 𝑅𝑡+1 + 𝛾𝑉 𝑇 = −100 − 0 = −100
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TD, Episodes 3 × (𝐵, 𝑎2, 0, 𝐷, 𝑎2, 4, 𝑇)
• TD update equation: 𝑉 𝑆𝑡 ← 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1
• EP1:

• 𝑉 𝐵 ← 𝑅𝑡+1 + 𝛾𝑉 𝐷 = 0 + 0 = 0

• 𝑉 𝐷 ← 𝑅𝑡+1 + 𝛾𝑉 𝑇 = 4 + 0 = 4
• EP2:

• 𝑉 𝐵 ← 𝑅𝑡+1 + 𝛾𝑉 𝐷 = 0 + 4 = 4

• 𝑉 𝐷 ← 𝑅𝑡+1 + 𝛾𝑉 𝑇 = 4 + 0 = 4
• EP3:

• 𝑉 𝐵 ← 𝑅𝑡+1 + 𝛾𝑉 𝐷 = 0 + 4 = 4

• 𝑉 𝐷 ← 𝑅𝑡+1 + 𝛾𝑉 𝑇 = 4 + 0 = 4
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𝑽 𝐵 𝑽 𝐷

Init 0 0

EP1 0 4

EP2 4 4

EP3 4 4
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𝑎1, 𝑟 = 1

𝑎2, 𝑟 = 0

𝑎1, 𝑟 = 1

𝑎2, 𝑟 = 3

𝑎2, 𝑟 = 4

𝑎1, 𝑟 =-100



Sarsa
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Sarsa, Episodes 3 × (𝐵, 𝑎2, 0, 𝐷, 𝑎1, −100, 𝑇)
• Sarsa update equation: 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1
• EP1:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝐷, 𝑎1 = 0 − 0 = 0

• 𝑄 𝐷, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = −100 + 0 = −100
• EP2:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝐷, 𝑎1 = 0 − 100 = −100

• 𝑄 𝐷, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = −100 + 0 = −100
• EP3:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝐷, 𝑎1 = 0 − 100 = −100

• 𝑄 𝐷, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = −100 + 0 = −100
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𝑄 𝐵, 𝑎1 𝑄 𝐵, 𝑎2 𝑄 𝐷, 𝑎1 𝑄 𝐷, 𝑎2

Init 0 0 0 0

EP1 0 0 −100 0

EP2 0 −100 −100 0

EP3 0 −100 −100 0
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𝑎2, 𝑟 = 0
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𝑎2, 𝑟 = 3

𝑎2, 𝑟 = 4

𝑎1, 𝑟 =-100



Sarsa, Episodes 3 × (𝐵, 𝑎2, 0, 𝐷, 𝑎2, 4, 𝑇)
• Sarsa update equation: 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1
• EP1:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝐷, 𝑎2 = 0 − 0 = 0

• 𝑄 𝐷, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 4 + 0 = 4
• EP2:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝐷, 𝑎2 = 0 + 4 = 4

• 𝑄 𝐷, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 4 + 0 = 4
• EP3:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝐷, 𝑎2 = 0 + 4 = 4

• 𝑄 𝐷, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 4 + 0 = 4
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𝑄 𝐵, 𝑎1 𝑄 𝐵, 𝑎2 𝑄 𝐷, 𝑎1 𝑄 𝐷, 𝑎2

Init 0 0 0 0

EP1 0 0 0 4

EP2 0 4 0 4

EP3 0 4 0 4
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D

C

T

𝑎1, 𝑟 = 1

𝑎2, 𝑟 = 0

𝑎1, 𝑟 = 1

𝑎2, 𝑟 = 3

𝑎2, 𝑟 = 4

𝑎1, 𝑟 =-100



QL, Episodes 3 × (𝐵, 𝑎2, 0, 𝐷, 𝑎1,−100, 𝑇)
• QL update equation: 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑅𝑡+1 + 𝛾max

𝑎′
𝑄 𝑆𝑡+1, 𝑎′

• EP1:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐷, 𝑎 = 0 + max(0, 0) = 0

• 𝑄 𝐷, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = −100 + 0 = −100
• EP2:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐷, 𝑎 = 0 + max(−100, 0) = 0

• 𝑄 𝐷, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = −100 + 0 = −100
• EP3:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐷, 𝑎 = 0 + max(−100, 0) = 0

• 𝑄 𝐷, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = −100 + 0 = −100
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𝑄 𝐵, 𝑎1 𝑄 𝐵, 𝑎2 𝑄 𝐷, 𝑎1 𝑄 𝐷, 𝑎2

Init 0 0 0 0

EP1 0 0 −100 0

EP2 0 0 −100 0

EP3 0 0 −100 0

𝑇B

D

C

T

𝑎1, 𝑟 = 1

𝑎2, 𝑟 = 0

𝑎1, 𝑟 = 1

𝑎2, 𝑟 = 3

𝑎2, 𝑟 = 4

𝑎1, 𝑟 =-100



Q Learning
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QL, Episodes 3 × (𝐵, 2, 0, 𝐷, 2, 4, 𝑇)
• QL update equation: 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑅𝑡+1 + 𝛾max

𝑎′
𝑄 𝑆𝑡+1, 𝑎′

• EP1:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐷, 𝑎 = 0 + max(0, 0) = 0

• 𝑄 𝐷, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 4 + 0 = 4
• EP2:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐷, 𝑎 = 0 + 4 = 4

• 𝑄 𝐷, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 4 + 0 = 4
• EP3:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐷, 𝑎 = 0 + 4 = 4

• 𝑄 𝐷, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 4 + 0 = 4
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𝑄 𝐵, 𝑎1 𝑄 𝐵, 𝑎2 𝑄 𝐷, 𝑎1 𝑄 𝐷, 𝑎2

Init 0 0 0 0

EP1 0 0 0 4

EP2 0 4 0 4

EP3 0 4 0 4
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𝑎2, 𝑟 = 4

𝑎1, 𝑟 =-100



Comparisons
• MC and TD:

– Transition (𝐷, 𝑎1,−100, 𝑇) drives 𝑉 𝐷 → −100; 𝑉(𝐷) drives 𝑉(𝐵) → −100.

– Transition (𝐷, 𝑎2, 4, 𝑇) drives 𝑉(𝐷) → 4; 𝑉(𝐷) drives 𝑉(𝐵) → 4.

– Final values of 𝑉 𝐵 ,𝑉(𝐷) depend on relative execution frequencies of the 2 transitions (e.g., 𝜖-
greedy). 

• Sarsa:
– Transition (𝐷, 𝑎1,−100, 𝑇) drives 𝑄 𝐷, 𝑎1 → −100; 𝑄 𝐷, 1 drives 𝑄 𝐵, 𝑎2 → −100.

– Transition (𝐷, 𝑎2, 4, 𝑇) drives 𝑄 𝐷, 𝑎2 → 4; 𝑄 𝐷, 𝑎2 drives 𝑄 𝐵, 𝑎2 → 4.

– Final value of 𝑄 𝐵, 2 depends on relative execution frequencies of the 2 transitions (e.g., 𝜖-greedy).

• QL:
– Transition (𝐷, 𝑎1,−100, 𝑇) drives 𝑄 𝐷, 𝑎1 → −100; 𝑄 𝐷, 𝑎1 does not affect 𝑄 𝐵, 𝑎2 since 

– max
𝑎

𝑄 𝐷, 𝑎 = max(𝑄 𝐷, 𝑎1 , 𝑄 𝐷, 𝑎2 ) = 0. (assuming 𝑄 𝐷, 𝑎2 is initialized to 0 and it never updated)

– Transition (𝐷, 𝑎2, 4, 𝑇) drives 𝑄 𝐷, 𝑎2 → 4, which in turn drives 𝑄 𝐵, 𝑎2 → 4.

• We perform policy evaluation for a given set of episodes, not control. If we consider control, 
e.g., Sarsa or QL uses 𝜖-greedy policy with small 𝜖, then the agent will likely avoid action a1 in 
state 𝐷 after taking it for the 1st time. 
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𝑎1, 𝑟 = 1

𝑎2, 𝑟 = 0

𝑎1, 𝑟 = 1

𝑎2, 𝑟 = 3

𝑎2, 𝑟 = 4

𝑎1, 𝑟 =-100



Sarsa w. 𝜖-greedy
• Suppose EP1 is (𝐵, 𝑎2, 0, 𝐷, 𝑎1,−100, 𝑇). After EP1:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝐷, 𝑎1 = 0 − 0 = 0, 𝑄 𝐷, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = −100 + 0 = −100
• Suppose EP2 starts with 𝐵, 𝑎2, 0, 𝐷 , then in state D, the agent is likely to select action 

argmax𝑎 𝑄 𝐷, 𝑎1 = −100, 𝑄 𝐷, 𝑎2 = 0 =𝑎2 based on 𝜖-greedy, so the episode is (𝐵, 𝑎2, 0, 𝐷, 𝑎2, 4, 𝑇). After 
EP2:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝐷, 𝑎1 = 0 − 100 = −100, 𝑄 𝐷, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 4 + 0 = 4
• In EP3, in initial state B, the agent is likely to select action argmax𝑎 𝑄 𝐵, 𝑎1 = 0, 𝑄 𝐵, 𝑎2 = −100 =𝑎1. 

Suppose the episode is (𝐵, 𝑎1, 1, C, 𝑎1,1, 𝑇)
• 𝑄 𝐵, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝐶, 𝑎1 = 1 + 0 = 1, 𝑄 𝐶, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 1 + 0 = 1
• In EP4, in initial state B, the agent is likely to select action argmax𝑎 𝑄 𝐵, 𝑎1 = 1, 𝑄 𝐵, 𝑎2 = −100 =𝑎1. in 

state C, the agent is likely to select action argmax𝑎 𝑄 C, 𝑎1 = 1, 𝑄 C, 𝑎2 = 0 =𝑎1. Suppose the episode is 
again (𝐵, 𝑎1, 1, 𝐶, 𝑎1,1, 𝑇)

• 𝑄 𝐵, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝐶, 𝑎1 = 1 + 1 = 2, 𝑄 𝐶, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 1 + 0 = 1
• if the agent always follows the greedy policy, it will always follow the trajectory (𝐵, 𝑎1, 1, 𝐶, 𝑎1,1, 𝑇) and never 

learn anything new, e.g., it will never experience the trajectories 𝐵, 𝑎1, 1, 𝐶, 𝑎2, 3, 𝑇 , (𝐵, 𝑎2, 0, 𝐷, 𝑎2, 4, 𝑇). It got 
scared when 𝑄 𝐵, 𝑎2 was updated to −100 after EP2 and never wanted to take action a2 in state 𝐵, but if it 
were more adventurous and tried it, it will likely experience EP5 (𝐵, 𝑎2, 0, 𝐷, 𝑎2, 4, 𝑇):

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝐷, 𝑎2 = 0 + 4 = 4, 𝑄 𝐷, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 4 + 0 = 4
• Now you can see the importance of exploration by selecting the non-greedy action occasionally.
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𝑇

𝑄 𝐵, 𝑎1 𝑄 𝐵, 𝑎2 𝑄 𝐶, 𝑎1 𝑄 𝐶, 𝑎2 𝑄 𝐷, 𝑎1 𝑄 𝐷, 𝑎2

Init 0 0 0 0 0 0

EP1 0 0 0 0 −100 0

EP2 0 −100 0 0 −100 4

EP3 1 −100 1 0 −100 4

EP4 2 −100 1 0 −100 4

EP5 2 4 1 0 −100 4
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𝑎1, 𝑟 =-100



QL w. 𝜖-greedy
• Suppose EP1 is (𝐵, 𝑎2, 0, 𝐷, 𝑎1,−100, 𝑇). After EP1:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐷, 𝑎 = 0 + max 0, 0 = 0, 𝑄 𝐷, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = −100 + 0 = −100

• Suppose EP2 starts with 𝐵, 𝑎2, 0, 𝐷 , then in state D, the agent is likely to select action 
argmax𝑎 𝑄 𝐷, 𝑎1 = −100, 𝑄 𝐷, 𝑎2 = 0 =𝑎2 based on 𝜖-greedy, so the episode is (𝐵, 𝑎2, 0, 𝐷, 𝑎2, 4, 𝑇). After 
EP2:

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐷, 𝑎 = 0 + max −100, 0 = 0, 𝑄 𝐷, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 4 + 0 = 4

• In EP3, in initial state B, the agent is equally likely to select action 𝑎1 and 𝑎2 since 𝑄 𝐵, 𝑎1 = 𝑄 𝐵, 𝑎2 = 0. 
Suppose the episode is (𝐵, 𝑎1, 1, C, 𝑎1,1, 𝑇)

• 𝑄 𝐵, 𝑎1 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐶, 𝑎 = 1 + max(0, 0) = 1, 𝑄 𝐶, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 1 + 0 = 1

• In EP4, in initial state B, the agent is likely to select action argmax𝑎 𝑄 𝐵, 𝑎1 = 1, 𝑄 𝐵, 𝑎2 = 0 =𝑎1. in state 
D, the agent is likely to select action argmax𝑎 𝑄 𝐷, 𝑎1 = 1, 𝑄 𝐷, 𝑎2 = 0 =𝑎1. Suppose the episode is 
(𝐵, 𝑎1, 1, 𝐶, 𝑎1,1, 𝑇)

• 𝑄 𝐵, 𝑎1 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐶, 𝑎 = 1 + max(1, 0) = 2, 𝑄 𝐶, 𝑎1 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 1 + 0 = 1

• The difference from Sarsa lies in 𝑄 𝐵, 𝑎2 , which stays at 0 until the agent experienced EP5. So it got less 
scared than Sarsa (where 𝑄 𝐵, 𝑎2 was updated to −100 after EP2), so QL agent is more likely to explore 
unseen states. Optimistic initialization of Q values encourages exploration, but may cause slow convergence.

• Suppose EP5 is (𝐵, 𝑎2, 0, 𝐷, 𝑎2, 4, 𝑇):

• 𝑄 𝐵, 𝑎2 ← 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝐷, 𝑎 = 0 + max(−100, 4) = 4, 𝑄 𝐷, 𝑎2 ← 𝑅𝑡+1 + 𝛾𝑄 𝑇,− = 4 + 0 = 4
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𝑇

𝑄 𝐵, 𝑎1 𝑸 𝑩, 𝒂𝟐 𝑄 𝐶, 𝑎1 𝑄 𝐶, 𝑎2 𝑄 𝐷, 𝑎1 𝑄 𝐷, 𝑎2
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Linear Chain Example
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Linear Chain Example

• Consider an episodic MDP with deterministic environment. In each state, there are 

two possible actions  a∈{l,r}, where l corresponds to moving left, and r corresponds 

to moving right. Each movement incurs a reward of 𝑟 = −1. State s=4 is the goal 

state: taking any action from s=4 results in reward of r=0 and ends the episode by 

going into the terminal state, hence 𝑉 4 ≡ 0, 𝑄 4, 𝑎 ≡ 0 for any action a. 

(Alternatively, we can view state s=4 as the terminal state itself.) Assume discount 

factor 𝛾 = 1, learning rate 𝛼 = 1. All state and action value functions are initialized 

to 0. 

• A. Use Policy Iteration, Value Iteration to derive the optimal policy.
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Policy Iteration
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1.1 Policy Evaluation of Random 

Policy
• Bellman Exp Equation: 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎) ; 𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠

𝑎 + 𝛾𝑣𝜋 𝑠′

• 𝑣𝜋 1 = .5 𝑞𝜋 1, 𝑙 + 𝑞𝜋 1, 𝑟 = −1 + .5[𝑣𝜋 1 + 𝑣𝜋(2)]

– 𝑞𝜋 1, 𝑙 = −1 + 𝑣𝜋 1 , 𝑞𝜋 1, 𝑟 = −1 + 𝑣𝜋 2

• 𝑣𝜋 2 = .5 𝑞𝜋 2, 𝑙 + 𝑞𝜋 2, 𝑟 = −1 + .5[𝑣𝜋 1 + 𝑣𝜋(3)]

– 𝑞𝜋 2, 𝑙 = −1 + 𝑣𝜋 1 , 𝑞𝜋 2, 𝑟 = −1 + 𝑣𝜋 3

• 𝑣𝜋 3 = .5[𝑞𝜋 3, 𝑙 + 𝑞𝜋 3, 𝑟 ] = − 1 + .5 𝑣𝜋 2

• 𝑞𝜋 3, 𝑙 = −1 + 𝑣𝜋 2 , 𝑞𝜋 3, 𝑟 = −1 + 𝑣 4 = −1

• Solution: 𝑣𝜋 1 = −12, 𝑣𝜋 2 = −10, 𝑣𝜋 3 = −6
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-12 -10 -6

BF=2

BF=1

𝑉𝜋 1 𝑉𝜋 2 𝑉𝜋 3

Iter1 −12 −10 −6

Iter2

(Column 𝑉∗ 4 is omitted

since it is always 0)



1.2 Policy Improvement

• Plug in values from PE to get new policy

• 𝜋′ 1 = argmaxa 𝑞𝜋 1, 𝑙 , 𝑞𝜋 1, 𝑟 = 𝑟

– 𝑞𝜋 1, 𝑙 = −1 + 𝑣𝜋 1 = −13, 𝑞𝜋 1, 𝑟 = −1 + 𝑣𝜋 2 = −11,

• 𝜋′ 2 = argmaxa 𝑞𝜋 2, 𝑙 , 𝑞𝜋 2, 𝑟 = 𝑟

– 𝑞𝜋 2, 𝑙 = −1 + 𝑣𝜋 1 = −13, 𝑞𝜋 2, 𝑟 = −1 + 𝑣𝜋 3 = −7

• 𝜋′ 3 = argmaxa 𝑞𝜋 3, 𝑙 , 𝑞𝜋 3, 𝑟 = 𝑟

– 𝑞𝜋 3, 𝑙 = −1 + 𝑣𝜋 2 = −11, 𝑞𝜋 3, 𝑟 = −1
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2.1 Policy Evaluation of Det 

Policy
• 𝑣𝜋 1 = 1.0𝑞𝜋 1, 𝑟 = −1 + 𝑣𝜋 2

– 𝑞𝜋 1, 𝑟 = −1 + 𝑣𝜋 2

• 𝑣𝜋 2 = 1.0𝑞𝜋 2, 𝑟 = −1 + 𝑣𝜋 3

– 𝑞𝜋 2, 𝑟 = −1 + 𝑣𝜋 3

• 𝑣𝜋 3 = 1.0𝑞𝜋 3, 𝑟 = −1

– 𝑞𝜋 3, 𝑟 = −1

• Solution: 𝑣𝜋 1 = −3, 𝑣𝜋 2 = −2, 𝑣𝜋 3 = −1
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-3 -2 -1

BF=1

BF=1

𝑉𝜋 1 𝑉𝜋 2 𝑉𝜋 3

Iter1 −12 −10 −6

Iter2 −3 −2 −1



2.2 Policy Improvement
• Plug in values from PE to get new policy

• 𝜋′ 1 = argmaxa 𝑞𝜋 1, 𝑙 , 𝑞𝜋 1, 𝑟 = 𝑟

– 𝑞𝜋 1, 𝑙 = −1 − 3 = −4, 𝑞𝜋 1, 𝑟 = −1 − 2 = −3

• 𝜋′ 2 = argmaxa 𝑞𝜋 2, 𝑙 , 𝑞𝜋 2, 𝑟 = 𝑟

– 𝑞𝜋 2, 𝑙 = −1 − 3 = −4, 𝑞𝜋 2, 𝑟 = −1 − 1 = −2

• 𝜋′ 3 = argmaxa 𝑞𝜋 3, 𝑙 , 𝑞𝜋 3, 𝑟 = 𝑟

– 𝑞𝜋 3, 𝑙 = −1 − 2 = −3, 𝑞𝜋 3, 𝑟 = −1

• Policy is now stable (𝜋′ = 𝜋), so we have found the optimal policy
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Value Iteration
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Value Iteration
• Bellman Opt Equation: 𝑣∗ 𝑠 = max

𝑎
𝑞∗ 𝑠, 𝑎 ; 𝑞∗ 𝑠, 𝑎 = 𝑅𝑠

𝑎 + 𝛾𝑣∗ 𝑠′

• 𝑣∗ 1 = max
𝑎

𝑞∗ 1, 𝑙 , 𝑞∗ 1, 𝑟 = max
𝑎

−1 + 𝑣∗ 1 ,−1 + 𝑣∗ 2

– 𝑞∗ 1, 𝑙 = −1 + 𝑣∗ 1 , 𝑞∗ 1, 𝑟 = −1 + 𝑣∗ 2

• 𝑣∗ 2 = max
𝑎

𝑞∗ 2, 𝑙 , 𝑞∗ 2, 𝑟 = max
𝑎

−1 + 𝑣∗ 1 ,−1 + 𝑣∗ 3

– 𝑞∗ 2, 𝑙 = −1 + 𝑣∗ 1 , 𝑞∗ 2, 𝑟 = −1 + 𝑣∗ 3

• 𝑣∗ 3 = max
𝑎

𝑞∗ 3, 𝑙 , 𝑞∗ 3, 𝑟 = max
𝑎

−1 + 𝑣∗ 2 ,−1 + 𝑣 4 = max
𝑎

−1 + 𝑣∗ 2 ,−1

– 𝑞∗ 3, 𝑙 = −1 + 𝑣∗ 2 , 𝑞∗ 3, 𝑟 = −1 + 𝑣 4 = −1

• We use Value Iteration to solve it. Table shows the iteration process until convergence (not using in-place updates for 

clarity). Solution: 𝑣∗ 1 = −3, 𝑣∗ 2 = −2, 𝑣∗ 3 = −1

• Optimal policy: 𝜋∗ 1 = argmax
𝑎

𝑞∗ 1, 𝑎 = 𝑟; 𝜋∗ 2 = argmax
a

𝑞∗ 2, 𝑎 = 𝑟; 𝜋∗ 3 = argmax
a

𝑞∗ 3, 𝑎 = 𝑟
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BF=2

BF=1

-3 -2 -1

𝑉∗ 1 𝑉∗ 2 𝑉∗ 3

Init 0 0 0

Iter1 −1 −1 −1

Iter2 −2 −2 −1

Iter3 −3 −2 −1

Iter4 −3 −2 −1

(Column 𝑉∗ 4 ≡ 0 is omitted)



MC, TD, Sarsa, QL (Simple)

• B. Assume learning rate 𝛼 = 0.5. Consider an episode in the form of (s,a,r) :

EP1: (3, l, −1), (2, r, −1), (3, r, −1), (4, r, 0)

• Derive the following:

1. State value functions 𝑉(𝑠) after MC learning.

2. State value functions 𝑉(𝑠) after TD learning.

3. State-action value functions 𝑄(𝑠, 𝑎) after Sarsa, and the resulting policy.

4. State-action value functions 𝑄(𝑠, 𝑎) after Q learning, and the resulting policy.
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MC EP1

• MC update equation:𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝐺(𝑆𝑡) − 𝑉(𝑆𝑡))
• 𝑉 4 ≡ 0. Initialize 𝑉 1 = 𝑉 2 = 𝑉 3 = 0

• EP1: (3, l, −1), (2, r, −1), (3, r, −1), (4, r, 0)

• MC (every-visit w. EP1 3′ → 2 → 3 → 4):

• Update 𝐺 𝑠 backward: 

1. 𝐺 3 ← −1

2. 𝐺 2 ← −1 + 𝛾𝐺 3 = −1 − 1 = −2

3. 𝐺 3′ ← −1 + 𝛾𝐺 2 = −1 − 2 = −3,

• Update 𝑉 𝑠 forward:

1. 𝑉 3 ← 𝑉 3 + 𝛼 𝐺 3′ − 𝑉 3 = 0 + .5 −3 − 0 = −1.5

2. 𝑉 2 ← 𝑉 2 + 𝛼 𝐺 2 − 𝑉 2 = 0 + .5 −2 − 0 = −1

3. 𝑉 3 ← 𝑉 3 + 𝛼 𝐺 3 − 𝑉 3 = −1.5 + .5 −1 + 1.5 = −1.25

• 𝐺 3′ = −3 is misleading: based on EP1 3′ → 2 → 3 → 4, the agent needs 3

steps to get to the terminal state by moving left in the 1st visit to state 3, but in

fact it only needs 1 step by moving right in the 2nd visit to state 3. That is why

“more recent visits are given more weight”. In the extreme case, if learning

rate 𝛼 = 1, then each 𝑉(𝑆) is completely overwritten in each update, and we

have a more correct estimate of 𝑉 3 :

1. 𝑉 3 ← 𝑉 3 + 𝛼 𝐺 3′ − 𝑉 3 = 0 + 1 −3 − 0 = −3

2. 𝑉 2 ← 𝑉 2 + 𝛼 𝐺 2 − 𝑉 2 = 0 + 1 −2 − 0 = −2

3. 𝑉 3 ← 𝑉 3 + 𝛼 𝐺 3 − 𝑉 3 = −3 + 1 −1 + 3 = −1
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TD 𝑉 1 𝑉 2 𝑉 3

Init 0 0 0

After EP1 −1.25 −1 −1.5



TD EP1
• TD update equation: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))

• 𝑉 4 ≡ 0. Initialize 𝑉 1 = 𝑉 2 = 𝑉 3 = 0,

• EP1:  (3, l, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑉 3 ← 𝑉 3 + 𝛼 𝑅 + 𝛾𝑉 2 − 𝑉 3 = 0 + .5 −1 + 0 − 0 = −0.5

2. 𝑉 2 ← 𝑉 2 + 𝛼 𝑅 + 𝛾𝑉 3 − 𝑉 2 = 0 + .5 −1 − .5 − 0 =

− 0.725

3. 𝑉 3 ← 𝑉 3 + 𝛼 𝑅 + 𝛾𝑉 4 − 𝑉 3 = −.5 + .5 −1 + 0 + .5 =

− 0.75

• Arrows denote bootstrap dependencies, e.g., 𝑉(3) bootstraps off 𝑉(2),

𝑉(2) bootstraps off 𝑉(3), 𝑉(3) bootstraps off 𝑉(4). They also denote

direction of information flow during learning, e.g.,𝑉 4 ≡ 0 is the

external learning signal, and info flows 𝑉 4 → 𝑉 3 .
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TD 𝑉 1 𝑉 2 𝑉 3

Init 0 0 0

After EP1 0 −725 −0.5

−0.75
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• Sarsa update equation: 𝑄 𝑆𝑡 , 𝐴𝑡 ←
𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 −
𝑄 𝑆𝑡 , 𝐴𝑡 )

• 𝑄 4, 𝑎 ≡ 0. Initialize 𝑄 1,∗ = 𝑄 2,∗ =
𝑄 3,∗ = 0

• EP1:  

(3, l, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 3, 𝑙 ← 𝑄 3, 𝑙 + 𝛼൫

൯

𝑅 + 𝛾𝑄 2, 𝑟 −

𝑄 3, 𝑙 = 0 + .5 −1 + 0 − 0 = −0.5

2. 𝑄 2, 𝑟 ← 𝑄 2, 𝑟 + 𝛼൫

൯

𝑅 + 𝛾𝑄 3, 𝑟 −

𝑄 2, 𝑟 = 0 + .5 −1 + 0 − 0 = −0.5

3. 𝑄 3, 𝑟 ← 𝑄 3, 𝑟 + 𝛼൫

൯

𝑅 + 𝛾𝑄 4, 𝑟 −

𝑄 3, 𝑟 = 0 + .5 −1 + 0 − 0 = −0.5

Sarsa 𝑄 1, 𝑙 𝑸 𝟏, 𝒓 𝑄 2, 𝑙 𝑸 𝟐, 𝒓 𝑄 3, 𝑙 𝑸 𝟑, 𝒓

Init 0 𝟎 0 𝟎 0 𝟎

After EP1 0 𝟎 0 −𝟎. 𝟓 −0.5 −𝟎. 𝟓

Sarsa EP1

(Column 𝑄 4, 𝑟 is omitted since it is always 0)



• QL update equation: 𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 +
𝛼(𝑅𝑡+1 + 𝛾max

𝑎′
𝑄 𝑆𝑡+1, 𝑎′ − 𝑄 𝑆𝑡 , 𝐴𝑡 )

• 𝑄 4, 𝑎 ≡ 0. Initialize 𝑄 1,∗ = 𝑄 2,∗ = 𝑄 3,∗ =
0

• EP1:  (3, l, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 3, 𝑙 ← 𝑄 3, 𝑙 + 𝛼 ቆ

ቇ

𝑅 + 𝛾max
𝑎′

𝑄 2, 𝑎′ −

𝑄 3, 𝑙 = 0 + .5 −1 +max(0,0) − 0 = −0.5

2. 𝑄 2, 𝑟 ← 𝑄 2, 𝑟 + 𝛼 ቆ

ቇ

𝑅 + 𝛾max
𝑎′

𝑄 3, 𝑎′ −

𝑄 2, 𝑟 = 0 + .5 −1 + max(−.5, 0) − 0 = −0.5

3. 𝑄 3, 𝑟 ← 𝑄 3, 𝑟 + 𝛼 ቆ

ቇ

𝑅 + 𝛾max
𝑎′

𝑄 4, 𝑎′ −

𝑄 3, 𝑟 = 0 + .5 −1 + 0 − 0 = −0.5
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QL EP1

Sarsa 𝑄 1, 𝑙 𝑸 𝟏, 𝒓 𝑄 2, 𝑙 𝑸 𝟐, 𝒓 𝑄 3, 𝑙 𝑸 𝟑, 𝒓

Init 0 𝟎 0 𝟎 0 𝟎

After EP1 0 𝟎 0 −𝟎. 𝟓 −0.5 −𝟎. 𝟓



MC, TD, Sarsa, QL (Complex)

• C. Assume learning rate 𝛼 = 1. Consider 8 given consecutive episodes in the form of (s,a,r) (we do not 

consider 𝜖-greedy exploration here):

1. EP1: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

2. EP2: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

3. EP3: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

4. EP4: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

5. EP5: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

6. EP6: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

7. EP7: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

8. EP8: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

• Derive the following:

1. State value functions 𝑉(𝑠) after MC learning.

2. State value functions 𝑉(𝑠) after TD learning.

3. State-action value functions 𝑄(𝑠, 𝑎) after Sarsa, and the resulting policy.

4. State-action value functions 𝑄(𝑠, 𝑎) after Q learning, and the resulting policy.
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MC
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MC EP1-3
• MC update equation: 𝑉 𝑆𝑡 ← 𝐺𝑡
• 𝑉 4 ≡ 0. Initialize 𝑉 1 = 𝑉 2 = 𝑉 3 = 0

• EP1: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

• MC (every-visit w. EP1 1 → 2 → 3 → 4):

• Update 𝐺 𝑠 backward: 

1. 𝐺 3 ← −1

2. 𝐺 2 ← −1 + 𝛾𝐺 3 = −2

3. 𝐺 1 ← −1 + 𝛾𝐺 2 = −3,

• Update 𝑉 𝑠 forward:

1. 𝑉 1 ← 𝐺 1 = −3

2. 𝑉 2 ← 𝐺 2 = −2

3. 𝑉 3 ← 𝐺 3 = −1

• EP2-3: same as EP1
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TD 𝑉 1 𝑉 2 𝑉 3

Init 0 0 0

After EP1 −3 −2 −1

After EP2 −3 −2 −1

After EP3 −3 −2 −1

After EP4

After EP5

After EP6

After EP7

After EP8



MC EP4-8

• MC update equation: 𝑉 𝑆𝑡 ← 𝐺𝑡
• EP4: 

3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

• MC (every-visit w. EP4 3′ → 2′ → 1′ → 1 → 2 → 3 → 4):

• Update 𝐺 𝑠 backward: 

1. 𝐺 3 ← −1 + 𝛾𝐺 4 = −1 (2nd visit)

2. 𝐺 2 ← −1 + 𝛾𝐺 3 = −2 (2nd visit)

3. 𝐺 1 ← −1 + 𝛾𝐺 2 = −3 (2nd visit)

4. 𝐺(1′) ← −1 + 𝛾𝐺 1 = −4 (1st visit)

5. 𝐺(2′) ← −1 + 𝛾𝐺(1′) = −5 (1st visit)

6. 𝐺(3′) ← −1 + 𝛾𝐺(2′) = −6 (1st visit)

• Update 𝑉 𝑠 forward:

1. 𝑉 3 = 𝐺(3′) = −6

2. 𝑉 2 = 𝐺(2′) = −5

3. 𝑉 1 = 𝐺(1′) = −4

4. 𝑉 1 = 𝐺 1 = −3

5. 𝑉 2 = 𝐺 2 = −2

6. 𝑉 3 = 𝐺 3 = −1

• EP5-8: same as EP4
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TD 𝑉 1 𝑉 2 𝑉 3

Init 0 0 0

After EP1 −3 −2 −1

After EP2 −3 −2 −1

After EP3 −3 −2 −1

After EP4 −3 −2 −1

After EP5 −3 −2 −1

After EP6 −3 −2 −1

After EP7 −3 −2 −1

After EP8 −3 −2 −1



TD
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TD EP1-3
• TD update equation: 𝑉 𝑆𝑡 ← 𝑅𝑡+1 + 𝑉 𝑆𝑡+1
• 𝑉 4 ≡ 0. Initialize 𝑉 1 = 𝑉 2 = 𝑉 3 = 0,

• EP1: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑉 1 ← −1 + 𝑉 2 = −1 + 0 = −1

2. 𝑉 2 ← −1 + 𝑉 3 = −1 + 0 = −1

3. 𝑉 3 ← −1 + 𝑉 4 = −1 + 0 = −1

• EP2: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑉 1 ← −1 + 𝑉 2 = −1 − 1 = −2

2. 𝑉 2 ← −1 + 𝑉 3 = −1 − 1 = −2

3. 𝑉 3 ← −1 + 𝑉 4 = −1 + 0 = −1

• EP3: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑉 1 ← −1 + 𝑉 2 = −1 − 2 = −3

2. 𝑉 2 ← −1 + 𝑉 3 = −1 − 1 = −2

3. 𝑉 3 ← −1 + 𝑉 4 = −1 + 0 = −1

• Arrows denote bootstrap dependencies, e.g., 𝑉(1) bootstraps off 𝑉(2),

𝑉(2) bootstraps off 𝑉(3), 𝑉(3) bootstraps off 𝑉(4). They also denote

direction of information flow during learning, e.g.,𝑉 4 ≡ 0 is the

external learning signal, and info flows 𝑉 4 → 𝑉 3 → 𝑉 2 → 𝑉 1 .
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TD 𝑉 1 𝑉 2 𝑉 3

Init 0 0 0

After EP1 −1 −1 −1

After EP2 −2 −2 −1

After EP3 −3 −2 −1

After EP4

After EP5

After EP6

After EP7

After EP8



TD EP4-8

• TD update equation: 𝑉 𝑆𝑡 ← 𝑅𝑡+1 + 𝑉 𝑆𝑡+1

1. EP4:

3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

2. 𝑉 3 ← −1 + 𝑉 2 = −1 − 2 = −3

3. 𝑉 2 ← −1 + 𝑉 1 = −1 − 3 = −4

4. 𝑉 1 ← −1 + 𝑉 1 = −1 − 3 = −4

5. 𝑉 1 ← −1 + 𝑉 2 = −1 − 4 = −5

6. 𝑉 2 ← −1 + 𝑉 3 = −1 − 3 = −4

7. 𝑉 3 ← −1 + 𝑉 4 = −1 + 0 = −1

• EP5: 

3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑉 3 ← −1 + 𝑉 2 = −1 − 4 = −5

2. 𝑉 2 ← −1 + 𝑉 1 = −1 − 5 = −6

3. 𝑉 1 ← −1 + 𝑉 1 = −1 − 5 = −6

4. 𝑉 1 ← −1 + 𝑉 2 = −1 − 6 = −7

5. 𝑉 2 ← −1 + 𝑉 3 = −1 − 5 = −6

6. 𝑉 3 ← −1 + 𝑉 4 = −1 + 0 = −1

• EP6-8 omitted.
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TD 𝑉 1 𝑉 2 𝑉 3

Init 0 0 0

After EP1 −1 −1 −1

After EP2 −2 −2 −1

After EP3 −3 −2 −1

After EP4 −4

−5

−4

−4

−3

−1

After EP4 −6

−7

−6

−6

−5

−1

After EP6 −9 −8 −1

After EP7 −11 −10 −1

After EP8 −13 −12 −1



TD Failed to Converge 
• TD failed to converge for this set of episodes, all 

value functions grow increasingly negative. 

• The reason is that 𝑉 1 and 𝑉 2 bootstrap off 
each other and form a bootstrap dependency 
cycle 𝑉 2 ← 𝑉 1 ← 𝑉 2 …, i.e., a cycle of 
TD updates: 𝑉 2 = −1 + 𝑉 1 , 𝑉 1 = −1 +
𝑉 2 ,…
– An analogy: 2 students 𝑉 1 and 𝑉 2 are 

copying from each other, but they never get any 
true reward feedback from the external teacher 
(𝑉 4 ≡ 0)

• 𝑉 3 is bootstrapped off 𝑉 2 when moving left, 
and is bootstrapped off 𝑉 4 ≡ 0 when moving 
right. Even though 𝑉(3) is updated to the correct 
𝑉 3 = −1 + 𝑉 4 = −1 when it moves right 
to state 4, the episode ends immediately 
afterwards, so 𝑉 1 and 𝑉 2 do not have a 
chance to bootstrap off 𝑉 3 = −1. 

• If the episode does not end immediately, but the 
agent moves left again, then 𝑉 1 and 𝑉 2 will 
have a chance to bootstrap off the new 𝑉 3 , and 
they may converge to the correct values.
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TD 𝑉 1 𝑉 2 𝑉 3

Init 0 0 0

After EP1 −1 −1 −1

After EP2 −2 −2 −1

After EP3 −3 −2 −1

After EP4 −4

−5

−4

−4

−3

−1

After EP4 −6

−7

−6

−6

−5

−1

After EP6 −9 −8 −1

After EP7 −11 −10 −1

After EP8 −13 −12 −1



Sarsa
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• Sarsa update equation: 𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑅𝑡+1 +
𝑄 𝑆𝑡+1, 𝐴𝑡+1

• 𝑄 4, 𝑎 ≡ 0. Initialize 𝑄 1,∗ = 𝑄 2,∗ =
𝑄 3,∗ = 0

• EP1: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 1, 𝑟 ← −1 + 𝑄 2, 𝑟 = −1 + 0 = −1

2. 𝑄 2, 𝑟 ← −1 + 𝑄 3, 𝑟 = −1 + 0 = −1

3. 𝑄 3, 𝑟 ← −1 + 𝑄 4, 𝑟 = −1 + 0 = −1

• EP2: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 1, 𝑟 ← −1 + 𝑄 2, 𝑟 = −1 − 1 = −2

2. 𝑄 2, 𝑟 ← −1 + 𝑄 3, 𝑟 = −1 − 1 = −2

3. 𝑄 3, 𝑟 ← −1 + 𝑄 4, 𝑟 = −1 + 0 = −1

• EP3: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 1, 𝑟 ← −1 + 𝑄 2, 𝑟 = −1 − 2 = −3

2. 𝑄 2, 𝑟 ← −1 + 𝑄 3, 𝑟 = −1 − 1 = −2

3. 𝑄 3, 𝑟 ← −1 + 𝑄 4, 𝑟 = −1 + 0 = −1

Sarsa 𝑄 1, 𝑙 𝑸 𝟏, 𝒓 𝑄 2, 𝑙 𝑸 𝟐, 𝒓 𝑄 3, 𝑙 𝑸 𝟑, 𝒓

Init 0 𝟎 0 𝟎 0 𝟎

After EP1 0 −𝟏 0 −𝟏 0 −𝟏

After EP2 0 −𝟐 0 −𝟐 0 −𝟏

After EP3 0 −𝟑 0 −𝟐 0 −𝟏

After EP4

After EP5

After EP6

After EP7

After EP8

Sarsa EP1-3
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• Sarsa update equation:𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑅𝑡+1 + 𝑄 𝑆𝑡+1, 𝐴𝑡+1
• EP4: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 3, 𝑙 ← −1 + 𝑄 2, 𝑙 = −1 + 0 = −1

2. 𝑄 2, 𝑙 ← −1 + 𝑄 1, 𝑙 = −1 + 0 = −1

3. 𝑄 1, 𝑙 ← −1 + 𝑄 1, 𝑟 = −1 − 3 = −4

4. 𝑄 1, 𝑟 ← −1 + 𝑄 2, 𝑟 = −1 − 2 = −3

5. 𝑄 2, 𝑟 ← −1 + 𝑄 3, 𝑟 = −1 − 1 = −2

6. 𝑄 3, 𝑟 ← −1 + 𝑄(4, 𝑟) = −1 + 0 = −1

• EP5: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 3, 𝑙 ← −1 + 𝑄 2, 𝑙 = −1 − 1 = −2

2. 𝑄 2, 𝑙 ← −1 + 𝑄 1, 𝑙 = −1 − 4 = −5

3. 𝑄 1, 𝑙 ← −1 + 𝑄 1, 𝑟 = −1 − 3 = −4

4. 𝑄 1, 𝑟 ← −1 + 𝑄 2, 𝑟 = −1 − 2 = −3

5. 𝑄 2, 𝑟 ← −1 + 𝑄 3, 𝑟 = −1 − 1 = −2

6. 𝑄 3, 𝑟 ← −1 + 𝑄(4, 𝑟) = −1 + 0 = −1

• EP6: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 3, 𝑙 ← −1 + 𝑄 2, 𝑙 = −1 − 5 = −6

2. 𝑄 2, 𝑙 ← −1 + 𝑄 1, 𝑙 = −1 − 4 = −5

3. 𝑄 1, 𝑙 ← −1 + 𝑄 1, 𝑟 = −1 − 3 = −4

4. 𝑄 1, 𝑟 ← −1 + 𝑄 2, 𝑟 = −1 − 2 = −3

5. 𝑄 2, 𝑟 ← −1 + 𝑄 3, 𝑟 = −1 − 1 = −2

6. 𝑄 3, 𝑟 ← −1 + 𝑄(4, 𝑟) = −1 + 0 = −1

• EP7: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 3, 𝑙 ← −1 + 𝑄 2, 𝑙 = −1 − 5 = −6

2. 𝑄 2, 𝑙 ← −1 + 𝑄 1, 𝑙 = −1 − 4 = −5

3. 𝑄 1, 𝑙 ← −1 + 𝑄 1, 𝑟 = −1 − 3 = −4

4. 𝑄 1, 𝑟 ← −1 + 𝑄 2, 𝑟 = −1 − 2 = −3

5. 𝑄 2, 𝑟 ← −1 + 𝑄 3, 𝑟 = −1 − 1 = −2

6. 𝑄 3, 𝑟 ← −1 + 𝑄(4, 𝑟) = −1 + 0 = −1 (EP8 omitted)

Sarsa 𝑄 1, 𝑙 𝑸 𝟏, 𝒓 𝑄 2, 𝑙 𝑸 𝟐, 𝒓 𝑄 3, 𝑙 𝑸 𝟑, 𝒓

Init 0 𝟎 0 𝟎 0 𝟎

After EP1 0 −𝟏 0 −𝟏 0 −𝟏

After EP2 0 −𝟐 0 −𝟐 0 −𝟏

After EP3 0 −𝟑 0 −𝟐 0 −𝟏

After EP4 −4 −𝟑 −1 −𝟐 −1 −𝟏

After EP5 −4 −𝟑 −5 −𝟐 −2 −𝟏

After EP6 −4 −𝟑 −5 −𝟐 −6 −𝟏

After EP7 −4 −𝟑 −5 −𝟐 −6 −𝟏

After EP8 −4 −𝟑 −5 −𝟐 −6 −𝟏

Sarsa EP4-8

Q values have converged at EP6. Bootstrap dependency

arrows are omitted for EP7-8, since they are the same as

EP6. Red arrows denote the stable set of dependencies that

keep the Q values stable after EP6.



Comments on Sarsa
• State-action value functions for moving right look 

reasonable:𝑄 1, 𝑟 = −3,𝑄 2, 𝑟 = −2,𝑄 3, 𝑟 = −1. 

• State-action value functions for moving left look 

unreasonable: 𝑄 1, 𝑙 = −4, 𝑄 2, 𝑙 = −5, 𝑄 3, 𝑙 = −6. 

This is because the only episodes with move left actions are 

3 → 2 → 1 → 1 → 2 → 3 → 4, the Q values are updated 

based on only this episode (on-policy), 𝑄 3, 𝑙 bootstraps 

off 𝑄(2, 𝑟) to get 𝑄 3, 𝑙 = −1 + 𝑄 2, 𝑙 = −6. Only if 

agent had experienced additional trajectories like 3 → 2 →

3 → 4, 𝑄(3, 𝑙) would bootstrap off 𝑄(2, 𝑟) to learn the 

correct value of 𝑄 3, 𝑙 = −1 + 𝑄 2, 𝑟 = −3.

• Even though the Q values for left actions are inaccurate, the 

greedy policy is still optimal (policy stable before value 

functions converge.)

• 𝜋∗ 1 = argmaxa 𝑄 1, 𝑙 , 𝑄 1, 𝑟 = 𝑟 ; 𝜋∗ 2 =

argmaxa 𝑄 2, 𝑙 , 𝑄 2, 𝑟 = 𝑟 ; 𝜋∗ 3 =

argmaxa 𝑄 3, 𝑙 , 𝑄 3, 𝑟 = 𝑟
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Sarsa 𝑄 1, 𝑙 𝑸 𝟏, 𝒓 𝑄 2, 𝑙 𝑸 𝟐, 𝒓 𝑄 3, 𝑙 𝑸 𝟑, 𝒓

Init 0 𝟎 0 𝟎 0 𝟎

After EP1 0 −𝟏 0 −𝟏 0 −𝟏

After EP2 0 −𝟐 0 −𝟐 0 −𝟏

After EP3 0 −𝟑 0 −𝟐 0 −𝟏

After EP4 −4 −𝟑 −1 −𝟐 −1 −𝟏

After EP5 −4 −𝟑 −5 −𝟐 −2 −𝟏

After EP6 −4 −𝟑 −5 −𝟐 −6 −𝟏

After EP7 −4 −𝟑 −5 −𝟐 −6 −𝟏

After EP8 −4 −𝟑 −5 −𝟐 −6 −𝟏



Why Sarsa Converges

• When agent moves left from state 𝑠, 
𝑄(𝑠, 𝑙) is updated; when agent moves 
right, 𝑄(𝑠, 𝑟) is updated. The bootstrap 
dependency chain is 𝑄 3, 𝑙 ← 𝑄 2, 𝑙 ←
𝑄 1, 𝑙 ← 𝑄 1, 𝑟 ← 𝑄 2, 𝑟 ←
𝑄 3, 𝑟 ← 𝑄 4, 𝑟 . So there is no 
bootstrap dependency cycle like TD 
(𝑉 2 ← 𝑉 1 ← 𝑉 2 …). The bootstrap 
dependency chain determines the stable 
values:

1. 𝑄 3, 𝑙 ← −1 + 𝑄 2, 𝑙 = −1 − 5 = −6

2. 𝑄 2, 𝑙 ← −1 + 𝑄 1, 𝑙 = −1 − 4 = −5

3. 𝑄 1, 𝑙 ← −1 + 𝑄 1, 𝑟 = −1 − 3 = −4

4. 𝑄 1, 𝑟 ← −1 + 𝑄 2, 𝑟 = −1 − 2 = −3

5. 𝑄 2, 𝑟 ← −1 + 𝑄 3, 𝑟 = −1 − 1 = −2

6. 𝑄 3, 𝑟 ← −1 + 𝑄(4, 𝑟) = −1 + 0 = −1
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Sarsa 𝑄 1, 𝑙 𝑸 𝟏, 𝒓 𝑄 2, 𝑙 𝑸 𝟐, 𝒓 𝑄 3, 𝑙 𝑸 𝟑, 𝒓

Init 0 𝟎 0 𝟎 0 𝟎

After EP1 0 −𝟏 0 −𝟏 0 −𝟏

After EP2 0 −𝟐 0 −𝟐 0 −𝟏

After EP3 0 −𝟑 0 −𝟐 0 −𝟏

After EP4 −4 −𝟑 −1 −𝟐 −1 −𝟏

After EP5 −4 −𝟑 −5 −𝟐 −2 −𝟏

After EP6 −4 −𝟑 −5 −𝟐 −6 −𝟏

After EP7 −4 −𝟑 −5 −𝟐 −6 −𝟏

After EP8 −4 −𝟑 −5 −𝟐 −6 −𝟏



Q Learning

58



• QL update equation: 𝑆𝑡, 𝐴𝑡 ← 𝑅𝑡+1 + 𝛾max
𝑎′

𝑄 𝑆𝑡+1, 𝑎
′

• EP1: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 1, 𝑟 ← −1 + max
𝑎′

𝑄 2, 𝑎′ = −1 + max(0 , 0) = −1

2. 𝑄 2, 𝑟 ← −1 + max
𝑎′

𝑄 3, 𝑎′ = −1 + max(0, 0) = −1

3. 𝑄 3, 𝑟 ← −1 + max
𝑎′

𝑄 4, 𝑎′ = −1 + 0 = −1

• EP2: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 1, 𝑟 ← −1 + max
𝑎′

𝑄 2, 𝑎′ = −1 + max(−1,0) = −1

2. 𝑄 2, 𝑟 ← −1 + max
𝑎′

𝑄 3, 𝑎′ = −1 + max(−1,0) = −1

3. 𝑄 3, 𝑟 ← −1 + max
𝑎′

𝑄 4, 𝑎′ = −1 + 0 = −1

• EP3: (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 1, 𝑟 ← −1 + max
𝑎′

𝑄 2, 𝑎′ = −1 + max(−1,0) = −1

2. 𝑄 2, 𝑟 ← −1 + max
𝑎′

𝑄 3, 𝑎′ = −1 + max(−1,0) = −1

3. 𝑄 3, 𝑟 ← −1 + max
𝑎′

𝑄 4, 𝑎′ = −1 + 0 = −1
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QL 𝑄 1, 𝑙 𝑸 𝟏, 𝒓 𝑄 2, 𝑙 𝑸 𝟐, 𝒓 𝑄 3, 𝑙 𝑸 𝟑, 𝒓

Init 0 𝟎 0 𝟎 0 𝟎

After EP1 0 −𝟏 0 −𝟏 0 −𝟏

After EP2 0 −𝟏 0 −𝟏 0 −𝟏

After EP3 0 −𝟏 0 −𝟏 0 −𝟏

After EP4

After EP5

After EP6

After EP7

After EP8

QL EP1-3



• EP4: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 3, 𝑙 ← −1 +max
𝑎′

𝑄 2, 𝑎′ = −1 + max 0,−1 = −1

2. 𝑄 2, 𝑙 ← −1 + max
𝑎′

𝑄 1, 𝑎′ = −1 + max 0,−1 = −1

3. 𝑄 1, 𝑙 ← −1 + max
𝑎′

𝑄 1, 𝑎′ = −1 + max 0,−1 = −1

4. 𝑄 1, 𝑟 ← −1 + max
𝑎′

𝑄 2, 𝑎′ = −1 + max −1,−1 = −2

5. 𝑄 2, 𝑟 ← −1 + max
𝑎′

𝑄 3, 𝑎′ = −1 + max −1,−1 = −2

6. 𝑄 3, 𝑟 ← −1 + max
𝑎′

𝑄 4, 𝑎′ = −1 + 0 = −1

• EP5: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 3, 𝑙 ← −1 + max
𝑎′

𝑄 2, 𝑎′ = −1 + max −1,−2 = −2

2. 𝑄 2, 𝑙 ← −1 + max
𝑎′

𝑄 1, 𝑎′ = −1 + max −1,−2 = −2

3. 𝑄 1, 𝑙 ← −1 +max
𝑎′

𝑄 1, 𝑎′ = −1 + max −1,−2 = −2

4. 𝑄 1, 𝑟 ← −1 + max
𝑎′

𝑄 2, 𝑎′ = −1 + max −2,−2 = −3

5. 𝑄 2, 𝑟 ← −1 + max
𝑎′

𝑄 3, 𝑎′ = −1 + max −2,−1 = −2

6. 𝑄 3, 𝑟 ← −1 + max
𝑎′

𝑄 4, 𝑎′ = −1 + 0 = −1

• EP6: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r, −1), (2, r, −1), (3, r, −1), (4, r, 0)

1. 𝑄 3, 𝑙 ← −1 + max
𝑎′

𝑄 2, 𝑎′ = −1 + max −2,−2 = −3

2. 𝑄 2, 𝑙 ← −1 + max
𝑎′

𝑄 1, 𝑎′ = −1 + max −2,−3 = −3

3. 𝑄 1, 𝑙 ← −1 + max
𝑎′

𝑄 1, 𝑎′ = −1 + max −2,−3 = −3

4. 𝑄 1, 𝑟 ← −1 + max
𝑎′

𝑄 2, 𝑎′ = −1 + max −3,−2 = −3

5. 𝑄 2, 𝑟 ← −1 +max
𝑎′

𝑄 3, 𝑎′ = −1 + max −3,−1 = −2

6. 𝑄 3, 𝑟 ← −1 + max
𝑎′

𝑄 4, 𝑎′ = −1 + 0 = −1
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QL 𝑄 1, 𝑙 𝑸 𝟏, 𝒓 𝑄 2, 𝑙 𝑸 𝟐, 𝒓 𝑄 3, 𝑙 𝑸 𝟑, 𝒓

Init 0 𝟎 0 𝟎 0 𝟎

After EP1 0 −𝟏 0 −𝟏 0 −𝟏

After EP2 0 −𝟏 0 −𝟏 0 −𝟏

After EP3 0 −𝟏 0 −𝟏 0 −𝟏

After EP4 −1 −𝟐 −1 −𝟐 −1 −𝟏

After EP5 −2 −3 −2 −𝟐 −2 −𝟏

After EP6 −3 −𝟑 −3 −𝟐 −3 −𝟏

After EP7

After EP8

QL EP4-6



• EP7: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r,−1), (2, r, −1), (3, r,−1), (4, r, 0)

1. 𝑄 3, 𝑙 ← −1 +max
𝑎′

𝑄 2, 𝑎′ = −1 +max −3,−2 = −3

2. 𝑄 2, 𝑙 ← −1 +max
𝑎′

𝑄 1, 𝑎′ = −1 +max −3,−3 = −4

3. 𝑄 1, 𝑙 ← −1 +max
𝑎′

𝑄 1, 𝑎′ = −1 +max −3,−3 = −4

4. 𝑄 1, 𝑟 ← −1 +max
𝑎′

𝑄 2, 𝑎′ = −1 + max −4,−2 = −3

5. 𝑄 2, 𝑟 ← −1 +max
𝑎′

𝑄 3, 𝑎′ = −1 + max −3,−1 = −2

6. 𝑄 3, 𝑟 ← −1 +max
𝑎′

𝑄 4, 𝑎′ = −1 + 0 = −1

• EP8: 3, l, −1 , 2, l, −1 , 1, l, −1 , (1, r,−1), (2, r, −1), (3, r,−1), (4, r, 0)

1. 𝑄 3, 𝑙 ← −1 +max
𝑎′

𝑄 2, 𝑎′ = −1 +max −4,−2 = −3

2. 𝑄 2, 𝑙 ← −1 +max
𝑎′

𝑄 1, 𝑎′ = −1 +max −4,−3 = −4

3. 𝑄 1, 𝑙 ← −1 +max
𝑎′

𝑄 1, 𝑎′ = −1 +max −4,−3 = −4

4. 𝑄 1, 𝑟 ← −1 +max
𝑎′

𝑄 2, 𝑎′ = −1 + max −4,−2 = −3

5. 𝑄 2, 𝑟 ← −1 +max
𝑎′

𝑄 3, 𝑎′ = −1 + max −3,−1 = −2

6. 𝑄 3, 𝑟 ← −1 +max
𝑎′

𝑄 4, 𝑎′ = −1 + 0 = −1

• Q values have converged at EP7. Red arrows denote the stable set of

dependencies that keep the Q values stable after EP7.

• Q values learned by QL are accurate, and the greedy policy is optimal:

• 𝜋∗ 1 = argmaxa 𝑄 1, 𝑙 , 𝑄 1, 𝑟 = 𝑟; 𝜋∗ 2 =

argmaxa 𝑄 2, 𝑙 , 𝑄 2, 𝑟 = 𝑟 ; 𝜋∗ 3 = argmaxa 𝑄 3, 𝑙 , 𝑄 3, 𝑟 = 𝑟
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QL EP7-8

QL 𝑄 1, 𝑙 𝑸 𝟏, 𝒓 𝑄 2, 𝑙 𝑸 𝟐, 𝒓 𝑄 3, 𝑙 𝑸 𝟑, 𝒓

Init 0 𝟎 0 𝟎 0 𝟎

After EP1 0 −𝟏 0 −𝟏 0 −𝟏

After EP2 0 −𝟏 0 −𝟏 0 −𝟏

After EP3 0 −𝟏 0 −𝟏 0 −𝟏

After EP4 −1 −𝟐 −1 −𝟐 −1 −𝟏

After EP5 −2 −3 −2 −𝟐 −2 −𝟏

After EP6 −3 −𝟑 −3 −𝟐 −3 −𝟏

After EP7 −4 −𝟑 −4 −𝟐 −3 −𝟏

After EP8 −4 −𝟑 −4 −𝟐 −3 −𝟏



Comments on QL
• QL converges. All state-action value functions look reasonable.

• 𝑄 1, 𝑟 = −3, 𝑄 2, 𝑟 = −2, 𝑄 3, 𝑟 = −1. The optimal path can be derived 

from bootstrap dependencies, e.g., dependency chain 𝑄 1, 𝑟 ← 𝑄 2, 𝑟 ←

𝑄 3, 𝑟 corresponds to the optimal path 1 → 2 → 3 → 4.

• 𝑄 1, 𝑙 = −4: If agent moves left in state 1, dependency chain 𝑄 1, 𝑙 ←

𝑄 1, 𝑟 ← 𝑄 2, 𝑟 ← 𝑄 3, 𝑟 corresponds to the optimal path 1 → 1 → 2 →

3 → 4 w. 4 steps to reach goal state 4.

• 𝑄 2, 𝑙 = −4: If agent moves left in state 2, dependency chain 𝑄 2, 𝑙 ←

𝑄 1, 𝑟 ← 𝑄 2, 𝑟 ← 𝑄 3, 𝑟 corresponds to the optimal path 2 → 1 → 2 →

3 → 4 w. 4 steps to reach goal state 4.

• 𝑄 3, 𝑙 = −3: If agent moves left in state 3, dependency chain 𝑄 3, 𝑙 ←

𝑄 2, 𝑟 ← 𝑄 3, 𝑟 corresponds to the optimal path 3 → 2 → 3 → 4 w. 3 steps 

to reach goal state 4.

• QL is smarter than Sarsa: since it is off-policy, agent can learn the correct Q 

value functions that correspond to trajectories that it has never experienced.

• Bootstrap dependencies change during learning: 𝑄(3, 𝑙) initially bootstraps off 

𝑄(2, 𝑙) based on the initialized Q values, but as 𝑄(2, 𝑙) decreases gradually to 

below 𝑄(2, 𝑟) after EP6, 𝑄(3, 𝑙) switches to bootstrap off 𝑄(2, 𝑟) to learn the 

correct value of 𝑄 3, 𝑙 = −1 + 𝑄 2, 𝑟 = −3, even though it has never 

experienced the trajectory 3 → 2 → 3 → 4 (contrast this to Sarsa). Similarly, 

both 𝑄(2, 𝑙) and 𝑄(𝑙, 𝑙) switch from bootstrapping off 𝑄(1, 𝑙) to 𝑄(1, 𝑟) after 

EP7.

• The intermediate Q values before convergence may not correspond to a valid 

policy, e.g., before EP7, argmaxa𝑄 1, 𝑎 = 𝑙, so the agent would be stuck in 

state 1 trying to go left forever.
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QL 𝑄 1, 𝑙 𝑸 𝟏, 𝒓 𝑄 2, 𝑙 𝑸 𝟐, 𝒓 𝑄 3, 𝑙 𝑸 𝟑, 𝒓

Init 0 𝟎 0 𝟎 0 𝟎

After EP1 0 −𝟏 0 −𝟏 0 −𝟏

After EP2 0 −𝟏 0 −𝟏 0 −𝟏

After EP3 0 −𝟏 0 −𝟏 0 −𝟏

After EP4 −1 −𝟐 −1 −𝟐 −1 −𝟏

After EP5 −2 −3 −2 −𝟐 −2 −𝟏

After EP6 −3 −𝟑 −3 −𝟐 −3 −𝟏

After EP7 −4 −𝟑 −4 −𝟐 −3 −𝟏

After EP8 −4 −𝟑 −4 −𝟐 −3 −𝟏


