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Policy-based RL
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CH13 Policy Gradient Methods

• Value Based

– Learnt Value Function

– Implicit policy (e.g. 𝜖-greedy)

• Policy Based

– No Value Function

– Learnt Policy

• Actor-Critic

– Learnt Value Function

– Learnt Policy



4

Policy-based RL Pros and Cons

• Pros:

– Effective in high-dimensional or continuous action space.

• Value-based RL is only applicable to discrete action space; 
inefficient to discretize continuous actions for high-dim action 
space, as taking argmaxa 𝑄(𝑠, 𝑎) may be expensive.

– Can learn stochastic policies

• Value-based RL learns a near-deterministic policy (greedy or 𝜖-
greedy).

– Policy typically converges faster than value functions.

• Disadvantages:

– Typically converges to a local rather than global optimum.

– Evaluating a policy is typically inefficient and high variance.
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Mountain Car Example
• An under-powered car situated in a valley wants to drive up a 

steep hill to reach the goal at the top of the rightmost hill. 
Due to gravity, the car cannot simply accelerate up the steep 
slope. It must learn to leverage potential energy by driving up 
the opposite hill before the car is able to make it to the goal.

• Middle: a complex value function
• Right: a simple policy that works well: accelerate in the 

direction of current velocity.

moving
right

moving
left
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Function Approximation for Action Value 
Function vs. Policy

• Value-based RL learns a function approximation for action value function 
ො𝑞(𝑠, 𝑎,𝒘).
– Deterministic policy 𝑎 = argmax ො𝑞 𝑠, 𝑎, 𝒘 (may be 𝜖-greedy during training)

• Policy-based RL learns a function approximation for stochastic policy 𝜋 𝑎 𝑠, 𝜽 :
– Probability that action 𝑎 is taken in state 𝑠, with parameter 𝜽. The actual action 

taken is sampled from the probability distribution 𝐴 ∼ 𝜋 𝑎 𝑠, 𝜽
– Probability must be non-negative: 𝜋 𝑎 𝑠, 𝛉 ≥ 0, ∀𝑎 ∈ 𝒜 ∧ ∀𝑠 ∈ 𝒮
– Probabilities must sum to 1: σ𝑎∈𝒜 𝜋 𝑎 𝑠, 𝛉 = 1, ∀𝑠 ∈ 𝒮
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SoftMax vs. 𝜖-greedy for Discrete Actions
• SoftMax policy: 𝜋 𝑎 𝑠, 𝜽 ≐

𝑒ℎ 𝑠,𝑎,𝜽

σ𝑎′∈𝒜 𝑒ℎ 𝑠,𝑎′,𝜽

– ℎ 𝑠, 𝑎, 𝜽 is action preference, which may be a linear function 𝜽𝑇𝐱 𝑠, 𝑎 , or  the logit from the 
SoftMax layer of a DNN

– A bad action with very negative ℎ 𝑠, 𝑎, 𝜽 will be very unlikely to be selected
– Action probabilities change smoothly as a function of ℎ 𝑠, 𝑎, 𝜽

• 𝜖-greedy: select the greedy action argmax
𝑎

𝑄(𝑠, 𝑎) with prob 1 − 𝜖 +
𝜖

𝒜 𝑠

– No distinction between policies that are not the optimal one; A bad action with very low 𝑄(𝑠, 𝑎) will 
be selected with equal prob as all other non-optimal policies

– Action probabilities may change dramatically for an arbitrarily small change in 𝑄(𝑠, 𝑎), if that change 
results in a different optimal action

𝑄(𝑠, 𝑎)

ℎ 𝑠, 𝑎, 𝛉
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Stochastic Policy vs. Deterministic Policy

• Example 1: two-player game of rock-paper-
scissors

– Scissors beat paper; paper beats rock; rock beats 
scissors

– For iterated game, a deterministic policy is easily 
exploited by the opponent; a uniform random policy is 
optimal, and achieves Nash equilibrium

• Example 2: Aliased Grid World (POMDP)



9

Aliased Grid World (POMDP)
• Env has 3 terminal states: 1 with high positive reward and 2 with high 

negative reward. It is a Partially Observable MDP (POMDP): Agent cannot 
observe its position directly; it can only observe features of the following 
form (for all directions 𝑑1, 𝑑2, … ∈ (𝑁, 𝐸, 𝑆,𝑊)):
– 𝜙 𝑠 = 𝟏(wall to 𝑑1, 𝑑2…) (it can detect walls, e.g., w. Radar or Lidar)

• 𝟏(𝒙) is indicator function: 𝟏 𝒙 = 𝟏 if 𝑥 = true

– Agent cannot differentiate between the 2 grey states

• Value-based RL learns a deterministic policy: 𝑎 = argmax ො𝑞 𝑠, 𝑎,𝒘 =
argmax 𝑓 𝜙 𝑠 ,𝒘

• Policy-based RL learns a stochastic policy: 𝜋 𝑎 𝑠, 𝜽 = 𝑔(𝜙 𝑠 , 𝜽)
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Aliased Grid World (POMDP)

• Left: an optimal deterministic policy:
– Either move 𝑊 in both grey states (red arrows), or move 𝐸 in both grey 

states; Either way, agent can get stuck and never reach the money

• Right: the optimal stochastic policy:
– Randomly move 𝐸 or 𝑊 in grey states: 𝜋 move 𝐸 wall to N and S, 𝜽 =
𝜋 move𝑊 wall to N and S, 𝜽 = 0.5

– Agent will likely reach the goal state quickly

• How about adding 𝜖-greedy on top of the opt det policy?
– Agent may get into one of the 2 bad states, since each non-optimal action is 

given equal probability in every state

Opt det policy Opt Sto policy 
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Optimal 𝜖-Soft Policy

• The optimal 𝜖-soft policy is the policy with the highest 
value in each state among all 𝜖-soft policies. It 
performs worse than the optimal greedy deterministic 
policy 𝜋∗ in general. 

• But it often performs reasonably well, and avoids 
exploring starts.

11

Recall

Only applies to 
MDP, not POMDP



12

Optimization Objective

• We consider the episodic case, and would like to 
optimize the expected value of the start state of 
each episode, with start state 𝑠0:

• 𝐽 𝜽 ≐ 𝑣𝜋(𝑠0)

• where 𝑣𝜋(𝑠0) is the true value function for policy 
𝜋, parametrized by 𝜽: 𝜋 𝑎 𝑠, 𝜽
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Model Training in Supervised Learning vs. Policy 
Gradient in RL

• SL: to solve min
𝜃

𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃)

for model training: gradient descent
𝜃 ← 𝜃 − 𝛼∇𝜃Loss 𝑥, 𝑦; 𝜃
– Update model params 𝜃 by following 

the gradient downhill, in order to 
decrease Loss 𝑥, 𝑦; 𝜃 . (𝛼 is the 
Learning Rate)

• RL: to solve max
𝜃

𝐽 𝜽 in Policy 

Gradient: gradient ascent 𝜃 ← 𝜃 +
𝛼∇𝜃𝐽 𝜽
– Update policy model params 𝜃 by 

following the gradient uphill, in order 
to increase 𝐽 𝜽

• We use ∇ as shorthand for ∇𝜃

13

𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃)

𝜃

𝐽 𝜽

𝜃
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Policy Gradient Theorem

• We consider episodic instead of continuous environments in this lecture

• ∇𝐽 𝜽 = ∇𝑣𝜋 𝑠0
• = ∇ σ𝑎 𝜋 𝑎 𝑠, 𝜽 𝑞𝜋 𝑠, 𝑎

• = σ𝑎[∇𝜋 𝑎 𝑠, 𝜽 𝑞𝜋(𝑠, 𝑎) + 𝜋 𝑎 𝑠, 𝜽 ∇𝑞𝜋(𝑠, 𝑎)]
• Policy Gradient Theorem (proof in RLBook p. 325; assuming 

discount factor 𝛾 = 1):

• ∇𝐽 𝜽 ∝ σ𝑠 𝜇 𝑠 σ𝑎 ∇𝜋 𝑎 𝑠, 𝜽 𝑞𝜋(𝑠, 𝑎)
– 𝜇 𝑠 : on-policy distribution under policy 𝜋, σ𝑠∈𝒮 𝜇 𝑠 = 1. A larger 
𝜇 𝑠 denotes state 𝑠 is visited more frequently, hence the policy 
gradient term for state 𝑠 is given more weight (i.e., we care more 
about frequently-visited states than rarely-visited states).

– In the episodic case, the constant of proportionality is the average 
length of an episode; in the continuing case it is 1.



15

Policy Gradient with Baseline

• ∇𝐽 𝜽 ∝ σ𝑠 𝜇 𝑠 σ𝑎 ∇𝜋 𝑎 𝑠, 𝜽 (𝑞𝜋 𝑠, 𝑎 − 𝑏(𝑠))
– Baseline 𝑏(𝑠) can be any function that is independent of action 𝑎. 

Subtracting 𝑏(𝑠) does not affect the computed expectation since: 
σ𝑎 ∇𝜋 𝑎 𝑠, 𝜽 𝑏(𝑠) = 𝑏 𝑠 σ𝑎 ∇𝜋 𝑎 𝑠, 𝜽 = 𝑏 𝑠 ∇σ𝑎 𝜋 𝑎 𝑠, 𝜽 =
𝑏 𝑠 ∇1 = 0

– Subtracting 𝑏(𝑠) helps to reduce variance and speed up convergence, 
e.g., consider 3 samples with ∇𝜋 𝑎 𝑠, 𝜽 = 0.5, 0.2, 0.3 , 𝑞𝜋 𝑠, 𝑎 =
1000, 1001, 1002 , 𝑣𝑎𝑟 0.5 ⋅ 1000,0.2 ⋅ 1001,0.3 ⋅ 1002 ≈
23287; After subtracting a baseline of 1001, 𝑣𝑎𝑟(

)
0.5 ⋅ (−1), 0.2 ⋅

0, . 3 ⋅ 1 ≈ 0.16

• Advantage function:
– 𝐴𝜋 𝑠, 𝑎 = 𝑞𝜋 𝑠, 𝑎 − 𝑣𝜋 𝑠 (using state value function 𝑣𝜋 𝑠 as 

baseline)
– 𝐴𝜋 𝑠, 𝑎 captures the advantage of taking action 𝑎 in state 𝑠 then 

follow policy 𝜋, compared to the baseline of following policy 𝜋 from 
state 𝑠, i.e., we care more about the relative ranking of different 
actions in state 𝑆𝑡 than absolute values of 𝑞𝜋 𝑠, 𝑎
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Policy Gradient Example
• The gradient ∇𝜋 𝑙𝑒𝑓𝑡 𝑠, 𝜽 tells us how to change the 

policy parameters 𝜽 to make action 𝑙𝑒𝑓𝑡 more likely to be 
selected in state 𝑠. By gradient ascent on 𝜽, we increase the 
probability for taking action 𝑙𝑒𝑓𝑡 in state 𝑠.

After 
grad. ascent

𝑞𝜋 𝑠, 𝑢𝑝 = −1.3
𝑞𝜋 𝑠, 𝑙𝑒𝑓𝑡 = −0.9
𝑞𝜋 𝑠, 𝑑𝑜𝑤𝑛 = 0.7
𝑞𝜋 𝑠, 𝑟𝑖𝑔ℎ𝑡 = 1.5

Gradient ascent on 
𝜃 for given state 𝑠
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MC REINFORCE
• ∇𝐽 𝜽 ∝ σ𝑠 𝜇 𝑠 σ𝑎 ∇𝜋 𝑎 𝑠, 𝜽 𝑞𝜋 𝑠, 𝑎

• = 𝔼𝑆𝑡∼𝜇(𝑠) σ𝑎∇𝜋 𝑎 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡 , 𝑎
– Outer exp: average over all experienced states under policy 𝜋, i.e., 𝑆𝑡 ∼ 𝜇(𝑠)

• = 𝔼𝑆𝑡∼𝜇(𝑠) σ𝑎 𝜋 𝑎 𝑆𝑡 , 𝜽
∇𝜋 𝑎 𝑆𝑡 , 𝜃
𝜋 𝑎 𝑆𝑡 , 𝜃

𝑞𝜋 𝑆𝑡 , 𝑎

• = 𝔼𝑆𝑡∼𝜇(𝑠) σ𝑎 𝜋 𝑎 𝑆𝑡 , 𝜽 ∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡 , 𝑎 (since ∇log𝑓 𝑥 =
𝛻𝑓 𝑥

𝑓 𝑥
)

• = 𝔼𝑆𝑡∼𝜇(𝑠) 𝔼𝑎∼𝜋(𝑎|𝑆𝑡,𝜽)[∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡, 𝐴𝑡 ]
– Inner exp over policy 𝜋: average over all experienced actions 𝐴𝑡 from state 𝑆𝑡 under 

policy 𝜋, i.e., 𝐴𝑡 ∼ 𝜋 𝑎 𝑆𝑡 , 𝜽

• = 𝔼𝜋 ∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡, 𝐴𝑡
– 𝔼𝜋 as shorthand for 𝔼𝑆𝑡∼𝜇(𝑠)𝔼𝑎∼𝜋(𝑎|𝑆𝑡,𝜽): execute policy 𝜋 and average over all 

experienced states 𝑆𝑡 and actions 𝐴𝑡 from state 𝑆𝑡

• = 𝔼𝜋 ∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝐺𝑡
– Use return 𝐺𝑡 ≐ σ𝑘=0

𝑇−𝑡−1𝛾𝑘 𝑅𝑡+𝑘+1 as unbiased estimate of 
𝑞𝜋(𝑆𝑡, 𝐴𝑡)(𝔼𝜋 𝐺𝑡 𝑆𝑡 , 𝐴𝑡 = 𝑞𝜋(𝑆𝑡, 𝐴𝑡))

– ∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 is called the score function

• SGD update (𝛾 = 1): 𝜽𝑡+1 ← 𝜽𝑡 + 𝛼∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽𝒕 𝐺𝑡
• SGD update (𝛾 < 1): 𝜽𝑡+1 ← 𝜽𝑡 + 𝛼𝛾𝑡∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽𝒕 𝐺𝑡
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MC REINFORCE Example
• Consider a given state 𝑆 with two possible actions UP and DOWN. Initially 𝜋 𝑈 𝑆, 𝜽𝑡 = .9, 𝜋 𝐷 𝑆, 𝜽𝑡 = .1. Consider one 

episode with 9 occurrences of (𝑆, 𝑈) at steps 𝑡1, 𝑡2, … , 𝑡9 with return 𝐺𝑡1 = ⋯ = 𝐺𝑡9 = 1, and 1 occurrence of (𝑆, 𝐷) at 
step 𝑡10 with return 𝐺𝑡10 = 2. SGD update: 𝜽𝑡+1 ← 𝜽𝑡 + ∇log 𝜋 𝐴𝑡 𝑆𝑡, 𝜽𝒕 𝐺𝑡. Assume that the 𝑖-th update to 𝜽 results in a 
small update 𝜖𝑖 to 𝜋 𝐴𝑖 𝑆𝑡 , 𝜽 .

• Correct update sequence with the log:

– 1st update at step 𝑡1: 𝜽𝑡1+1 = 𝜽𝑡1 + 𝛼𝛾𝑡1∇log 𝜋 𝐴𝑡1 𝑆𝑡1, 𝜽𝑡1 𝐺𝑡1 = 𝜽𝑡1 +
1

.9
𝛼𝛾𝑡1∇𝜋 𝑈 𝑆, 𝜽𝑡1 ⋅ 1

– 2nd update at step 𝑡2: 𝜽𝑡2+1 = 𝜽𝑡2 + 𝛼𝛾𝑡2∇log 𝜋 𝐴𝑡2 𝑆𝑡2, 𝜽𝑡2 𝐺𝑡2 = 𝜽𝑡2 +
1

.9+𝜖1
𝛼𝛾𝑡2∇𝜋 𝑈 𝑆, 𝜽𝑡2 ⋅ 1

– … 

– 9th update at step 𝑡9: 𝜽𝑡9+1 = 𝜽𝑡9 + 𝛼𝛾𝑡9∇log 𝜋 𝐴𝑡9 𝑆𝑡9, 𝜽𝑡9 𝐺𝑡9 = 𝜽𝑡9 +
1

.9+𝜖1+⋯+𝜖8
𝛼𝛾𝑡9∇𝜋 𝑈 𝑆, 𝜽𝑡9 ⋅ 1

– 10th update at step 𝑡10: 𝜽𝑡10+1 = 𝜽𝑡10 + 𝛼𝛾𝑡10∇log 𝜋 𝐴𝑡10 𝑆𝑡10, 𝜽𝑡10 𝐺𝑡10 = 𝜽𝑡10 +
1

1−(.9+𝜖1+⋯+𝜖9)
𝛼𝛾𝑡10∇𝜋 𝐷 𝑆, 𝜽𝑡10 ⋅ 2

• Incorrect update sequence without the log:
– 1st update at step 𝑡1: 𝜽𝑡1+1 = 𝜽𝑡1 + 𝛼𝛾𝑡1∇log 𝜋 𝐴𝑡1 𝑆𝑡1, 𝜽𝑡1 𝐺𝑡1 = 𝜽𝑡1 + 𝛼𝛾𝑡1∇𝜋 𝑈 𝑆, 𝜽𝑡1 ⋅ 1
– 2nd update at step 𝑡2: 𝜽𝑡2+1 = 𝜽𝑡2 + 𝛼𝛾𝑡2∇log 𝜋 𝐴𝑡2 𝑆𝑡2, 𝜽𝑡2 𝐺𝑡2 = 𝜽𝑡2 + 𝛼𝛾𝑡2∇𝜋 𝑈 𝑆, 𝜽𝑡2 ⋅ 1
– … 
– 9th update at step 𝑡9: 𝜽𝑡9+1 = 𝜽𝑡9 + 𝛼𝛾𝑡9∇log 𝜋 𝐴𝑡9 𝑆𝑡9, 𝜽𝑡9 𝐺𝑡9 = 𝜽𝑡9 + 𝛼𝛾𝑡9∇𝜋 𝑈 𝑆, 𝜽𝑡9 ⋅ 1
– 10th update at step 𝑡10: 𝜽𝑡10+1 = 𝜽𝑡10 + 𝛼𝛾𝑡10∇log 𝜋 𝐴𝑡10 𝑆𝑡10, 𝜽𝑡10 𝐺𝑡10 = 𝜽𝑡10 + 𝛼𝛾𝑡10∇𝜋 𝐷 𝑆, 𝜽𝑡10 ⋅ 2

• Assuming each 𝜖𝑖 is small. The correct update sequence gives roughly equal weight to the two action choices with return of 
1 (action 𝑈 in state 𝑆, experienced 9 times) and return of 2 (action 𝐷 in state 𝑆, experienced once), so 𝜽 will be updated 
towards preferring action 𝐷 in state 𝑆

• The incorrect update sequence gives roughly 9 times the weight to the action choice with return of 1 (action 𝑈 in state 𝑆, 
experienced 9 times) than the action choice with return of 2 (action 𝐷 in state 𝑆, experienced once), so 𝜽 will be incorrectly 
updated towards preferring action 𝑈 in state 𝑆

• “The update increases the parameter vector in this direction proportional to the return, and inversely proportional to the 
action probability. The former makes sense because it causes the parameter to move most in the directions that favor 
actions that yield the highest return. The latter makes sense because otherwise actions that are selected frequently are at 
an advantage (the updates will be more often in their direction) and might win out even if they do not yield the highest 
return.” – RLBook p. 327
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MC REINFORCE Pseudo-Code

• At the end of each episode, for each timestep 0 ≤
𝑡 < 𝑇:

– Calculate the return 𝐺𝑡 from each timestep 𝑡

– Update policy params 𝜽 with SGD
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Example:  Game of Pong

• The agent plays one of the paddles (the other is controlled by a decent 
AI) and it has to bounce the ball past the other player. For each input 
image, agent decides if it wants to move the paddle UP or DOWN (2 
discrete actions). At the end of the game the agent either wins (reward 
𝑅𝑇 > 0) or loses (𝑅𝑇 < 0), i.e., the reward is sparse.
– (In practice we may stack multiple input images as input to the agent.)

• The agent implements a policy network, which maps from input image to 
two possible actions (U or D) with a stochastic SoftMax policy. 

http://karpathy.github.io/2016/05/31/rl/
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SL vs. RL

• With SL: if the model predicts 𝑦 = 𝑈 for input 𝑥, and it is the correct ground truth label 
(e.g., the expert action in Imitation Learning), then gradient descent (∇𝜃 log 𝑝(𝑦 = 𝑈|𝑥)) 
will make the model more likely to predict 𝑦 = 𝑈 for input 𝑥

• With RL: if the model predicts 𝑎 = 𝐷 for input 𝑥, but we don’t have the ground truth 
label in the middle of the episode, so we must wait until the end of the episode. If agent 
loses, then gradient descent (∇𝜃 log 𝑝(𝑎 = 𝐷|𝑥)) will make the NN less likely to predict 
𝑎 = 𝐷 for input 𝑥
– Credit assignment problem: in an episode of many steps, which step contributed the most to 

the final outcome?

http://karpathy.github.io/2016/05/31/rl/

logit

logit
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MC REINFORCE for 
Pong I

• 𝐽 𝜽 = σ𝑠 𝜇𝜋 𝑠 σ𝑎 𝜋 𝑎 𝑠, 𝜃 𝑞𝜋(𝑠, 𝑎)
• Consider agent in a given state 𝑆𝑡 at time 

step 𝑡, and we want to select policy params
𝜽 to maximize

• 𝑣𝜋 𝑆𝑡 = σ𝑎 𝜋 𝑎 𝑆𝑡 , 𝜽 𝑞𝜋(𝑆𝑡 , 𝑎)

• = 𝜋 𝑈 𝑆t, 𝜽 𝑞𝜋(𝑆𝑡, 𝑈) + 𝜋 𝐷 𝑆𝑡 , 𝜽 𝑞𝜋(𝑆𝑡 , 𝐷)
• Taking derivative w.r.t policy params 𝜽

• ∇𝜃𝑣𝜋 𝑆𝑡 = σ𝑎 ∇𝜃𝜋 𝑎 𝑆𝑡, 𝜽 𝑞𝜋(𝑆𝑡, 𝑎)

• = ∇𝜃𝜋 𝑈 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆, 𝑈 + ∇𝜃𝜋 𝐷 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡, 𝐷

• = 𝜋 𝑈 𝑆𝑡, 𝜽 ∇𝜃 log 𝜋 𝑈 𝑆𝑡, 𝜽 𝑞𝜋 𝑆, 𝑈 + 𝜋 𝐷 𝑆𝑡 , 𝜽 ∇𝜃 log 𝜋 𝐷 𝑆𝑡, 𝜽 𝑞𝜋 𝑆𝑡, 𝐷

• = 𝔼𝜋[∇𝜃 log 𝜋 𝑎 𝑆𝑡, 𝜽 𝑞𝜋 𝑆𝑡 , 𝑎 ]

• = 𝔼𝜋[∇𝜃 log 𝜋 𝑎 𝑆𝑡, 𝜽 𝐺𝑡]
• Suppose 𝑞𝜋 𝑆𝑡 , 𝑈 > 0, 𝑞𝜋 𝑆𝑡, 𝐷 < 0.

– For the UP action in state 𝑆𝑡, the policy update 𝜽 ← 𝜽 + 𝛼∇𝜃 log 𝜋 𝑈 𝑆𝑡 , 𝜃 𝑞𝜋 𝑆𝑡 , 𝑈 will push 
up 𝜋 𝑈 𝑆𝑡 , 𝜃 , i.e, make it more likely to move UP in state 𝑆𝑡

– For the DOWN action in state 𝑆𝑡, the policy update 𝜽 ← 𝜽 + 𝛼∇𝜃 log 𝜋 𝑈 𝑆𝑡 , 𝜃 𝑞𝜋 𝑆𝑡 , 𝐷 will 
push down 𝜋 𝑈 𝑆𝑡 , 𝜃 , i.e, make it less likely to move DOWN in state 𝑆𝑡
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MC REINFORCE for Pong II
• Agent plays 4 rollouts (episodes), and won 2 episodes and lost 2. Assume that each episode lasts 200 

steps, so agent made 200 decisions of UP or DOWN in each episode. Each step has reward of 𝑅𝑡 = 0, 
i.e., we don’t care how long each episode lasts. ∀𝑡, 𝐺𝑡 = 𝛾𝑇−𝑡−1𝑅𝑇, i.e., return 𝐺𝑡 at any step 𝑡 of 
each episode is equal to the discounted reward 𝑅𝑇 at the end of the episode, hence 𝐺𝑡 has the same 
sign as 𝑅𝑇 (recall “MC Prediction” in L7.2 Value-based RL).

• For each of the 2 winning episodes (∀𝑡, 𝐺𝑡> 0), NN params 𝜽 ← 𝜽 + 𝛼∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝐺𝑡 are 
updated to encourage all taken actions in the 200 steps (push up 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 ). 

• For each of the 2 losing episodes (∀𝑡, 𝐺𝑡< 0),  NN params 𝜽 ← 𝜽 + 𝛼∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝐺𝑡 are updated 
to discourage all taken actions in the 200 steps (push down 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 ). 

• The NN will now become slightly more likely to repeat actions that worked, and slightly less likely to 
repeat actions that didn’t work.

• If discount factor 𝛾 = 1, then we assign equal credit to all actions in the same episode; if 𝛾 < 1, then 
we assign more credit to actions taken in later steps of each episode than earlier steps.
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MC REINFORCE for Pong III

• Consider the case when each step has reward of 𝑅𝑡 = −1, to minimize the length of each episode, e.g., we 
may prefer a short losing episode to a long winning episode. Assuming discount factor 𝛾 = 1. Suppose 
reward at the end of each winning episode is 𝑅𝑇 = 2; reward at the end of each losing episode is 𝑅𝑇 = −2.  
The return 𝐺𝑡 at each step is shown below. Consider state 𝑆𝑡.

• After the winning episode, NN params 𝜽 ← 𝜽 + 𝛼∇log 𝜋 𝑈𝑃 𝑆𝑡 , 𝜽 (−6) are updated to discourage the U 
action in state 𝑆𝑡 (push down 𝜋 𝑈 𝑆𝑡 , 𝜽 ).

• After the losing episode, NN params 𝜽 ← 𝜽 + 𝛼∇log 𝜋 𝐷𝑂𝑊𝑁 𝑆𝑡 , 𝜽 (−5) are updated to discourage the D 
action in state 𝑆𝑡 (push down 𝜋 𝐷 𝑆𝑡 , 𝜽 ).

• Both will pushdown 𝜋 𝐷 𝑆𝑡 , 𝜽 , but since the return 𝐺𝑡 = −6 in the winning episode causes a larger 
update magnitude than 𝐺𝑡 = −5 in the losing episode, and the probabilities of Us actions sum to 1 
σ𝑎 𝜋 𝑎 𝑆𝑡 , 𝜽 = 1, the agent is slightly more likely to select the D action in state 𝑆𝑡. 

• Subtracting a baseline, e.g.,  use 𝐺𝑡 − ො𝑣𝜋 𝑆𝑡 , 𝒘 to replace 𝐺𝑡 helps to reduce variance and speed up 
convergence, e.g., suppose ො𝑣𝜋 𝑆𝑡 , 𝒘 = −5.5, then updates to 𝜽 will be in different directions for the two 
episodes. 

State 𝑆𝑡

LOSE

210−1−2−3−4−5−6

−2−3−4−5

WIN
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PG Variants

• MC REINFORCE (no bias, high variance): 

– ∇𝐽 𝜽 = 𝔼𝜋 ∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡, 𝐴𝑡 = 𝔼𝜋[log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝐺𝑡]

• MC REINFORCE with a baseline of estimated state value function: 

– ∇𝐽 𝜽 = 𝔼𝜋[log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 (𝐺𝑡 − ො𝑣𝜋 𝑆𝑡, 𝒘 )]
– ො𝑣𝜋 𝑆𝑡 , 𝒘 is a function approximation of the true 𝑣𝜋 𝑆𝑡 , 𝒘 , e.g., a value 

network

• Actor-Critic (high bias, low variance)

– ∇𝐽 𝜽 = 𝔼𝜋 log 𝜋 𝐴𝑡 𝑆𝑡, 𝜽 𝛿𝑡
– Q Actor-Critic: TD error for action value function 𝛿𝑡 = 𝑅𝑡+1 +
𝛾ො𝑞𝜋(𝑆𝑡+1, 𝐴𝑡+1, 𝒘) − ො𝑞𝜋(𝑆𝑡 , 𝐴𝑡, 𝒘)

– Advantage Actor-Critic (A2C): TD error for state value function 𝛿𝑡 = 𝑅𝑡+1 +
𝛾ො𝑣𝜋(𝑆𝑡+1, 𝒘) − ො𝑣𝜋(𝑆𝑡 , 𝒘) (sample-based estimate of the advantage function 
𝐴𝜋 𝑠, 𝑎 = 𝑞𝜋 𝑠, 𝑎 − 𝑣𝜋 𝑠 )

• MC REINFORCE is a special case of A2C:
– 1-step TD target (A2C): 𝑅𝑡+1 + 𝛾 ො𝑣𝜋(𝑆𝑡+1, 𝒘)

– 𝑚-step TD target: 𝐺𝑡
𝜆 ≐ σ𝑘=0

𝑚−1 𝛾𝑘 𝑅𝑡+𝑘+1 + 𝛾𝑚 ො𝑣𝜋(𝑆𝑡+𝑚)

– MC target (MC REINFORCE): 𝐺𝑡 ≐ σ𝑘=0
𝑇−1 𝛾𝑘 𝑅𝑡+𝑘+1

https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f
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Further Explanations

• MC REINFORCE:
– Trajectory from time 𝑡:

– 𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1, 𝑅𝑡+2, 𝑆𝑡+2, … , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 , 𝑆𝑇

– 𝐺𝑡 ≐ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑇−1𝑅𝑇 = σ𝑘=0
𝑇−𝑡−1 𝛾𝑘 𝑅𝑡+𝑘+1

– 𝔼𝜋 𝐺𝑡 𝑆𝑡 , 𝐴𝑡 = 𝑞𝜋(𝑆𝑡 , 𝐴𝑡)

• Q Actor-Critic:
– Recall: 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾𝔼𝑎𝑞𝜋 𝑠, 𝑎

– Sample-based estimate of 𝑞𝜋 𝑠, 𝑎 (TD target for action value 
function): 

– 𝑅𝑡+1 + 𝛾ො𝑞𝜋 𝑆𝑡+1, 𝐴𝑡+1, 𝒘

• A2C
– Recall: 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾𝑣𝜋 𝑠′

– Sample-based estimate of 𝑞𝜋 𝑠, 𝑎 : 

– 𝑅𝑡+1 + 𝛾ො𝑣𝜋(𝑆𝑡+1, 𝒘)

https://www.cellstrat.com/2020/03/19/rl-with-actor-critic-methods/
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Recall: Bellman Exp Equations written with 
Expectation Symbols

• 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑎∼𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 =

𝔼𝑎∼𝜋 𝑎 𝑠 𝔼𝑟, 𝑠′∼𝑝 𝑟, 𝑠′ 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

• 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ =

𝔼
𝑟, 𝑠′∼𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ =

𝔼
𝑟, 𝑠′∼𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝔼𝑎∼𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

• Shorthand Notation:

• 𝑣𝜋 𝑠 = 𝔼𝑎𝔼𝑟, 𝑠′[𝑟 + 𝛾𝑣𝜋 𝑠′ ]

• 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾𝔼𝑎𝑞𝜋 𝑠, 𝑎

27
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One-Step A2C Pseudo-Code
• For update to critic params 𝒘, refer to L7.2 Value-based RL, 

p 75 “Semi-Gradient TD(0) for Estimating ො𝑣 ≈ 𝑣𝜋”
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A2C Explanations
• After each step of taking action 𝐴𝑡 in state 𝑆𝑡: 
• Critic computes TD error 𝛿𝑡 = 𝑅𝑡+1 +

𝛾 ො𝑣 𝑆𝑡+1, 𝒘 − ො𝑣 𝑆𝑡 , 𝒘 , and updates its params 
with semi-gradient TD(0) 𝒘 ← 𝒘+
𝛼𝑤𝛿𝑡∇𝑤 ො𝑣 𝑆𝑡 , 𝒘 (learning rate 𝛼𝑤)

• Actor updates its params with Policy 
Gradient 𝜽𝑡+1 = 𝜽𝑡 +
𝛼𝜃𝛾𝑡𝛿𝑡∇𝜃 log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽𝒕 . If 𝛿𝑡 > 0, then it 
means 𝐴𝑡 resulted in a higher (one-step 
estimate) value than the expected ො𝑣 𝑆𝑡 , 𝒘 , so 
probability of 𝐴𝑡 in state 𝑆𝑡 is increased; if 𝛿𝑡 <
0, it is decreased (learning rate 𝛼𝜃)

• Actor and Critic learn at the same time, 
constantly interacting. The actor is continually 
changing the policy params 𝜽 to exceed the 
critic’s expectation, and the critic is constantly 
updating its value function params 𝒘 to evaluate 
the actor’s changing policy.
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Function Approximations for Critic and Actor

Value Network as Critic

Policy Network as Actor

Parameter Sharing between Value and Policy Networks
https://github.com/wangshusen/DRL
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Asynchronous Advantage Actor Critic (A3C) 

• A3C implements parallel training where multiple workers in 
parallel environments independently update the global value 
and policy networks, for effective and efficient exploration of 
the state space.
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Continuous Actions

• It might not be straightforward to choose a proper discrete 
set of actions

• Continuous actions allow us to generalize over actions
– If an action is good, its neighboring actions are also likely to be 

good

– Discrete actions lack generalization: each action is independent 
of others, including its neighbors (similar to value functions for 
discrete states)
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Gaussian Policy for Continuous Actions

• Gaussian Policy 𝜋 𝑎 𝑠, 𝜽 ≐
1

𝜎 𝑠,𝜽 2𝜋
exp(−

𝑎−𝜇 𝑠,𝜽
2

2𝜎 𝑠,𝜽 2 )

– Mean 𝜇 𝑠, 𝜃 is the most 
likely action

– Variance 𝜎 𝑠, 𝜃 2 controls 
the degree of exploration.

Variance gradually reduced during learning w. PG, 
converging towards deterministic policy 𝑎 = 𝜇 𝑠, 𝜃

Policy variance initially large, 
more exploration

learning learning


