
L7.3 Policy-based RL

Zonghua Gu 2021

Acknowledgement: slides based on https://www.coursera.org/specializations/reinforcement-learning
And textbook by Sutton and Barto http://incompleteideas.net/book/the-book-2nd.html

2

Policy-based RL

2

MDP

state 𝑠 action 𝑎

next
state 𝑠′

reward 𝑟

𝑉 𝑠 ,𝑄(𝑠, 𝑎)

state 𝑠 action 𝑎

Policy 𝜋(𝑠)

state 𝑠 action 𝑎

action 𝑎 = 𝜋(𝑠)

MDP Planning Value-based RL Policy-based RL

action
a = argmaxa𝑄(𝑠, 𝑎)

3

CH13 Policy Gradient Methods

• Value Based

– Learnt Value Function

– Implicit policy (e.g. 𝜖-greedy)

• Policy Based

– No Value Function

– Learnt Policy

• Actor-Critic

– Learnt Value Function

– Learnt Policy

4

Policy-based RL Pros and Cons

• Pros:

– Effective in high-dimensional or continuous action space.

• Value-based RL is only applicable to discrete action space;
inefficient to discretize continuous actions for high-dim action
space, as taking argmaxa 𝑄(𝑠, 𝑎) may be expensive.

– Can learn stochastic policies

• Value-based RL learns a near-deterministic policy (greedy or 𝜖-
greedy).

– Policy typically converges faster than value functions.

• Disadvantages:

– Typically converges to a local rather than global optimum.

– Evaluating a policy is typically inefficient and high variance.

5

Mountain Car Example
• An under-powered car situated in a valley wants to drive up a

steep hill to reach the goal at the top of the rightmost hill.
Due to gravity, the car cannot simply accelerate up the steep
slope. It must learn to leverage potential energy by driving up
the opposite hill before the car is able to make it to the goal.

• Middle: a complex value function
• Right: a simple policy that works well: accelerate in the

direction of current velocity.

moving
right

moving
left

6

Function Approximation for Action Value
Function vs. Policy

• Value-based RL learns a function approximation for action value function
ො𝑞(𝑠, 𝑎,𝒘).
– Deterministic policy 𝑎 = argmax ො𝑞 𝑠, 𝑎, 𝒘 (may be 𝜖-greedy during training)

• Policy-based RL learns a function approximation for stochastic policy 𝜋 𝑎 𝑠, 𝜽 :
– Probability that action 𝑎 is taken in state 𝑠, with parameter 𝜽. The actual action

taken is sampled from the probability distribution 𝐴 ∼ 𝜋 𝑎 𝑠, 𝜽
– Probability must be non-negative: 𝜋 𝑎 𝑠, 𝛉 ≥ 0, ∀𝑎 ∈ 𝒜 ∧ ∀𝑠 ∈ 𝒮
– Probabilities must sum to 1: σ𝑎∈𝒜 𝜋 𝑎 𝑠, 𝛉 = 1, ∀𝑠 ∈ 𝒮

7

SoftMax vs. 𝜖-greedy for Discrete Actions
• SoftMax policy: 𝜋 𝑎 𝑠, 𝜽 ≐

𝑒ℎ 𝑠,𝑎,𝜽

σ𝑎′∈𝒜 𝑒ℎ 𝑠,𝑎′,𝜽

– ℎ 𝑠, 𝑎, 𝜽 is action preference, which may be a linear function 𝜽𝑇𝐱 𝑠, 𝑎 , or the logit from the
SoftMax layer of a DNN

– A bad action with very negative ℎ 𝑠, 𝑎, 𝜽 will be very unlikely to be selected
– Action probabilities change smoothly as a function of ℎ 𝑠, 𝑎, 𝜽

• 𝜖-greedy: select the greedy action argmax
𝑎

𝑄(𝑠, 𝑎) with prob 1 − 𝜖 +
𝜖

𝒜 𝑠

– No distinction between policies that are not the optimal one; A bad action with very low 𝑄(𝑠, 𝑎) will
be selected with equal prob as all other non-optimal policies

– Action probabilities may change dramatically for an arbitrarily small change in 𝑄(𝑠, 𝑎), if that change
results in a different optimal action

𝑄(𝑠, 𝑎)

ℎ 𝑠, 𝑎, 𝛉

8

Stochastic Policy vs. Deterministic Policy

• Example 1: two-player game of rock-paper-
scissors

– Scissors beat paper; paper beats rock; rock beats
scissors

– For iterated game, a deterministic policy is easily
exploited by the opponent; a uniform random policy is
optimal, and achieves Nash equilibrium

• Example 2: Aliased Grid World (POMDP)

9

Aliased Grid World (POMDP)
• Env has 3 terminal states: 1 with high positive reward and 2 with high

negative reward. It is a Partially Observable MDP (POMDP): Agent cannot
observe its position directly; it can only observe features of the following
form (for all directions 𝑑1, 𝑑2, … ∈ (𝑁, 𝐸, 𝑆,𝑊)):
– 𝜙 𝑠 = 𝟏(wall to 𝑑1, 𝑑2…) (it can detect walls, e.g., w. Radar or Lidar)

• 𝟏(𝒙) is indicator function: 𝟏 𝒙 = 𝟏 if 𝑥 = true

– Agent cannot differentiate between the 2 grey states

• Value-based RL learns a deterministic policy: 𝑎 = argmax ො𝑞 𝑠, 𝑎,𝒘 =
argmax 𝑓 𝜙 𝑠 ,𝒘

• Policy-based RL learns a stochastic policy: 𝜋 𝑎 𝑠, 𝜽 = 𝑔(𝜙 𝑠 , 𝜽)

10

Aliased Grid World (POMDP)

• Left: an optimal deterministic policy:
– Either move 𝑊 in both grey states (red arrows), or move 𝐸 in both grey

states; Either way, agent can get stuck and never reach the money

• Right: the optimal stochastic policy:
– Randomly move 𝐸 or 𝑊 in grey states: 𝜋 move 𝐸 wall to N and S, 𝜽 =
𝜋 move𝑊 wall to N and S, 𝜽 = 0.5

– Agent will likely reach the goal state quickly

• How about adding 𝜖-greedy on top of the opt det policy?
– Agent may get into one of the 2 bad states, since each non-optimal action is

given equal probability in every state

Opt det policy Opt Sto policy

11

Optimal 𝜖-Soft Policy

• The optimal 𝜖-soft policy is the policy with the highest
value in each state among all 𝜖-soft policies. It
performs worse than the optimal greedy deterministic
policy 𝜋∗ in general.

• But it often performs reasonably well, and avoids
exploring starts.

11

Recall

Only applies to
MDP, not POMDP

12

Optimization Objective

• We consider the episodic case, and would like to
optimize the expected value of the start state of
each episode, with start state 𝑠0:

• 𝐽 𝜽 ≐ 𝑣𝜋(𝑠0)

• where 𝑣𝜋(𝑠0) is the true value function for policy
𝜋, parametrized by 𝜽: 𝜋 𝑎 𝑠, 𝜽

13

Model Training in Supervised Learning vs. Policy
Gradient in RL

• SL: to solve min
𝜃

𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃)

for model training: gradient descent
𝜃 ← 𝜃 − 𝛼∇𝜃Loss 𝑥, 𝑦; 𝜃
– Update model params 𝜃 by following

the gradient downhill, in order to
decrease Loss 𝑥, 𝑦; 𝜃 . (𝛼 is the
Learning Rate)

• RL: to solve max
𝜃

𝐽 𝜽 in Policy

Gradient: gradient ascent 𝜃 ← 𝜃 +
𝛼∇𝜃𝐽 𝜽
– Update policy model params 𝜃 by

following the gradient uphill, in order
to increase 𝐽 𝜽

• We use ∇ as shorthand for ∇𝜃

13

𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃)

𝜃

𝐽 𝜽

𝜃

14

Policy Gradient Theorem

• We consider episodic instead of continuous environments in this lecture

• ∇𝐽 𝜽 = ∇𝑣𝜋 𝑠0
• = ∇ σ𝑎 𝜋 𝑎 𝑠, 𝜽 𝑞𝜋 𝑠, 𝑎

• = σ𝑎[∇𝜋 𝑎 𝑠, 𝜽 𝑞𝜋(𝑠, 𝑎) + 𝜋 𝑎 𝑠, 𝜽 ∇𝑞𝜋(𝑠, 𝑎)]
• Policy Gradient Theorem (proof in RLBook p. 325; assuming

discount factor 𝛾 = 1):

• ∇𝐽 𝜽 ∝ σ𝑠 𝜇 𝑠 σ𝑎 ∇𝜋 𝑎 𝑠, 𝜽 𝑞𝜋(𝑠, 𝑎)
– 𝜇 𝑠 : on-policy distribution under policy 𝜋, σ𝑠∈𝒮 𝜇 𝑠 = 1. A larger
𝜇 𝑠 denotes state 𝑠 is visited more frequently, hence the policy
gradient term for state 𝑠 is given more weight (i.e., we care more
about frequently-visited states than rarely-visited states).

– In the episodic case, the constant of proportionality is the average
length of an episode; in the continuing case it is 1.

15

Policy Gradient with Baseline

• ∇𝐽 𝜽 ∝ σ𝑠 𝜇 𝑠 σ𝑎 ∇𝜋 𝑎 𝑠, 𝜽 (𝑞𝜋 𝑠, 𝑎 − 𝑏(𝑠))
– Baseline 𝑏(𝑠) can be any function that is independent of action 𝑎.

Subtracting 𝑏(𝑠) does not affect the computed expectation since:
σ𝑎 ∇𝜋 𝑎 𝑠, 𝜽 𝑏(𝑠) = 𝑏 𝑠 σ𝑎 ∇𝜋 𝑎 𝑠, 𝜽 = 𝑏 𝑠 ∇σ𝑎 𝜋 𝑎 𝑠, 𝜽 =
𝑏 𝑠 ∇1 = 0

– Subtracting 𝑏(𝑠) helps to reduce variance and speed up convergence,
e.g., consider 3 samples with ∇𝜋 𝑎 𝑠, 𝜽 = 0.5, 0.2, 0.3 , 𝑞𝜋 𝑠, 𝑎 =
1000, 1001, 1002 , 𝑣𝑎𝑟 0.5 ⋅ 1000,0.2 ⋅ 1001,0.3 ⋅ 1002 ≈
23287; After subtracting a baseline of 1001, 𝑣𝑎𝑟(

)
0.5 ⋅ (−1), 0.2 ⋅

0, . 3 ⋅ 1 ≈ 0.16

• Advantage function:
– 𝐴𝜋 𝑠, 𝑎 = 𝑞𝜋 𝑠, 𝑎 − 𝑣𝜋 𝑠 (using state value function 𝑣𝜋 𝑠 as

baseline)
– 𝐴𝜋 𝑠, 𝑎 captures the advantage of taking action 𝑎 in state 𝑠 then

follow policy 𝜋, compared to the baseline of following policy 𝜋 from
state 𝑠, i.e., we care more about the relative ranking of different
actions in state 𝑆𝑡 than absolute values of 𝑞𝜋 𝑠, 𝑎

16

Policy Gradient Example
• The gradient ∇𝜋 𝑙𝑒𝑓𝑡 𝑠, 𝜽 tells us how to change the

policy parameters 𝜽 to make action 𝑙𝑒𝑓𝑡 more likely to be
selected in state 𝑠. By gradient ascent on 𝜽, we increase the
probability for taking action 𝑙𝑒𝑓𝑡 in state 𝑠.

After
grad. ascent

𝑞𝜋 𝑠, 𝑢𝑝 = −1.3
𝑞𝜋 𝑠, 𝑙𝑒𝑓𝑡 = −0.9
𝑞𝜋 𝑠, 𝑑𝑜𝑤𝑛 = 0.7
𝑞𝜋 𝑠, 𝑟𝑖𝑔ℎ𝑡 = 1.5

Gradient ascent on
𝜃 for given state 𝑠

17

MC REINFORCE
• ∇𝐽 𝜽 ∝ σ𝑠 𝜇 𝑠 σ𝑎 ∇𝜋 𝑎 𝑠, 𝜽 𝑞𝜋 𝑠, 𝑎

• = 𝔼𝑆𝑡∼𝜇(𝑠) σ𝑎∇𝜋 𝑎 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡 , 𝑎
– Outer exp: average over all experienced states under policy 𝜋, i.e., 𝑆𝑡 ∼ 𝜇(𝑠)

• = 𝔼𝑆𝑡∼𝜇(𝑠) σ𝑎 𝜋 𝑎 𝑆𝑡 , 𝜽
∇𝜋 𝑎 𝑆𝑡 , 𝜃
𝜋 𝑎 𝑆𝑡 , 𝜃

𝑞𝜋 𝑆𝑡 , 𝑎

• = 𝔼𝑆𝑡∼𝜇(𝑠) σ𝑎 𝜋 𝑎 𝑆𝑡 , 𝜽 ∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡 , 𝑎 (since ∇log𝑓 𝑥 =
𝛻𝑓 𝑥

𝑓 𝑥
)

• = 𝔼𝑆𝑡∼𝜇(𝑠) 𝔼𝑎∼𝜋(𝑎|𝑆𝑡,𝜽)[∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡, 𝐴𝑡]
– Inner exp over policy 𝜋: average over all experienced actions 𝐴𝑡 from state 𝑆𝑡 under

policy 𝜋, i.e., 𝐴𝑡 ∼ 𝜋 𝑎 𝑆𝑡 , 𝜽

• = 𝔼𝜋 ∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡, 𝐴𝑡
– 𝔼𝜋 as shorthand for 𝔼𝑆𝑡∼𝜇(𝑠)𝔼𝑎∼𝜋(𝑎|𝑆𝑡,𝜽): execute policy 𝜋 and average over all

experienced states 𝑆𝑡 and actions 𝐴𝑡 from state 𝑆𝑡

• = 𝔼𝜋 ∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝐺𝑡
– Use return 𝐺𝑡 ≐ σ𝑘=0

𝑇−𝑡−1𝛾𝑘 𝑅𝑡+𝑘+1 as unbiased estimate of
𝑞𝜋(𝑆𝑡, 𝐴𝑡)(𝔼𝜋 𝐺𝑡 𝑆𝑡 , 𝐴𝑡 = 𝑞𝜋(𝑆𝑡, 𝐴𝑡))

– ∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 is called the score function

• SGD update (𝛾 = 1): 𝜽𝑡+1 ← 𝜽𝑡 + 𝛼∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽𝒕 𝐺𝑡
• SGD update (𝛾 < 1): 𝜽𝑡+1 ← 𝜽𝑡 + 𝛼𝛾𝑡∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽𝒕 𝐺𝑡

18

MC REINFORCE Example
• Consider a given state 𝑆 with two possible actions UP and DOWN. Initially 𝜋 𝑈 𝑆, 𝜽𝑡 = .9, 𝜋 𝐷 𝑆, 𝜽𝑡 = .1. Consider one

episode with 9 occurrences of (𝑆, 𝑈) at steps 𝑡1, 𝑡2, … , 𝑡9 with return 𝐺𝑡1 = ⋯ = 𝐺𝑡9 = 1, and 1 occurrence of (𝑆, 𝐷) at
step 𝑡10 with return 𝐺𝑡10 = 2. SGD update: 𝜽𝑡+1 ← 𝜽𝑡 + ∇log 𝜋 𝐴𝑡 𝑆𝑡, 𝜽𝒕 𝐺𝑡. Assume that the 𝑖-th update to 𝜽 results in a
small update 𝜖𝑖 to 𝜋 𝐴𝑖 𝑆𝑡 , 𝜽 .

• Correct update sequence with the log:

– 1st update at step 𝑡1: 𝜽𝑡1+1 = 𝜽𝑡1 + 𝛼𝛾𝑡1∇log 𝜋 𝐴𝑡1 𝑆𝑡1, 𝜽𝑡1 𝐺𝑡1 = 𝜽𝑡1 +
1

.9
𝛼𝛾𝑡1∇𝜋 𝑈 𝑆, 𝜽𝑡1 ⋅ 1

– 2nd update at step 𝑡2: 𝜽𝑡2+1 = 𝜽𝑡2 + 𝛼𝛾𝑡2∇log 𝜋 𝐴𝑡2 𝑆𝑡2, 𝜽𝑡2 𝐺𝑡2 = 𝜽𝑡2 +
1

.9+𝜖1
𝛼𝛾𝑡2∇𝜋 𝑈 𝑆, 𝜽𝑡2 ⋅ 1

– …

– 9th update at step 𝑡9: 𝜽𝑡9+1 = 𝜽𝑡9 + 𝛼𝛾𝑡9∇log 𝜋 𝐴𝑡9 𝑆𝑡9, 𝜽𝑡9 𝐺𝑡9 = 𝜽𝑡9 +
1

.9+𝜖1+⋯+𝜖8
𝛼𝛾𝑡9∇𝜋 𝑈 𝑆, 𝜽𝑡9 ⋅ 1

– 10th update at step 𝑡10: 𝜽𝑡10+1 = 𝜽𝑡10 + 𝛼𝛾𝑡10∇log 𝜋 𝐴𝑡10 𝑆𝑡10, 𝜽𝑡10 𝐺𝑡10 = 𝜽𝑡10 +
1

1−(.9+𝜖1+⋯+𝜖9)
𝛼𝛾𝑡10∇𝜋 𝐷 𝑆, 𝜽𝑡10 ⋅ 2

• Incorrect update sequence without the log:
– 1st update at step 𝑡1: 𝜽𝑡1+1 = 𝜽𝑡1 + 𝛼𝛾𝑡1∇log 𝜋 𝐴𝑡1 𝑆𝑡1, 𝜽𝑡1 𝐺𝑡1 = 𝜽𝑡1 + 𝛼𝛾𝑡1∇𝜋 𝑈 𝑆, 𝜽𝑡1 ⋅ 1
– 2nd update at step 𝑡2: 𝜽𝑡2+1 = 𝜽𝑡2 + 𝛼𝛾𝑡2∇log 𝜋 𝐴𝑡2 𝑆𝑡2, 𝜽𝑡2 𝐺𝑡2 = 𝜽𝑡2 + 𝛼𝛾𝑡2∇𝜋 𝑈 𝑆, 𝜽𝑡2 ⋅ 1
– …
– 9th update at step 𝑡9: 𝜽𝑡9+1 = 𝜽𝑡9 + 𝛼𝛾𝑡9∇log 𝜋 𝐴𝑡9 𝑆𝑡9, 𝜽𝑡9 𝐺𝑡9 = 𝜽𝑡9 + 𝛼𝛾𝑡9∇𝜋 𝑈 𝑆, 𝜽𝑡9 ⋅ 1
– 10th update at step 𝑡10: 𝜽𝑡10+1 = 𝜽𝑡10 + 𝛼𝛾𝑡10∇log 𝜋 𝐴𝑡10 𝑆𝑡10, 𝜽𝑡10 𝐺𝑡10 = 𝜽𝑡10 + 𝛼𝛾𝑡10∇𝜋 𝐷 𝑆, 𝜽𝑡10 ⋅ 2

• Assuming each 𝜖𝑖 is small. The correct update sequence gives roughly equal weight to the two action choices with return of
1 (action 𝑈 in state 𝑆, experienced 9 times) and return of 2 (action 𝐷 in state 𝑆, experienced once), so 𝜽 will be updated
towards preferring action 𝐷 in state 𝑆

• The incorrect update sequence gives roughly 9 times the weight to the action choice with return of 1 (action 𝑈 in state 𝑆,
experienced 9 times) than the action choice with return of 2 (action 𝐷 in state 𝑆, experienced once), so 𝜽 will be incorrectly
updated towards preferring action 𝑈 in state 𝑆

• “The update increases the parameter vector in this direction proportional to the return, and inversely proportional to the
action probability. The former makes sense because it causes the parameter to move most in the directions that favor
actions that yield the highest return. The latter makes sense because otherwise actions that are selected frequently are at
an advantage (the updates will be more often in their direction) and might win out even if they do not yield the highest
return.” – RLBook p. 327

19

MC REINFORCE Pseudo-Code

• At the end of each episode, for each timestep 0 ≤
𝑡 < 𝑇:

– Calculate the return 𝐺𝑡 from each timestep 𝑡

– Update policy params 𝜽 with SGD

20

Example: Game of Pong

• The agent plays one of the paddles (the other is controlled by a decent
AI) and it has to bounce the ball past the other player. For each input
image, agent decides if it wants to move the paddle UP or DOWN (2
discrete actions). At the end of the game the agent either wins (reward
𝑅𝑇 > 0) or loses (𝑅𝑇 < 0), i.e., the reward is sparse.
– (In practice we may stack multiple input images as input to the agent.)

• The agent implements a policy network, which maps from input image to
two possible actions (U or D) with a stochastic SoftMax policy.

http://karpathy.github.io/2016/05/31/rl/

21

SL vs. RL

• With SL: if the model predicts 𝑦 = 𝑈 for input 𝑥, and it is the correct ground truth label
(e.g., the expert action in Imitation Learning), then gradient descent (∇𝜃 log 𝑝(𝑦 = 𝑈|𝑥))
will make the model more likely to predict 𝑦 = 𝑈 for input 𝑥

• With RL: if the model predicts 𝑎 = 𝐷 for input 𝑥, but we don’t have the ground truth
label in the middle of the episode, so we must wait until the end of the episode. If agent
loses, then gradient descent (∇𝜃 log 𝑝(𝑎 = 𝐷|𝑥)) will make the NN less likely to predict
𝑎 = 𝐷 for input 𝑥
– Credit assignment problem: in an episode of many steps, which step contributed the most to

the final outcome?

http://karpathy.github.io/2016/05/31/rl/

logit

logit

22

MC REINFORCE for
Pong I

• 𝐽 𝜽 = σ𝑠 𝜇𝜋 𝑠 σ𝑎 𝜋 𝑎 𝑠, 𝜃 𝑞𝜋(𝑠, 𝑎)
• Consider agent in a given state 𝑆𝑡 at time

step 𝑡, and we want to select policy params
𝜽 to maximize

• 𝑣𝜋 𝑆𝑡 = σ𝑎 𝜋 𝑎 𝑆𝑡 , 𝜽 𝑞𝜋(𝑆𝑡 , 𝑎)

• = 𝜋 𝑈 𝑆t, 𝜽 𝑞𝜋(𝑆𝑡, 𝑈) + 𝜋 𝐷 𝑆𝑡 , 𝜽 𝑞𝜋(𝑆𝑡 , 𝐷)
• Taking derivative w.r.t policy params 𝜽

• ∇𝜃𝑣𝜋 𝑆𝑡 = σ𝑎 ∇𝜃𝜋 𝑎 𝑆𝑡, 𝜽 𝑞𝜋(𝑆𝑡, 𝑎)

• = ∇𝜃𝜋 𝑈 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆, 𝑈 + ∇𝜃𝜋 𝐷 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡, 𝐷

• = 𝜋 𝑈 𝑆𝑡, 𝜽 ∇𝜃 log 𝜋 𝑈 𝑆𝑡, 𝜽 𝑞𝜋 𝑆, 𝑈 + 𝜋 𝐷 𝑆𝑡 , 𝜽 ∇𝜃 log 𝜋 𝐷 𝑆𝑡, 𝜽 𝑞𝜋 𝑆𝑡, 𝐷

• = 𝔼𝜋[∇𝜃 log 𝜋 𝑎 𝑆𝑡, 𝜽 𝑞𝜋 𝑆𝑡 , 𝑎]

• = 𝔼𝜋[∇𝜃 log 𝜋 𝑎 𝑆𝑡, 𝜽 𝐺𝑡]
• Suppose 𝑞𝜋 𝑆𝑡 , 𝑈 > 0, 𝑞𝜋 𝑆𝑡, 𝐷 < 0.

– For the UP action in state 𝑆𝑡, the policy update 𝜽 ← 𝜽 + 𝛼∇𝜃 log 𝜋 𝑈 𝑆𝑡 , 𝜃 𝑞𝜋 𝑆𝑡 , 𝑈 will push
up 𝜋 𝑈 𝑆𝑡 , 𝜃 , i.e, make it more likely to move UP in state 𝑆𝑡

– For the DOWN action in state 𝑆𝑡, the policy update 𝜽 ← 𝜽 + 𝛼∇𝜃 log 𝜋 𝑈 𝑆𝑡 , 𝜃 𝑞𝜋 𝑆𝑡 , 𝐷 will
push down 𝜋 𝑈 𝑆𝑡 , 𝜃 , i.e, make it less likely to move DOWN in state 𝑆𝑡

23

MC REINFORCE for Pong II
• Agent plays 4 rollouts (episodes), and won 2 episodes and lost 2. Assume that each episode lasts 200

steps, so agent made 200 decisions of UP or DOWN in each episode. Each step has reward of 𝑅𝑡 = 0,
i.e., we don’t care how long each episode lasts. ∀𝑡, 𝐺𝑡 = 𝛾𝑇−𝑡−1𝑅𝑇, i.e., return 𝐺𝑡 at any step 𝑡 of
each episode is equal to the discounted reward 𝑅𝑇 at the end of the episode, hence 𝐺𝑡 has the same
sign as 𝑅𝑇 (recall “MC Prediction” in L7.2 Value-based RL).

• For each of the 2 winning episodes (∀𝑡, 𝐺𝑡> 0), NN params 𝜽 ← 𝜽 + 𝛼∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝐺𝑡 are
updated to encourage all taken actions in the 200 steps (push up 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽).

• For each of the 2 losing episodes (∀𝑡, 𝐺𝑡< 0), NN params 𝜽 ← 𝜽 + 𝛼∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝐺𝑡 are updated
to discourage all taken actions in the 200 steps (push down 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽).

• The NN will now become slightly more likely to repeat actions that worked, and slightly less likely to
repeat actions that didn’t work.

• If discount factor 𝛾 = 1, then we assign equal credit to all actions in the same episode; if 𝛾 < 1, then
we assign more credit to actions taken in later steps of each episode than earlier steps.

24

MC REINFORCE for Pong III

• Consider the case when each step has reward of 𝑅𝑡 = −1, to minimize the length of each episode, e.g., we
may prefer a short losing episode to a long winning episode. Assuming discount factor 𝛾 = 1. Suppose
reward at the end of each winning episode is 𝑅𝑇 = 2; reward at the end of each losing episode is 𝑅𝑇 = −2.
The return 𝐺𝑡 at each step is shown below. Consider state 𝑆𝑡.

• After the winning episode, NN params 𝜽 ← 𝜽 + 𝛼∇log 𝜋 𝑈𝑃 𝑆𝑡 , 𝜽 (−6) are updated to discourage the U
action in state 𝑆𝑡 (push down 𝜋 𝑈 𝑆𝑡 , 𝜽).

• After the losing episode, NN params 𝜽 ← 𝜽 + 𝛼∇log 𝜋 𝐷𝑂𝑊𝑁 𝑆𝑡 , 𝜽 (−5) are updated to discourage the D
action in state 𝑆𝑡 (push down 𝜋 𝐷 𝑆𝑡 , 𝜽).

• Both will pushdown 𝜋 𝐷 𝑆𝑡 , 𝜽 , but since the return 𝐺𝑡 = −6 in the winning episode causes a larger
update magnitude than 𝐺𝑡 = −5 in the losing episode, and the probabilities of Us actions sum to 1
σ𝑎 𝜋 𝑎 𝑆𝑡 , 𝜽 = 1, the agent is slightly more likely to select the D action in state 𝑆𝑡.

• Subtracting a baseline, e.g., use 𝐺𝑡 − ො𝑣𝜋 𝑆𝑡 , 𝒘 to replace 𝐺𝑡 helps to reduce variance and speed up
convergence, e.g., suppose ො𝑣𝜋 𝑆𝑡 , 𝒘 = −5.5, then updates to 𝜽 will be in different directions for the two
episodes.

State 𝑆𝑡

LOSE

210−1−2−3−4−5−6

−2−3−4−5

WIN

25

PG Variants

• MC REINFORCE (no bias, high variance):

– ∇𝐽 𝜽 = 𝔼𝜋 ∇log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝑞𝜋 𝑆𝑡, 𝐴𝑡 = 𝔼𝜋[log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 𝐺𝑡]

• MC REINFORCE with a baseline of estimated state value function:

– ∇𝐽 𝜽 = 𝔼𝜋[log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽 (𝐺𝑡 − ො𝑣𝜋 𝑆𝑡, 𝒘)]
– ො𝑣𝜋 𝑆𝑡 , 𝒘 is a function approximation of the true 𝑣𝜋 𝑆𝑡 , 𝒘 , e.g., a value

network

• Actor-Critic (high bias, low variance)

– ∇𝐽 𝜽 = 𝔼𝜋 log 𝜋 𝐴𝑡 𝑆𝑡, 𝜽 𝛿𝑡
– Q Actor-Critic: TD error for action value function 𝛿𝑡 = 𝑅𝑡+1 +
𝛾ො𝑞𝜋(𝑆𝑡+1, 𝐴𝑡+1, 𝒘) − ො𝑞𝜋(𝑆𝑡 , 𝐴𝑡, 𝒘)

– Advantage Actor-Critic (A2C): TD error for state value function 𝛿𝑡 = 𝑅𝑡+1 +
𝛾ො𝑣𝜋(𝑆𝑡+1, 𝒘) − ො𝑣𝜋(𝑆𝑡 , 𝒘) (sample-based estimate of the advantage function
𝐴𝜋 𝑠, 𝑎 = 𝑞𝜋 𝑠, 𝑎 − 𝑣𝜋 𝑠)

• MC REINFORCE is a special case of A2C:
– 1-step TD target (A2C): 𝑅𝑡+1 + 𝛾 ො𝑣𝜋(𝑆𝑡+1, 𝒘)

– 𝑚-step TD target: 𝐺𝑡
𝜆 ≐ σ𝑘=0

𝑚−1 𝛾𝑘 𝑅𝑡+𝑘+1 + 𝛾𝑚 ො𝑣𝜋(𝑆𝑡+𝑚)

– MC target (MC REINFORCE): 𝐺𝑡 ≐ σ𝑘=0
𝑇−1 𝛾𝑘 𝑅𝑡+𝑘+1

https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f

26

Further Explanations

• MC REINFORCE:
– Trajectory from time 𝑡:

– 𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1, 𝑅𝑡+2, 𝑆𝑡+2, … , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 , 𝑆𝑇

– 𝐺𝑡 ≐ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑇−1𝑅𝑇 = σ𝑘=0
𝑇−𝑡−1 𝛾𝑘 𝑅𝑡+𝑘+1

– 𝔼𝜋 𝐺𝑡 𝑆𝑡 , 𝐴𝑡 = 𝑞𝜋(𝑆𝑡 , 𝐴𝑡)

• Q Actor-Critic:
– Recall: 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾𝔼𝑎𝑞𝜋 𝑠, 𝑎

– Sample-based estimate of 𝑞𝜋 𝑠, 𝑎 (TD target for action value
function):

– 𝑅𝑡+1 + 𝛾ො𝑞𝜋 𝑆𝑡+1, 𝐴𝑡+1, 𝒘

• A2C
– Recall: 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾𝑣𝜋 𝑠′

– Sample-based estimate of 𝑞𝜋 𝑠, 𝑎 :

– 𝑅𝑡+1 + 𝛾ො𝑣𝜋(𝑆𝑡+1, 𝒘)

https://www.cellstrat.com/2020/03/19/rl-with-actor-critic-methods/

27

Recall: Bellman Exp Equations written with
Expectation Symbols

• 𝑣𝜋 𝑠 = σ𝑎 𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑎∼𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 =

𝔼𝑎∼𝜋 𝑎 𝑠 𝔼𝑟, 𝑠′∼𝑝 𝑟, 𝑠′ 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

• 𝑞𝜋 𝑠, 𝑎 = σ𝑟,𝑠′ 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ =

𝔼
𝑟, 𝑠′∼𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ =

𝔼
𝑟, 𝑠′∼𝑝 𝑟, 𝑠′ 𝑠, 𝑎 𝑟 + 𝛾𝔼𝑎∼𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

• Shorthand Notation:

• 𝑣𝜋 𝑠 = 𝔼𝑎𝔼𝑟, 𝑠′[𝑟 + 𝛾𝑣𝜋 𝑠′]

• 𝑞𝜋 𝑠, 𝑎 = 𝔼𝑟, 𝑠′ 𝑟 + 𝛾𝔼𝑎𝑞𝜋 𝑠, 𝑎

27

28

One-Step A2C Pseudo-Code
• For update to critic params 𝒘, refer to L7.2 Value-based RL,

p 75 “Semi-Gradient TD(0) for Estimating ො𝑣 ≈ 𝑣𝜋”

29

A2C Explanations
• After each step of taking action 𝐴𝑡 in state 𝑆𝑡:
• Critic computes TD error 𝛿𝑡 = 𝑅𝑡+1 +

𝛾 ො𝑣 𝑆𝑡+1, 𝒘 − ො𝑣 𝑆𝑡 , 𝒘 , and updates its params
with semi-gradient TD(0) 𝒘 ← 𝒘+
𝛼𝑤𝛿𝑡∇𝑤 ො𝑣 𝑆𝑡 , 𝒘 (learning rate 𝛼𝑤)

• Actor updates its params with Policy
Gradient 𝜽𝑡+1 = 𝜽𝑡 +
𝛼𝜃𝛾𝑡𝛿𝑡∇𝜃 log 𝜋 𝐴𝑡 𝑆𝑡 , 𝜽𝒕 . If 𝛿𝑡 > 0, then it
means 𝐴𝑡 resulted in a higher (one-step
estimate) value than the expected ො𝑣 𝑆𝑡 , 𝒘 , so
probability of 𝐴𝑡 in state 𝑆𝑡 is increased; if 𝛿𝑡 <
0, it is decreased (learning rate 𝛼𝜃)

• Actor and Critic learn at the same time,
constantly interacting. The actor is continually
changing the policy params 𝜽 to exceed the
critic’s expectation, and the critic is constantly
updating its value function params 𝒘 to evaluate
the actor’s changing policy.

30

Function Approximations for Critic and Actor

Value Network as Critic

Policy Network as Actor

Parameter Sharing between Value and Policy Networks
https://github.com/wangshusen/DRL

31

Asynchronous Advantage Actor Critic (A3C)

• A3C implements parallel training where multiple workers in
parallel environments independently update the global value
and policy networks, for effective and efficient exploration of
the state space.

32

Continuous Actions

• It might not be straightforward to choose a proper discrete
set of actions

• Continuous actions allow us to generalize over actions
– If an action is good, its neighboring actions are also likely to be

good

– Discrete actions lack generalization: each action is independent
of others, including its neighbors (similar to value functions for
discrete states)

33

Gaussian Policy for Continuous Actions

• Gaussian Policy 𝜋 𝑎 𝑠, 𝜽 ≐
1

𝜎 𝑠,𝜽 2𝜋
exp(−

𝑎−𝜇 𝑠,𝜽
2

2𝜎 𝑠,𝜽 2)

– Mean 𝜇 𝑠, 𝜃 is the most
likely action

– Variance 𝜎 𝑠, 𝜃 2 controls
the degree of exploration.

Variance gradually reduced during learning w. PG,
converging towards deterministic policy 𝑎 = 𝜇 𝑠, 𝜃

Policy variance initially large,
more exploration

learning learning

