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RL Reward Function Issues

* RL can be very effective, provided that a suitable reward
function is available.

« Bad reward function leads to undesirable behavior

— Suppose you deS|gn a vacuum cleaner to maximize reward
function defined as “cumulative amount of dirt sucked in”. The
vacuum cleaner may learn to repeatedly spit out and suck in the
same pile of dirt!

« For AD in realistic environment, the goal is to reach
destination with minimum time, while avoiding accidents. But
how to encode this into a reward function?

— “A great reward function can help you better optimize your
reinforcement learning model. In AWS DeepRacer, the reward
function is written in Python code, and uses different input
parameters to help encourage good behavior and disincentivize
poor behavior. There’s no single right answer for which
parameters to include in your reward function, and your best
reward function will likely require a lot of experimentation.” from
AWS DeepRacer MOOC.

https://classroom.udacity.com/courses/ud014/



Imitation Learning (IL)

IL Is useful when it is easier for an expert to

demonstrate the desired behavior, rather than to

specify a reward function for RL to learn the policy.

— e.g., for Automated Driving in a realistic environment,
the reward function would be a huge complex function
iInvolving everything in the environment

— Requires access to an expert, either offline (driving

data logs) or online (query-on-demand)

— Also called Learning from Demonstrations.

IL variants:
— Learn to mimic the expert’'s policy

* Behavior Cloning
 Direct Policy Learning

— Learn the expert’s value function
* Inverse Reinforced Learning



Notations

State: s (sometimes x)
Action: a (sometimes y)
Policy my (sometimes h)

— Deterministic policy a = mg(s)
— Stochastic policy P(a) = mg(s)
Environment Model: P(s'|s, a)

— Known: model-based
— Unknown: model-free



Notations Cont’d

* Rollout: sequentially execute policy g (sy) from initial state s,
until timestep T.
— Produce trajectory T = (sq, ag, S1, a4, --- )
e P(t|m): distribution of trajectories induced by a policy. Repeat
until t =T
— 1. Sample s, from P, (distribution over initial states), initialize t =
1
— 2. Sample action a; from m(s¢_4)

— 3. Sample next state s; from applying a; to s;_; (requires access
to env model or simulator)

— 4. GotoStep2witht=t+1

e P(s|m): distribution of states induced by a policy (percentage
of time spent in each state):

1
- P(s|m) = ;tht(sm)
e P;(s|m) denotes distribution of states at t-th timestep



Behavior Cloning (BC)

 Behavior Cloning (BC) Is a form of Supervised Learning
(SL), where an agent is trained to perform a task from
demonstrations by learning a mapping (e.g., a CNN)
between states (input data) and actions (Iabels)

1. Collect demonstrations (7" trajectories) from expert
2. Treat the demonstrations as i.i.d. state-action pairs: (sq, ag), (51, ay), .-
3. Learn myg policy using supervised learning by minimizing the loss function
L(a*, Tg (5))
Convolutional Classifier Convolutional Agent

input possible input possible
image categories image actions

J8U [BINaU [BUOHN|OAUOD
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https://pathmind.com/wiki/deep-reinforcement-learning



SL vs. BC

 Main difference between SL and BC:

— For SL: input x for computing label y = F(x) is i.i.d (independent
and identically distributed)
* i.e., there is no correlation between one input image x; and the next one

Xi+1-

— For IL/BC (and MDP in general): input (state) s, for computing
action a, = my(s;) Is not i.i.d. but highly correlated, since action

taken in a given state s; induces the next state s, ;.

- i.e., a vehicle does not randomly jump around, but follows a smooth
path. If state s, is defined as the front-camera video frame at time ¢,
then there is strong correlation between frames across time s;, S¢41 ... IN
the continuous video stream.

* Non-i.i.d input data may cause distributional Shift, where

training and testing input data distributions densities are
different. y~

https://pathmind.com/wiki/deep-reinforcement-learning



Early Projects of IL (BC) Applied to AD

 ALVINN
— CMU, 1990
— Low-res image as input
— Fully connected NN

« DAVE
— Muller, LeCun, 2003
— Low-res image as input
— CNN



Distributional Shift in IL/BC

« Errors made in different states add up, therefore a mistake made by
the agent can easily put it into a state that the expert has never
visited and the agent has never trained on. In such states, the action
Is undefined and this can lead to catastrophic failures.

* e.g. the expert driver always keeps in the center of lane, so the front
camera images (Input data) in the training set do not contain views
where the vehicle is heading to go off side of road. So once the
vehicle heading deviates a little towards the side

— the input data is not in the training set — action is undefined — vehicle
deviates even more - --- — vicious cvcle leadina to a crash.

Expert trajectory
Learned Policy
p—
pssiinsee -
..-::-""‘v p— \
No data on /
how to recover R
\> * ."...'

https://medium.com/@ SmartLabAl/a-brief-overview-of-imitation-learning-8a8a75c44a9c



Direct Policy Learning (DPL)

DPL is an improved version of behavioral cloning. Assuming that we have access to an
Interactive expert at training time,

First, we start with an initial predictor policy based on the initial expert demonstrations.
Then, we execute a loop until we converge. In each iteration, we collect trajectories by
rolling out the current policy (which we obtained in the previous iteration) and using these
we estimate the state distribution.

Then, for every state, we collect feedback from the expert (what would have he done in the
same state).

Finally, we train a new policy using this feedback.

Expert provides
feedback/demonstrations

tramning
data

trajectory

Supervised
learning

Rollout in
anvironment
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BC vs. DPL

« BC:argming E (5 4+)~p* L(a*, my(s))
— Assuming perfect imitation so far ((s,a*) ~ P*),
learn to continue imitating perfectly, where P* =
P(s|m*) (distribution of states visited by expert)

— Minimize 1-step deviation error along expert (.2
trajectories

— Distribution provided exogenously from expert
demos

« Agentis a passenger. Its own actions are never carried
out. At every timestep, it computes the loss function
that measures difference between its own action by its
policy at current timestep with that of the expert.

*

_I

 DPL:

- argming E_p(sjy) L(m* (5), 76(5))

— Distribution depends on agent's rollout based on
current policy mg

« Agent is the driver that carries out its own action at
every timestep, while computing the loss function that
measures difference between its action/policy at
current timestep with that of the expert.

11



Two Variants of DPL

Data Aggregation trains the actual policy on all the previous training

data.

— e.g., Dagger: expert remains in the loop during the training of the
controller: the controller is iteratively tested and samples from the
obtained trajectories are re-labeled by the expert

Policy Aggregation trains a policy on the training data received on
the last iteration and then combines this policy with all the previous
policies using geometric blending. In the next iteration, we use this
newly obtained, blended policy during the roll-out

Initial predictor: g
Form = 1:

Collect trajectories 7 by rolling out m,,,_1
Estimate state distribution P,, usings € 7
Collect interactive feedback {r"(s) | s € 7}
Data Aggregation (e.g. Dagger)

o Trainm,,onP;U..UP,

Policy Aggregation (e.g. SEARN & SMiLe)
o Trainm',, on P,

O Ty = ﬁﬂ'fm + (1 - ﬁ)ﬂ-m—l 12



Inverse Reinforcement Learning (IRL)

Start with a set of expert’'s demonstrations (we assume these
are optimal) and then try to estimate the parameterized
reward function, that would cause the expert’s
behavior/policy.

Problem: reward function is not unique, multiple reward functions
may lead to the same behavior.

e.g., an outside observer sees that you work very hard
(behavior). He may infer your reward function to be “maximize
WorkTime” (since you really enjoy your job). But your actual
reward function is “maximize MoneyEarned” (while you really
hate your job).

An agent with incorrect value function won’t generalize well in a
different environment. Suppose someone trains an agent to
Imitate you. The agent has the same behavior as you in the
current environment, but faced with a job offer with higher salary,
the agent may take a different action than you.

Solution: try to learn the correct value function by observing the
expert in diverse environments.

13



IRL Detalls

* Repeat until we find a good enough policy:
— Update the reward function parameters.
— Solve the RL problem to find the optimal
policy.
— Compare the newly learned policy with the
expert’'s policy.

e Collect expert demonstrations: D = {71, T3, ..., Tyn}
e Inaloop:

o Learn reward function: rg(s¢, a;)

o Given the reward function rg, learn m policy using RL
o Compare m with " (expert’s policy)
o

STOP if o is satisfactory
14



Behavioral Cloning

argmine E(s.a*)~P*L(a*,me(S))

Works well when P* close to Pe

Inverse RL

Learn r such that:
m* = argmaxe Es~P(s|e)r(s,me(s))
—
RL problem
Assumes learning r is statistically
easier than directly learning «*

Learn Policy Learn Reward

Directly Function
BC Y N
DPL Y N

IRL N Y

Direct Policy Learning

via Interactive Demonstrator

Collect
Demonstrations

Requires Interactive Demonstrator
(BC is 1-step special case)

Access to Interaction Pre-

Env. Demos collected
demos

N N Y

Y Y Optional

Y N Y

15
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Advantages of Mid-to-Mid

e On the left;

— End-to-end: Raw sensor data contains extremely high dimensional
information which can be influenced by different textures and
appearances of roads and objects, different weather conditions, and
different daytime.

— Mid-to-mid: Separate perception module, the bird-view representation is
a concise description of only the useful information for decision making
and planning, discarding irrelevant information such as texture, light
conditions and object appearances

* On the right:
— IL needs labeled data in the form of expert driver’s action a; at each
step i to obtain a trace of (s, a;).

— End-to-end: must record expert driver’s low-level actions
(steering/brake/acceleration) by tapping into and capturing signals from
the vehicle’s internal bus.

— Mid-to-mid: only need to record expert driver’s vehicle trajectory logs.

 Qverall:

— Mid-to-mid: Execution frequency of ML components is lower than end-
to-end, since planner typically executes at lower freq than controller.

17



[Zhou 2019]

« Zhou, Brady, Philipp Krahenbuhl, and
Vladlen Koltun. "Does computer vision
matter for action?." arXiv preprint
arxXiv:1905.12887 (2019). (Intel Labs, UT
Austin)

18



Computer Vision vs. End-to-End

« Computer vision tasks as perception module
— Object recognition, depth estimation, optical flow, semantic
segmentation...
— e.g., train a model (CNN or others) with a large dataset to classify Stop
Slgns from images.

* End-to-end approach

— Map input images (raw pixels) directly to action, bypassing explicit
computer vision tasks. Perceptual capabilities will arise as needed, as a
result of training for the specific task.

— e.g., if the training dataset is highway driving, then E2E model will never
learn features of Stop Signs;

— If the training dataset is urbane driving, then E2E model may learn
features of Stop Signs implicitly in the intermediate layers of a CNN,
during the process of learning the mapping from “Stop Sign” input
images to “braking” action. But there is no explicit classification layer
that outputs the label “StopSign”.

«  We report controlled experiments that assess whether specific vision
capabilities are useful in mobile sensorimotor systems.

« Does Computer Vision Matter for Action?
— https://www.youtube.com/watch?v=4MfWa2yZ0Jc



https://www.youtube.com/watch?v=4MfWa2yZ0Jc

(a) RGB Image (b) Depth (left) and surface normals (right)
/

(c) Segmentation: semantic (left) and instance boundaries (right). (d) Albedo

(e) Optical Flow. Full (left) and factored into static (center) and dynamic flow (right).

Fig. S7. Different computer vision modalities used in our experiments, illustrated on the urban driving task. For normal maps, the inset
shows the different normal directions projected onto a virtual sphere. For optical flow, the inset shows the flow direction as an offset to the center
pixel.



Performance Evaluation Results

A Urban driving Off-road traversal Battle

o

Fig. 1. Assessing the utility of intermediate representations for
sensorimotor control. (A) Sensorimotor tasks. From left to right:

irban driving, off-road trail traversal, and battle. (B) Intermediate B segmentation  Abedo  Segmentation __Albedo Segmentation
epresentations. Clockwise from top left: semantic segmentation, " rm
ntrinsic surface color (albedo), optical flow, and depth. (Albedo ‘

10t used in battle.) (C) Main results. For each task, we compare an Depth Optical fiow Optical flow  Depth Opticafiow _
mage-only agent with an agent that is also provided with gﬂpund— “
ruth intermediate representations. The agent observes the inter- \ -
nediate representations during both training and testing. Success

Urban driving Off-road traversal Battle

-ate ("SR") is the fraction of scenarios in which the agent success-
ully reached the target location; weighted success rate (“WSR’)is 19 10 2
veighted by track length; ‘frags’ is the number of enemies killed in | =t
1 battle episode. We show mean and standard deviation in each con-

]

| S e s o e |

WSR
® Image(l) o l+abado @ |+flow | +depth @ |+segment o l+all
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Conclusions

Computer vision does matter.

When agents are provided with
representations studied in computer vision,
they achieve higher performance In
sensorimotor tasks.

Some computer vision capabillities appear to
be more impactful for mobile sensorimotor
operation than others. Specifically, depth
estimation and semantic segmentation
provide the highest boost in task
performance.

My thoughts: this explains rising popularity of
mid-to-mid over end-to-end approaches.

22



PilotNet [Bojarski 2016]

* Bojarski M, Del Testa D, Dworakowski D,
et al. End to end learning for self-driving
cars[J]. arXiv preprint arXiv:1604.07316,

2016.

fhic-lights, ... Futures

Sensor Rebaviol ¥ —— Throttle
Dita crceptioEnd-to=ENd Trained:Mk Model, . .~ &
c Steering

End-to-End Driving (NVIDIA's PilotNet)

23



Training Method

End-to-End model trained with Imitation Learning (BC)
— Human drives vehicle
— Record sensor data and human actuator commands as training pairs

— Train a DNN to map sensor data to actuator commands, mimicking a
human. (PilotNet controls steering only. | think acceleration/braking are
controlled separately, but the paper did not say how.)

PilotNet driving video:
— https://www.youtube.com/watch?v= N7nC-8YxzE

=t 4 @R P LPHY -t +EP L LOHY

7 y " - a - N AT .
e, wa AN = B G 70 k118

Predicted steering angle: 72.47458589%87 degrees
scenario inage size: 256 x 455

https://github.com/lhzlhz/PilotNet
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https://www.youtube.com/watch?v=_N7nC-8YxzE

Data Collection System

 Three cameras are mounted behind the windshield of the data-acquisition car, and
timestamped video from the cameras is captured simultaneously with the steering angle
applied by the human driver. The steering command is obtained by tapping into the vehicle’s
Controller Area Network (CAN) bus.

* In order to make our system independent of the car geometry, we represent the steering
1
command as — , Where R is the turning radius in meters. We use - mstead of R to prevent a
singularity when driving straight (the turning radius for driving stralght IS infinity). = smoothly
transitions through zero from left turns (negative values) to right turns (positive values).
« Training data contalns single images sampled from the video, paired with the corresponding
steering command (—)

t Left camera 1 [Center cameraJ ‘ Right camera

Steering wheel angle |
(via CAN bus)

External solid-state
drive for data storage

NVIDIA DRIVE™ PX

https://devblogs.nvidia.com/deep-learning-self-driving-cars/ 25



Training Data Augmentation

 Problem: training data Recorded
from human driver
always stays in center
of lane. So If car -
deviates from center, -- \ Network
the image it sees is not . tefeme™ . , Somputed
In the training set, so it # Random shift | command

L

and rotation

steering
wheel angle»{ Adjust for shift | Desired steering command

Center camera

. CNN - > -
does not know the _ and rotation |
correct action.  Right camera | | A

 Solution: Augment Back propagation | Efror
training data with weight adjustment ™~
additional images that — |
show the car in different Training
shifts from the center of Network
the lane and rotations computed

=N

road. The_ Images for fCenter camera > CNN
two specific off-center ,

shifts can be obtained | -
from the left and the Operation
right cameras.

Drive by wire
interface

from the direction of the [ | steering
command >{
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Training Data Augmentation Detalils

«  We augment the data by adding artificial shifts and rotations to teach the
network how to recover from a poor position or orientation.

« Images for two specific off-center shifts can be obtained from the left and
the right camera. Additional shifts between the cameras and all rotations are
simulated by viewpoint transformation of the image from the nearest
camera. The steering label for transformed images is adjusted to one that
woulddsteer the vehicle back to the desired location and orientation in two
seconds.

« EX.: Image from center camera shows car is driving straight; Shifted image
from left camera shows car is leaning left. Associate this image with
synthetic “turn right” command (even though human driver never issued it).
During opc)leration, if the center camera sees this image, issue “turn right”
command.

-

AN
)<
V.

-
, ————
| l' .

B e
= -
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Driving Simulator

* The simulator transforms the original images
to account for departures from the ground
truth. The magnitude of these perturbations is
chosen randomly from a normal distribution.

;g_-_-

Library of recorded test
routes: videos and time-
synchronized steering
commands

-

Shift and rotate

|

Update car
position and
orentation

: - CNN
Synthesized
image of road as
would be seen from
simulated vehicle Network
computed
steering
command

Ficure 5: Block-diagram of the drive simulator.




Q Output: vehicle control

- 10 neurons | Fully-connected layer
PillotNet [ S0neurons ] Fully-connected layer
I 100 neurons | Fully-connected layer

o ~25OK d|St|nCt \ rlatten ) Convolutional
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[ Normalizaion ]
I

Input planes
H 3@e6x200

Figure 4: CNN architecture. The network has about 27 million connections and 250 thousand
parameters. PilotNet 29




Visualization of Salient Objects

* The visualization
shows which regions
of the input image
contribute most to the
output of the network.
These regions identify fsa%
the salient objects
(highlighted in green).

* PilotNet focuses on
the same things a
human driver would,
Including lane
markers, road edges
and other cars.

https://blogs.nvidia.com/blog/2017/04/27/how-nvidias-neural-net-makes-decisions/
Bojarski M, Yeres P, Choromanska A, et al. Explaining how a deep neural network 30
trained with end-to-end learning steers a car[J]. arXiv preprint arXiv:1704.07911, 2017.
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Visualization Method

. . Output: vehicle control
Pointwise ? .
multplication Fully-connected layer

Fully-connected layer
Fully-connected layer

. . fealure map
ae‘ﬂ Pa— EA@ 1x18
E:*j/ 3x3 kernel
Convaluticnal
. . feature map
L7 X (I «— Sigen)
/ 3x3 kemel
Coanvaluticnal
. . feature map
L7 X 7 ~— @52
/ ’ 55 kemel
Convoluticnal

feature map

LT XL T Eiani

'/ x5 kemned Convaolutional
. - feature map
L7 X [ - et

/ xSkemel o lived

’ H input planes

Y a— Gt

Final visualization mask _I

1@66x200 Inpul plaras
M HDEEx200

Figure 2: Block diagram of the visualization method that identifies the salient objects.
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On-Road Tests

o After a trained network has demonstrated
good performance In the simulator, the
network Is loaded on the DRIVE PX in our
test car and taken out for a road test.

* For a typical drive in Monmouth County NJ
from our office in Holmdel to Atlantic
Highlands, we are autonomous
approximately 98% of the time. We also
drove 10 miles on the Garden State Parkway
(a multi-lane divided highway with on and off
ramps) with zero intercepts.
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Chauffeurnet [Bansal 2018]

« Bansal M, Krizhevsky A, Ogale A.
Chauffeurnet: Learning to drive by
Imitating the best and synthesizing the
worst[J]. arXiv preprint arXiv:1812.03079,

Objects, o
Traffic-lights, vl Trajectory
>ensor h Controls Threte
Perception - "ML Model:nne i &
Data Predict®® Optimizer Steering

Mid-to-Mid Driving (Waymo’s ChauffeurNet)

https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
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Abstract

Our goal is to train a policy for autonomous driving via imitation
learning that is robust enough to drive a real vehicle. We find that
standard behavior cloning is insufficient for handling complex driving
scenarios, even when we leverage a perception system for
preprocessing the input and a controller for executing the output on
the car: 30 million examples are still not enough.

— Training data: 30 million real-world expert driving examples,
corresponding to about 60 days of continual driving

We propose exposing the learner to synthesized data in the form of
perturbations to the expert’s driving, which creates interesting
situations such as collisions and/or going off the road.

Rather than purely imitating all data, we augment the imitation loss
with additional losses that penalize undesirable events and
encourage progress — the perturbations then provide an important
signal for these losses and lead to robustness of the learned model.

... MewEnvionmentState | ..

i

Fredicted

Net Input MNewural Waypoints Controls Controls Vahicle Update Envircnment Environment e ¢ P
b b urrent Pose

Met 71 Optimization 7| Real/Simulated

. Drynamic

Mew Route

Router

Figure 4: Software architecture for the end-to-end driving pipeline.



BC Experiments

« Agent trained with pure BC gets stuck behind a parked vehicle (left)
and is unable to recover from a trajectory deviation while driving
along a curved road (right). The teal path depicts the input route,
yellow box is a dynamic object in the scene, green box is the agent,

blue dots are the agent’s past positions and green dots are the
predicted future positions.

MAMNLIAL MAMUAL
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ChauffeurNet Experiments

ChauffeurNet model can now successfully nudge
around the parked venhicle (left) and recover from the
trajectory deviation to continue smoothly along the
curved road (right).

36



ChauffeurNet Input/Output

 We use a perception system that processes raw sensor information and
produces our input: a top-down representation of the environment and
Intended route, where objects such as vehicles are drawn as oriented 2D
boxes along with a rendering of the road information and traffic light states.
We present this mid-level input to a recurrent neural network (RNN), named
ChauffeurNet, which then outputs a driving trajectory that is consumed by a
controller which translates it to steering and acceleration.

Mid-level Input Representation Predicted Future Poses

Chauffeur
Net




ChauffeurNet Input/Output in Detall

Roadmap Traffic Lights Speed Limits

Planned Route Predicted Future
(Intent) Poses (Waypoints)

Perception Objects Current Agent Box Agent Pose History H

Mid-level Top-Down Input-Output Representation
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Rendered inputs and outputs

W

ity

Top-row left-to-right: Roadmap, Traffic lights (bright lines denote red light), Speed-limit, and
Planned Route (intent: ego-car should turn right).

Bottom-row left-to-right: Current Agent Box, Dynamic Boxes (history of past 1-2s), Past Agent
Poses, and the output Future Agent Poses (shown in last slide).




ChauffeurNet Architecture

« ChauffeurNet is a Convolutional Recurrent
Neural Network (RNN), consisting of the CNN
FeatureNet, and the AgentRNN.

* Trained with IL, guided by ground truth data
(green) and loss functions (blue)

— 26M examples from real driving logs

 Compare to PilotNet

— PilotNet uses CNN to map from current camera
Image to steering angle, no history info is use.

— ChauffeurNet uses RNN, and exploits the history
(past agent location and past prediction for a few
seconds) to make better predictions and decisions.

40
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Figure 2: Training the driving model. (a) The core ChauffeurNet model with a FeatureNet
and an AgentRNN, (b) Co-trained road mask prediction net and PerceptionRNN, and (c)
Training losses are shown in blue, and the green labels depict the ground-truth data. The
dashed arrows represent the recurrent feedback of predictions from one iteration to the next. 1
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Fig. 3 1llustrates the ChauffeurNet model in more detail. The rendered mputs shown in
Fig. 1 are fed to a large-receptive field convolutional FeatureNet with skip connections, which
outputs features F' that capture the environmental context and the intent. These features
are fed to the AgentRNN which predicts the next point pj, on the driving trajectory, and the
agent bounding box heatmap B}, conditioned on the features F' from the FeatureNet, the
iteration number k € {1,..., N}, the memory Mp_; of past predictions from the AgentRNN,
and the agent bounding box heatmap Bj_, predicted in the previous iteration.

Pk, By = AgentRNN(k, F, My_1, By_1) (2)
Mg
Y- add
Memory, M k-1 TSel I E—
\‘“x“ My
Past IS

Agent . .
Rendered Locations s \
Inputs /'
Predicted
k | AgentRNN

Feature Location, pk

Net
Features, F

o
T

set -

e

-

--—==""" Predicted
Agent
Box, B

Mg l
Agent :""
Box, B k-1

Last
(a) (b)

Figure 3: (a) Schematic of ChauffeurNet. (b) Memory updates over multiple iterations. 42




Beyond Pure Imitation

« Synthesizing Perturbations

* Beyond the Imitation Loss
— Collision Loss
— On Road Loss
— Geometry Loss
— Auxiliary Losses

 Imitation Dropout
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Trajectory Perturbation

* Running the model as a part of a closed-loop system over time can
cause the input data to deviate from the training distribution. To
prevent this, we train the model by adding some examples with
realistic perturbations to the agent trajectories.

(a) Original (b) Perturbed

Figure 5: Trajectory Perturbation. (a) An original logged training example where the agent
is driving along the center of the lane. (b) The perturbed example created by perturbing
the current agent location (red point) in the original example away from the lane center
and then fitting a new smooth trajectory that brings the agent back to the original target

location along the lane center.

44



Collision Loss

 Since our training data does not have any
real collisions, the idea of avoiding collisions
IS Implicit and will not generalize well. To
alleviate this issue, we add a specialized loss
that directly measures the overlap of the
predicted agent box B;, with the ground-truth
boxes of all the scene objects at each
timestep

* (Detalls of On Road Loss, Geometry Loss,
Auxiliary Losses omitted.)

1
- __§§ 9t (.
Leollision = WH BJ[L-(II.‘-._ yj . {r)bjﬂ (?y) (8)

£ Y

where By, is the likelihood map for the output agent box prediction, and Obj;" is a binary
mask with ones at all pixels occupied by other dynamic objects (other vehicles, pedest-rians.S
4
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9.3 Imitation Dropout

Overall, our losses may be grouped into two sub-groups, the imitation losses:

*{:in'r,it — {i:;pa £B! *{:Ei': ‘Cp—subpi:w!: ﬁﬁp{i{id} (13)

and the environment losses:

Leny = {ﬁr;uliiﬁiafaa *{:cm'rum.f: “Cgﬁﬂﬂ’h E‘ijﬁf:fﬁv "'::'I"Uild} (14)

The imitation losses cause the model to imitate the expert’s demonstrations, while the
environment losses discourage undesirable behavior such as collisions. To further increase
the effectiveness of the environment losses, we experimented with randomly dropping out
the imitation losses for a random subset of training examples. We refer to this as “imitation
dropout”. In the experiments, we show that imitation dropout yields a better driving model
than simply under-weighting the imitation losses. During imitation dropout, the weight on
the imitation losses wjm is randomly chosen to be either 0 or 1 with a certain probability
for each training example. The overall loss is given by:

I::U}irm't Z ’E"‘u}ﬁn’u Z ¢ (15)

fEE:’mit EE‘C:mv
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Gets Stuck

Model Description Wiyt Wenn

My Imitation with Past Dropout 1.0 0.0

My M + Traj Perturbation 1.0 0.0

Mo My + Environment Losses 1.0 1.0

M3 M with less imitation 0.5 1.0

My M with Imitation Dropout Dropout probability = 0.5 (see Section 5.3).
Table 3: Model configuration for the model ablation tests.

Nudging ?

for a Passes

Parked I Collides

Car [video]

Trajectory
Perturba-
tion [video]

Slowing for
a Slow Car
[video]

Recovers
Gets Stuck

Slows Down
Colhdes
Gets Stuck

Figure 7: Model ablation test results on three scenario types.




IL with Safety [Chen 2019]

* Chen J, Yuan B, Tomizuka M. Deep
Imitation learning for autonomous driving
In generic urban scenarios with enhanced
safety[J]. arXiv preprint arXiv:1903.00640,

Objects, S
Traffic-lights, S Trajectory
Sensor Beh Controls Throttle
Biata Perception it ML Model:nne Orslmizan &

Steering
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Abstract

The decision and planning system for AD in urban
environments is hard to design. Most current methods are to
manually design the driving policy, which can be sub-optimal
and expensive to develop and maintain at scale. Instead, with
iImitation learning we only need to collect data and then the
computer will learn and improve the driving policy
automatically. However, existing imitation learning methods
for autonomous driving are hardly performing well for complex
urban scenarios. Moreover, the safety is not guaranteed when
we use a DNN policy. In this paper, we proposed a framework
to learn the driving policy in urban scenarios efficiently given
offline collected driving data, with a safety controller
Incorporated to guarantee safety at test time. The
experiments show that our method can achieve high
performance in realistic three-dimensional simulations of
urban driving scenarios, with only hours of data collection and
training on a single consumer GPU.
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Framework Overview

- The agent takes information from the perception and
routing modules, generates a bird-view image and
outputs the planned trajectory using a DNN policy
network. The safety & tracking controller then
calculates the safe control command to be applied to
the ego vehicle in the driving environment

Intelligent Driving Agent |

|/~ Deep Imitation Learning Planner N\

I
- >~

Bird-view Image Deep Neural Policy Safety & Tracking Controller

Perception &
Routing

Planned || Tracking Control Safety
lrr-'ijc'-cmr:-'| Controller | Command | Controller

| I
S A

'\\x . 0 /'l "!HIL :
— . Control !

------------------------------------------------------------------

Command
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Deep Imitation
Learning

 DNN output is future
trajectory in a
preview horizon H:
[ Xt 41 Yer1s - Xewrr Vea
, which Is tracked by
a low-level controller
(PID, MPC).

Routing Traffic Light

i
|
I
. . I
I
I
|
I
I
I
I
I
I
I
I
I
I
1
1
1

Historical Detected Objects Historical Ego States

=

Deep Neural Policy  Planned Trajectory

1l

Fig. 2. Observation-action Representation of our deep imi-
tation learning planner. The bird-view observation combines
information of HD map, routing, traffic light, historical

Bird-view [t
Image

detected objects and historical ego states. The output action
is a planned trajectory represented by a vector.
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DNN Architecture & Loss Function

 Based on CNN (VGGNetl16). Output layer
has H units corresponding to H predicted
trajectory points (X:4;, V¢+;), i € [1, H].
 Loss function to be minimized:
- L = %Zliil d?+i
— where displacement error d;,; between the

expert’'s motion trajectory point position
(x¢+1, Ve+;) @nd the predicted point position

(£t+i»5;§+i): diyi = ((xt+i — 3?1:+i)2 + Veri —
Veri)?)?
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Data Collection and Augmentation

« Based on CARLA simulator.

« At data collection phase, we use a model-based controller to
act as the expert. The controller is same as other agents,
which performs normal urban driving behaviors and make
random turns at intersections. When ego vehicle is running,
we record the rendered bird-view images and the
corresponding ego vehicle states (global positions and yaw
angle) every 0.1 second.

« We introduce control noise to the expert controller during the
data collection phase, and let the expert recover from the
perturbation. The control noise is added periodically every 8
seconds, and will last for 1 second. The vehicle’s pose might
be pushed away from the way points. The expert then
provides demonstrations of recovering from perturbations.
The states during the noise phase are removed in order not to
contaminate the dataset
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Trajectory Tracking Controller

« Given the planned future trajectory
[Xer1, Vet o Xevr, Veen ], the tracking controller
outputs the desired acceleration a; and steering angle
d; to drive the vehicle to follow the trajectory. A way
point (X¢ym, Ye+m) IS Selected with m € [1,H — 1] (we
pick m = 5 here).

— At any time instant t, aim for the 5 point (X5, ¥¢+5) ON
the planned trajectory

« Decomposed into longitudinal controller and lateral
controller, both PID controllers.

.........................................................................

Intelligent Driving Agent '
i /" Deep Imitation Learning Planner Y g g Ag !

~

! | Bird-viewImage Deep Neural Policy Safety & Tracking Controller

i n i
A \ = :
' - e - 1
! - —— annec racking || Contro Safety I
_— - = '
! o —_— rajectory || Controller [JComman Controller !
1

] -~ | /
i R\ S :
A } / Safe i
1 ~ ~ i
. _ h

Perception &
Routing
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Longitudinal Controller

« Target speed Is set to be:

1 A A~ A A~
— Vg = I | Xtrms1 Verma1) — Eeamo VeI l2

— Where dt Is the time interval between two
subsequent time steps.

* The desired acceleration is obtained using
PID control to minimize speed tracking

error

- e,(t) = vg —v(t)
— where v(t) Is current speed of ego vehicle.
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< Not
covered Lateral Controller
In exam
 The normal vector from the ego vehicle position to the target way
point is

(Xe+mVt+m)
||(£t+m:37t+m)”2
« The normal vector of the ego vehicle heading is
- MNgyo = (COSO;,sinb;)
— where 6; is the heading angle of the ego vehicle
« Then the desired steering angle is obtained using PID control to
minimize the heading error:
- eyaw(t) = COS_l(nego (t) - nego(t))
« Recall vector dot product:x -y = ||x]|||y|| cos 6

— Nggrget =

0 = arccos(z+y/1z11Y1)

Y
https://en.wikipedia.org/wiki/Dot_product
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Safety Enhancement Controller

 The acceleration and steering command [5 ] calculated by

the trajectory tracking controller does not guarantee safety,
e.g, no collisions to other agents.

- Safety controller for collision avoidance will modify [5 ] to

enhance safety, if their original values are not safe.
« The safe set algorithm: for each time step t, calculate a

control safe set Ug(t), s.t. if control command u(t) = [5 ] €
Us(t), the ego vehicle would stay safe. ‘

.........................................................................

Intelligent Driving Agent '
i /" Deep Imitation Learning Planner Y g g Ag !

| 4 ~
! | Bird-viewImage Deep Neural Policy ( Safety & Tracking Controller
Perception & i Tracking Control Safety
Routing rajectory| | ‘Controller | Comman | | Controller

57



Not covered

in exam Safety Index

Safety index ¢ (x): function of vehicle state x, which includes states (position, velocity,
heading) of both ego vehicle (x,) and a surrounding object (x;). The system is considered
safe if p(x) < 0Ad = 0, and unsafe otherwise.

¢(x) =D — d*(x) — ad(x)

where d(x) = ||po — pj]TQ[po — p;| is shaped distance between ego vehicle and
surrounding vehicle. p, indicates position of ego vehicle, and p; indicates position of the

surrounding object. Q is a 2 x 2 matrix s.t. [py — pj]TQ[pO —p;| = 1 encodes an elllipse

B

around the surrounding vehicle with long axis equal to 1 and short axis equal to
IS the aspect ratio of the ellipse. « is a tunable parameter.

, Where

D should be b Lane Id o ~
I:p - pj ]T Q[p K pf ] x D2 3 [\( lllnﬂnncgi;}-

Reachable ares
under the
baseline planner

Fig. 3: lllustration of the safety index. Gray is the ego vehicle,
red is a surrounding vehicle. The safety constraint is similar
to the ellipse around the red vehicle, while also considering
the relative speed of the two vehicles.

Automated

Vehicle @

course

Reachable area
under the
baseline planner

= 2 "Predicted

(b) Illustration of the scenario in an unstructured environment.
Figure 2. The function of the ROAD system.
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* ¢(x) =D —d?*(x) — ad(x)

covered | Safety Index Illlustration

e dp(x)<0=2d?(x)+ad(x)=D

- The larger the distance d(x), the larger relative speed d(x)
(positive speed means moving away from each other), the

safer it is.

£ —_— ’ S— %
". [ > il’”l n { |

(b) Us when the distance is large enough (¢ < 0)

e

~ P —
-y - @D

4 N —— s
- —— e

(c) Us when the distance is small (¢p > 0)

([Ro d > dn n '

Wal
/////////////////////////////

(d) Us with boundary constraint (¢ < 0, ¢qy = 0)
Figure 7. The safety constraint Us with respect to a relatively static front
vehicle.

(a) Us with decreasing relative distance (¢ > 0)

8 e D

Rcl.mw]
\ m. (1 < (Ill‘ n “ . .—.\—1‘““”1
\y : N —

—

(b) U with increasing relative distance (¢ > 0)
Figure 8: The safety constraint Us with respect to a relatively moving front
vehicle.



Paper contains typos:

_ &)

| Not State Safe Set and Control Safe
_covered S et
IN exam

State safe set X;: level set of the safety index

- Xg={x:p(x) <0} = {x:d?*(x) + ad(x) = D}

— Itinjects an ellipse constraint as shown in Fig. 3, also considering the relative speed
between the ego and surrounding object.

Control safe set

- Us(®) ={u®):¢ < —nif ¢ = 0} where n > 0 is some margin. It is easy to prove that if
x(0) € X¢ Au(t) € Us fort = 0, then x(t) € X,

If we approximate ego vehicle dynamics to a control affine function x, =
f(xq) + Bu, the control safe set can be written as:

- Us(t) = {u(t): L)u(t) < S(t) if p = 0}
~ where L(t) =22 B,S(t) =n — 224, — 22 f

— Derivation: ¢(x) = e 0 T 5 X = :_i(f + Bu) _|_:_ij <n

If there are multiple surrounding objects, we can calculate the intersection of
the control safe set for each object, which is a convex polytope, denoted as

Us(1).

s (t) ={u(t) : L(t)u(t) < S(t) if ¢ >0}

where L (t) = 22B and S (t) = —n — 22, — % , T
3

and x; are the states of the ego and surrounding vehicle,
respectively. 60
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a
e Control command u(t) = [521 from the

trajectory tracking controller may be unsafe.
The safety controller maps it into the control
safe set Us by solving Quadratic
Programming (QP) problem, to stay in Us
while minimizing its deviation from the
potentially unsafe u(t) :

- u'(6) = argmingey, ; [u — u(®]"W[u - u(t)]
— where W is a 2 X 2 weight matrix
* We thus obtain the modified safe control

command u*(t) = gi].
t
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Conditional IL (CIL) [Codevilla 2018]

* Codevilla, Felipe, et al. "End-to-end driving
via conditional imitation learning."” 2018
IEEE International Conference on
Robotics and Automation (ICRA). IEEE,

2018.

Sensor Bekavial X —— Throttle
Data erceptioENd-to=-End Trained-Mk Model ... -
| eering
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Standard IL Limitations

Standard IL training data is a set of observation-action pairs
D{(o;, a;)}iL; generated by expert. We train a function (DNN)
to mimic expert actions a;

. m@m 2.i l(F(o0;; 0),a;) (Note different notations: here o; is the same

as state s; we saw before, e.g., video captured by front camera.)

« An implicit assumption of this formulation is that the expert’s
actions are fully explained by the observations; that is, there
exists a function E that maps observations to the expert’'s
actions: a; = E(o0;)

IL works well if this assumption holds, e.g., for lane following.
However, in more complex scenarios the assumption breaks
down. Consider a driver approaching an intersection. His
subsequent actions are not explained by his observations, but
are additionally affected by his intention (do | want to turn left,
go straight or turn right?). The same observations could lead
to different actions, depending on this intention.
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Command Conditional IL

At training time, command c is provide by expert, e. g., go (left, straight,
right) a few seconds before reaching next intersection.

* e.g., human drivers already use turn signals to communicate their intention when
approaching intersections; these turn signals can be used as commands.

« The training dataset becomes D{{o;, ¢;, a;)}}_,. Command-conditional IL objective
man L(F(o;,¢;;0),a;)

At test time, commands can come from a human user (passenger), or a

high-level plannlng module (with A*, Dijkstra...). They affect behavior of the
controller in two possible architectures.

* (My comment: shouldn’t the high-level planner always be presentin any AD system?)
ICRA 2018 Spotlight Video

— https://www.youtube.com/watch?v=GNVHds mvlq

Ci

—_— Controller —_— —_—

Fig. 2. High-level overview. The controller receives an observation o,
from the environment and a command ¢;. It produces an action a; that
affects the environment, advancing to the next time step.
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https://www.youtube.com/watch?v=GNVHds_mvlg

Two Architectures

« Each observation o = (i, m) comprises
— Front camera image i
— and a low-dimensional vector m (e.g., car speed)

« Action a = (s, a) (steering angle and acceleration)

*  Loss function for each sample: [(a,ag) = 1((s, @), (sger age)) = ||s = sqe||” +
Aalla — age||” (gt is ground truth from expert demo)
« Left: Command c is one of the inputs.

« Right: Command c acts as a switch.
CNN

. FCN (Fully Connected Network)
7 | 1(i) _j ( 7 j
Image; o !C\\‘ | a8 o

o ©

} ”Elgn 4 ( C>AcUtion I
0l

Measurements )
m

s
—
N\
O
 —
—

o
(A a 2
g A Measurements ) [ = ] . L(> 0
(/‘—1 JJ m U | M(m)

Command ¢ Actlon

(or vector to goal)

Cle) Command C

(a) (b)
Fig. 3. Two network architectures for command-conditional imitation learning. (a) command input: the command is processed as input by the network,
together with the image and the measurements. The same architecture can be used for goal-conditional learning (one of the baselines in our experiments),
by replacing the command by a vector pointing to the goal. (b) branched: the command acts as a switch that selects between specialized sub-modules.
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Data Augmentation

0.3
0.2
0.1
0.0
-0.1

-0.2

Steering

-0.3

-0.4

— NOiSE
-0.5 ™ Control
—— Resultant

-0.6
00 05 1.0 15 20 25 3.0 (c)

Time

Fig. 4. Noise injection during data collection. We show a fragment from
an actual driving sequence from the training set. The plot on the left shows
steering control [rad] versus time [s]. In the plot, the red curve is an injected
triangular noise signal, the green curve is the driver’s steering signal, and
the blue curve is the steering signal provided to the car, which is the sum
of the driver’s control and the noise. Images on the right show the driver’s
view at three points in time (trajectories overlaid post-hoc for visualization).
Between times 0 and roughly 1.0, the noise produces a drift to the right,
as illustrated in image (a). This triggers a human reaction, from 1.0 to 2.5
seconds, illustrated in (b). Finally, the car recovers from the disturbance, as
shown in (c). Only the driver-provided signal (green curve on the left) is
used for training.
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Comparisons

View representation:
— PilotNet and CIL [Codevillal8] use front camera view

— ChauffeurNet and IL with Safety [Chen19] use bird-view representation,
which helps simplify the visual information while maintaining useful
information for driving.

Where DNN is used:
— PilotNet and CIL are end-to-end.

— ChauffeurNet and IL with Safety are mid-to-mid (DNN used for behavior
prediction and planning to generate trajectory).

DNN Architecture
— PilotNet, CIL and IL with Safety use CNN, input is current video frame
only, with no history info.

» | find it strange, as you can input a past history of N frames to capture recent
history.

— ChauffeurNet uses Convolutional RNN with an explicit memory, taking
into account recent history.

CIL : adds a condition variable to help with the decision process at
Intersections.

IL with Safety has a safety controller that limits final control
command to safe set.
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[IMuller 2018]

« Muller, Matthias, et al. "Driving policy
transfer via modularity and
abstraction." arXiv preprint
arxiv:1804.09364 (2018). (KAUST, Intel

Labs)
Objects, T
Traffic-lights, E Trajectory
Sensor | Controls Throttle
Perception ML Model e &
Data ‘ Optimizer Steering



Abstract

End-to-end approaches to autonomous driving have high
sample complexity and are difficult to scale to realistic urban
driving. Simulation can help end-to-end driving systems by
providing a cheap, safe, and diverse training environment. Yet
training driving policies in simulation brings up the problem of
transferring such policies to the real world. We present an
approach to transferring driving policies from simulation to
reality via modularity and abstraction. Our approach is
Inspired by classic driving systems and aims to combine the
benefits of modular architectures and end-to-end deep
learning approaches. The key idea is to encapsulate the
driving policy such that it is not directly exposed to raw
perceptual input or low-level vehicle dynamics. We evaluate
the presented approach in simulated urban environments and
In the real world. In particular, we transfer a driving policy
trained in simulation to a 1/5-scale robotic truck that is
deployed in a variety of conditions, with no finetuning, on two
continents.

69



Modular Architecture

* The perception module takes as input a raw RGB image and
outputs a segmentation map.

« The driving policy then takes this segmentation as input and
produces waypoints indicating the desired local trajectory of
the venhicle.

« The low-level controller, given the waypoints, generates the
controls: steering angle and throttle.

* Driving Policy Transfer via Modularity and Abstraction
— https://www.youtube.com/watch?v=BrMDJgl6H5U

F’ercepliﬂn module Driving policy Controller
fﬂ_ B A
fﬁm“” : o |-
Image vy Segmentation p. — S Waypoints Euntrc:l
3 Command ¢ W

Figure 1: System architecture. The autonomous driving system comprises three modules: a percep-
tion module implemented by an encoder-decoder network, a command-conditional driving policy
implemented by a branched convolutional network, and a low-level PID controller. 0


https://www.youtube.com/watch?v=BrMDJqI6H5U

Perception Module for Image Segmentation

* We use a per- -pixel binary segmentation of the image into “road” and
“not road” regions. It abstracts away texture, lighting, shading, and
weather, leaving only a few factors of variation: the geometry of the
road, the camera pose, and the shape of objects occluding the road.
Such segmentation contains sufficient information for following the
road and taking turns, but it is abstract enough to support transfer.

« Generalization to new environments (e.g., different weather, country,
etc.) or transfer to new domains (e.g., simulation to physical world)
can be achieved by appropriately tuning the perception module.

Simulation Simulation Real world Real world

Figure 7: Sample outputs of the segmentation network trained on Cityscapes and tested in simulation
and 1n the real world. The images are at the resolution used by the network — 200 x 88 pixels. The
network works well in typical scenes both in simulation and in the real world, but accuracy drops
under complex lighting conditions and in unusual situations.
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Driving Policy Module

* Driving policy trained with Conditional IL [Codevilla 2018].

« At every frame, we predict two waypoints. One would be sufficient to control
steering, but the second can be useful for longer-term maneuvers, such as
controlling the throttle ahead of a turn. The waypoints w; are encoded by the
distance r; and relative angle ¢; with respect to the heading direction:

- ¢y =2(wv) 1 = ||l
— Wefixr, =5,r, = 20, and only predict angles ¢, ¢,.

—e AN IH'.'LIZIIIIIH W

N — ) Waypoint w;

-~ relative angle Py

S—

Figure 2: Waypoints are encoded by the distance to the
vehicle and the relative angle to the vehicle’s heading. 72



Loss Function for Training Driving
Policy

» We start by collecting a training dataset {{o;, ¢;, a;)}/=; of
observation-command-action tuples, from trajectorles of an
expert driving policy.

— Observation o; can be an image or a segmentation map;
— Action a; can be either vehicle controls (steering, throttle) or
waypoints;

— Command c; Is a categorical variable indicating one of three

high-level navigation instructions (left, straight, right) at the next
Intersection.

* A function approximator f (a DNN) with learnable parameters
0 is trained to predict actions from observations and
commands: 8" = argmlnz [(a; = f(0;,¢,0),a4¢)

— L2 Loss function for each sample l(al, agt)

l((sl,a) (Sgt, agt)) ||sl sgt” + 1 ||al agt” (ag4¢ is ground
action by expert).
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The Expert Agent

* We program an expert agent to drive |
autonomously based on privileged information:
precise map and location of the ego-vehicle.

« A global planner is used to randomly pick routes
through a town and produce waypoints along the
route. A PID controller is used to follow these
waypoints.

* |n order to increase the diversity of the dataset,
the car is randomly initialized within the lane (not
always in the center). In total, we record 28 hours
of driving. To improve the robustness of the
learned policy, we follow [Codevilla 2018] and
Introduce noise into the controls in approximately
20% of the data.
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Data Augmentation

* We performing augmentation on the input
Images, not the segmentation maps

* When training segmentation networks we
randomly perturb the input images:

— Brightness, Saturation, Hue, Contrast
* When training driving policies, we
randomly perturb the input images:

— Gaussian blur, Additive Gaussian noise,
Spatial dropout, Brightness additive,
Brightness multiplicative, Contrast
multiplicative, Saturation multiplicative...
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Simulation Environment

Maps Weather 1 Weather 2

Town 1

Town 2

Figure 3: Simulation environment. Maps of the two towns, along with example images that show
the towns in two conditions: clear daytime (Weather 1) and cloudy daytime after rain (Weather 2).
We use Town 1/Weather 1 during training. The other three combinations (Town 1/Weather 2, Town
2/Weather 1, and Town 2/Weather 2) are used to evaluate generalization in simulation. Note the
significant visual differences between the towns and weather conditions.

76



Performance Evaluation

* ImgZ2ctrl: end-to-end
* Img2wp: end-to-mid
» seg2ctrl: mid-to-end

 Ours: mid-to-mid

Town 1
m im Weather 1
_] Town 1
im Weather 2
o Town 2
] in Weather 1
o ANl RN g Town

) Weather 2
img2etrl img2etrl+  img2wp  img2wp+ img2wp+dr segletrl  segletrl+ ours ours+

Figure 4: Quantitative evaluation of goal-directed navigation in simulation. We report the success
rate over 25 navigation trials in four town-weather combinations. The models have been trained
in Town | and Weather 1. The evaluated models are: img2ctrl — predicting low-level control from
color images: img2wp — predicting waypoints from color images; seg2ctrl — predicting low-level
control from the segmentation produced by the perception module: ours — predicting waypoints
from the segmentation produced by the perception module. Suffix ‘+° denotes models trained with
data augmentation, and “+dr’ denotes the model trained with domain randomization.



Conditional Affordance Learning (CAL)
[Sauer 2018}

« Sauer A, Savinov N, Geiger A. Conditional
affordance learning for driving in urban
environments|[J]. arXiv preprint
arxiv:1806.06498, 2018. (ETHZ, TU
Munich and Max Planck Institute)

. . No planner. Trajectory is
Objects, Object | replaced with affordances
Traffic-lights, ... Futures 7
Sensor ' Behavior Controls TRBEHE
Perception N Planner i &
Data Prediction Optimizer Steering

End-to-Mid
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Abstract

Most existing approaches to autonomous driving fall into one of two
categories: modular pipelines, that build an extensive model of the
environment, and imitation learning approaches, that map images
directly to control outputs. A recently proposed third paradigm, direct
perception, aims to combine the advantages of both by using a
neural network to learn appropriate low-dimensional intermediate
representations. However, existing direct perception approaches are
restricted to simple highway situations, lacking the ability to navigate
Intersections, stop at traffic lights or respect speed limits. In this
work, we propose a direct perception approach which maps video
Input to intermediate representations suitable for autonomous
navigation in complex urban environments given high-level
directional inputs. Compared to state-of-the-art reinforcement and
conditional imitation learning approaches, we achieve an
Improvement of up to 68% in goal-directed navigation on the
challenging CARLA simulation benchmark. In addition, our approach
Is the first to handle traffic lights and speed signs by using image-
level labels only, as well as smooth car-following, resulting in a
significant reduction of traffic accidents in simulation.

https://autonomousvision.github.io/conditional-affordance-learning/
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Conditional Affordance Learning (CAL)

Video Input

~

Directional Input /
@ﬁ-

Neural

Network

Affordances
Relative angle = 0.01 rad
Centerline distance=0.15m

Red light = False

Control
Commands

e Controller

Figure 1: Conditional Affordance Learning (CAL) for Autonomous Urban Driving. The input
video and the high-level directional input are fed into a neural network which predicts a set of
affordances. These affordances are used by a controller to calculate the control commands.
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Affordances

vehicle /
Type Conditional Affordances Acronym Range of values I =15 m\}\\ )
cemterliee__ 4 A
discrete No Hazard stop - € {T'rue, False}
hazard stop
. (for pedestrian) f ¢
Red Traffic Light - € {T'rue, False}
!/
Speed Sign [km/h] - € {None, 30, 60,90} /
ARY 4
continuous No Distance to vehicle [m] £ € [0, 50] 77 .
/ : j A
continuous Yes Relative angle [rad] P € [—m, ] /
/
Distance to centerline [m] d €[-2,2] f /

Figure 3: Affordances. Left: We categorize affordances according to their type (dis-
crete/continuous) and whether they are conditional (dependent on directional input) or uncondi-
tional. Right: Illustration of the affordances (red) and observation areas used by our model.
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Figure 2: Overview of our System. The CAL agent (top) receives the current camera image and
a directional command (“straight”,“left”,"right”) from CARLA [27]. The feature extractor converts
the image into a feature map. The agent stores the last N feature maps in memory, where N 1s
the length of the input sequence required for the perception stack. This sequence of feature maps,
together with the directional commands from the planner, are exploited by the task blocks to predict
affordances. Different tasks utilize different temporal receptive fields and temporal dilation factors.
The control commands calculated by the controller are sent back to CARLA which updates the
environment and provides the next observation and directional command.



Perception DNN

* Loss function £ = ¥3_, H; + Y- MAE,
- H;: Cross-Entropy Loss for classification;
- MAE,: Mean Absolute Error for regression
« Condition d acts as a switch in task blocks for “relative angle” and “distance to centerline”.

Sequence Time distributed Sequence ol i
of images feal e feature maps Task Blocks Predictions
Hazard Stop
VGG 16 77— L By S Uk Faiag

tmage, — feature map, Red light

image, L 7 1 feature map, € (True, False)

F—r T
Speed sign
P—r T

Vehicle distance

image, feature map,

ps € [None,30,60,90}

p——RE PP P4 €[050]

imagey .. ; feature mapy . ; St/ Relaﬁveangb

2 VGG 1
imagey_, in : : feature mapy . ‘s \ .D
| COny 1yl 1
St 4 /
S o NGNS
viala it ! W\

i
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Longitudinal Control

The states are ordered in descending importance from top-to-bottom as indicated by the
color intensity. Control laws in each state:
over_limit: brake = .3 - ;f(’f)
- v(t): current speed; v*(t): speed limit
v(t)

red_light: brake = .2 - —
30

— We use smaller multiplier .2 to slow down gradually; 30km/h is the typical speed zone where red
lights are located.

hazard_stop: brake = 1 (full braking)
following and cruising: PID controller tuned with Ziegler-Nichols.
Lateral control: standard Stanley controller (omitted)

My thoughts: control based on affordances instead of a planned trajectory (waypoints).
States

if hazard stop — True

Affordances | elif speed = linmt - 15 . Throttle
> over_limit Brake
elif veh distance = 35 .
= * following
else N ..
* cruising
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Visualization

We visualized which parts of the image the network attends to when
predicting a specific affordance. We found that the network “looks”
at the relevant parts of the image similar to what a human would do.

e.g., when looking for a red light it observes the sides, where traffic
lights are usually located. (Green color indicates no red light.)

It recognizes crossing pedestrians as obstacles even before they
appear in the input image by observing their shadows.

.'

g ' -
.
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Performance Evaluation

 MP: Modular Pipeline

» CIL: Conditional IL [Codevilla 2018]
 RL: A3C [Mnih 2016]

Table 1: Quantitative Evaluation on Goal-Directed Navigation Tasks. We show the percentage
of successfully completed episodes per task and compare CAL to a Modular Pipeline (MP) [29],
Conditional Imitation Learning (CIL) [21] and Reinforcement Learning (RL) [29].

Training conditions New weather New town New town and
g new weathe
Task MP CIL RL CAL MP CIL RL CAL MP CIL RL |JCAL MP CIL RL | CAL
Straight 98 95 89 100 100 08 86 100 92 97 74 03 50 80 68 94
One turn 82 80 34 97 05 90 16 96 61 59 12 82 50 48 20 72
Navigation 80 36 14 92 94 84 2 90 24 40 3 70 47 44 6 68
Nav. dynamic 77 83 7 83 89 82 2 82 24 38 2 64 Be 42 -+ 64
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CILRS [Codevilla 2019]

* Codevilla F, Santana E, Lopez A M, et al.
Exploring the limitations of behavior
cloning for autonomous
driving[C]//Proceedings of the IEEE
International Conference on Computer
Vision. 2019: 9329-9338. (U Barcelona,
KAUST, Intel Labs)

Throttle

SR | perceptioEnd-t@=End Trained-ML Model"""° 8

Steering
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Abstract

* Wwe propose a hew benchmark to experimentally

Investigate the scalability and limitatio

ns of

behavior cloning. We show that behavior cloning

leads to state-of-the-art results, includ
unseen environments, executing com

INg In
nlex lateral

and longitudinal maneuvers without these

reactions being explicitly programmed

. However,

we confirm well-known limitations (due to dataset
bias and overfitting), new generalization issues
(due to dynamic objects and the lack of a causal
model), and training instability requiring further

research before behavior cloning can
real-world driving.

graduate to
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Limitations

« Bias in Naturalistic Driving Datasets

Most of real-world driving consists in either a few simple behaviors or a heavy tail of
complex reactions to rare events.

 Causal Confusion

Spurious correlations cannot be distinguished from true causes in observed training
demonstration pattern.

The inertia problem: When the ego vehicle is stopped (e.qg., at a red traffic light), the
probability it stays static is overwhelming in the training data. This creates a spurious
correlation between low speed and no acceleration, inducing excessive stopping and
difficult restarting in the imitative policy. Although mediated perception approaches
that explicitly model causal signals like traffic lights do not suffer from this theoretical
limitation, they still under-perform end-to-end learning in unconstrained environments,
because not all causes might be modeled (e.g., some potential obstacles) and errors
at the perception layer (e.g., missed detections) are irrecoverable.

« High variance

With a fixed off-policy training dataset, one would expect CIL to always learn the same
policy in different runs of the training phase. However, the cost function is optimized
via Stochastic Gradient Descent (SGD), which assumes the data is (i.i.d independent
and identically distributed). When training a reactive policy on snapshots of longer
human demonstrations included in the training data, the i.i.d. assumption does not
hold. Consequently, we might observe a high sensitivity to the initialization and the
order in which the samples are seen during training.

89



CILRS

« We propose a robustified CIL model designed to improve on [Codevilla
2018]
Deeper Residual Architecture (ResNet34)

— Speed Prediction Regularization: jointly train a sensorimotor controller that predicts
action a, with a network that predicts the ego vehicle’s speed v,. this joint optimization
enforces the perception module to put speed-related features (e.g., traffic lights) into
the learned representation, and alleviates the Causal Confusion problem.

— (e.qg., free space, curves, traffic light states, etc).
— Use L1 Loss instead of L2 Loss, as it is more correlated to driving performance
— Collect demonstrations from an expert game Al using privileged information to drive

correctly (i.e. always respecting rules of t Predicted
Speed
Perception Module ~ D S Vp
A Sa(P(i))
Image N
= i ResNet | " g
j 2
Ii) 7 \
~ Conditional Action
N Module a
o Measured el
_ || Speed Se ﬁfij
1 ) —>
— Vin
i Command
Measurements C = ] m o[ c
m HU | M(m) Ac‘uon
Command € Figure 2. Our proposed network architecture, called CILRS, for
end-to-end urban driving based on CIL [10]. A ResNet perception
Original Network [Codevilla 2018] module processes an input image to a latent space followed by two

prediction heads: one for controls and one for speed.



NoCrash Benchmark

* More tasks and metrics than the original CARLA
benchmark.

* We propose three different tasks, each one
corresponding to 25 goal directed episodes. In
each episode, the agent starts at a random
position and is directed by a high-level planner into
reaching some goal position. The three tasks have
the same set of start and end positions, as well as
an increasing level of difficulty:

— Empty Town
— Regular Traffic
— Dense Traffic

* We end the episode as failing when any collision
bigger than a fixed magnitude happens
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Performance Evaluation

« CIL: Conditional IL [Codevilla 2018]

« CAL: Conditional Affordance Learning [Sauer
2018]

« MT: Multitask [Li 2018] (not discussed)
* CILR: CIL with ResNet but no Speed

prediction
 CILRS: CIL with both ResNet and Speed
prediction
Training conditions New Town & Weather

Task CIL[10] CAL[:6] MT[25] CILR CILRS CIL[!10] CAL[:0] MT[25] CILR CILRS
Empty 79+1 81+1 844+1 9241 9742 2441 25+ 3 57+0 662 90+2
Regular 60 L1 732 54+2 7245 8340 13+ 2 14+ 2 3242 5H54+2 5642
Dense 2142 42+ 3 13£4 2841 4242 2+0 10+0 14+2 13+£4 24-+£8

Table 2. Results on our NoCrash benchmark. Mean and standard deviation on three runs, as CARLA 0.8.4 has significant non-determinism.
YL



Learning by Cheating (LBC) [Chen 2019]

* Chen D, Zhou B, Koltun V, et al. Learning
by cheating[J]. arXiv preprint
arxiv:1912.12294, 2019. (UT Austin, Intel

Sensor
Data

Labs)
Objects, Object Tateior
Traffic-lights, ... Futures ) y
Perception Benau oy Planner S anirls
B Prediction Optimizer

End-to-Mid

Throttle

&
Steering
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Abstract

Vision-based urban driving is hard. The autonomous system needs to learn
to perceive the world and act in it. We show that this challenging learning
problem can be simplified by decomposing it into two stages.

We first train an agent that has access to privileged information. This
privileged agent cheats by observing the ground-truth layout of the
environment and the positions of all traffic participants.

In the second stage, the privileged agent acts as a teacher that trains a
purely vision-based sensorimotor agent. The resulting sensorimotor agent
does not have access to any privileged information and does not cheat.

This two-stage training procedure is counter-intuitive at first, but has a
number of important advantages that we analyze and empirically
demonstrate. We use the presented approach to train a vision-based
autonomous driving system that substantially outperforms the state of the
art on the CARLA benchmark and the recent NoCrash benchmark. Our
approach achieves, for the first time, 100% success rate on all tasks in the
original CARLA benchmark, sets a new record on the NoCrash benchmark,
and reduces the frequency of infractions by an order of magnitude
compared to the prior state of the art.

Learning by Cheating
— https://www.youtube.com/watch?v=u9ZCxxD-UUw
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Overview

0

L | Privileged 0
m ’ @ 6‘ .‘ Z
@ :

imitation

imitation "
I .
- Privileged 8 Sensorimotor
o of agent
= ° agent
s B

(a) Privileged agent imitates the expert (b) Sensorimotor agent imitates the privileged agent

Figure 1: Overview of our approach. (a) An agent with access to privileged information learns
to imitate expert demonstrations. This agent learns a robust policy by cheating. It does not need to
learn to see because it gets direct access to the environment’s state. (b) A sensorimotor agent without
access to privileged information then learns to imitate the privileged agent. The privileged agent is a

“white box” and can provide high-capacity on-policy supervision. The resulting sensorimotor agent
does not cheat.

« (a) Privileged agent imitates the expert (Behavior Cloning (off-policy))

* (b) Sensorimotor agent imitates the privileged agent (first Behavior
Cloning (off-policy), then Direct Policy Learning (on-policy))
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Why Does it Work?

The effectiveness of this decomposition is counter-intuitive. If direct IL — from expert
trajectories to vision-based driving — is hard, why is the decomposition of the learning
process into two stages, both of which perform imitation, any better?

First, the privileged agent operates on a compact intermediate representation of the
environment, and can thus learn faster and generalize better. In particular, the
representation we use (a bird’s-eye view) enables simple and effective data augmentation
that facilitates generalization.

Second, the trained privileged agent can provide much stronger supervision than the
original expert trajectories. It can be queried from any state of the environment, not only
states that were visited in the original trajectories. It turns passive expert trajectories into an
online agent that can provide adaptive on-policy supervision.

Third, if the privileged agent is trained via conditional imitation learning, it can provide an
action for each possible command (e.g., “turn left”, “turn right”), all at once, in any state of
the environment. Thus all conditional branches of the privileged agent can train all
branches of the sensorimotor agent in parallel. In every state visited during training, the
sensorimotor student can in effect ask the privileged teacher “What would you do if you
had to turn left here?”, “What would you do if you had to turn right here?”, etc.

My thoughts: an analogy: expert is a Kung Fu master who lives in the mountains, provides
recorded video lectures, but is not available for interactive instructions; privileged agent is a
student with perfect eyeS|ght (with bird’s-eye view), hence can learn effecﬂvely from the
master; sensorimotor agent is a young pupil with poor eyesight (with front-camera view),
who can learn more effectively from the junior privileged agent with interactive instructions
than from the master directly.
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Agent Architecture

speed v speed v
W H 1 oo |
o0

] s :
ol - g E
| pell ool m

steering, throttle, brake

o

Sya=

(a) Privileged agent (b) Sensorimotor agent

Figure 2: Agent architectures. (a) The privileged agent receives a bird’s-eye view image of the en-
vironment and produces a set of heatmaps that go through a soft-argmax layer (SA), yielding way-
points for all commands. The input command selects one conditional branch. The corresponding
waypoints are given to a low-level controller that outputs the steering, throttle, and brake. (b) The
sensorimotor agent receives genuine sensory input (image from a forward-facing camera). It pro-
duces waypoints in the egocentric camera frame. Waypoints are selected based on the command,
projected into the vehicle’s coordinate frame, and passed to the low-level controller.
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Loss Functins

* Privileged agent tries to imitate expert by minimizing
expected difference between ground truth trajectory
and predicted trajectory: m@in Eovew~cllw —

f5 (M, v)°],
* Sensorimotor agent tries to imitate privileged agent by

minimizing expected difference between own
predicted trajectory and that by privileged agent :

mgn E(M,I,U)NDHTp(f(I: v)) — fo (M, V)Hl

- D Is a dataset of corresponding road maps M, images I,
and velocities v.

— Sampling is no longer restricted to the offline trajectories
provided by the original expert. In particular, the learning
algorithm can sample states adaptively by rolling out the
sensorimotor agent during training.

— The sensorimotor agent can be supervised on all its
waypoints and across all commands c at once.
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Data Augmentation

o

o®
[ [

g
el
0
O

S5
= =
= 3 .
o ®
° °
[ ] [
(a) Road map (b) Rotation and shift aug.
Figure 3: (a) Map M provided to the privileged agent.
One channel each for road ( ), lane boundaries
( ), vehicles (blue), pedestrians ( ), and traffic
lights ( , , and red). The agent 1s centered

at the bottom of the map. The agent’s vehicle (dark
red) and predicted waypoints (purple) are shown for
visualization only and are not provided to the network.
(b) The map representation affords simple and effective
data augmentation via rotation and shifting.
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Controller

Both privileged and sensorimotor agents rely on
low-level controller

— Input: a set of waypoints w = {wy, ..., Wg} in vehicle’s
coordinate frame

— OQOutput: steering, throttle, braking commands
Longltudlnal PID control tries to track target velocity

[Wi—Wi_1]l2

- (St temporal spacing between waypoints
— https://en.wikipedia.org/wiki/Norm (mathematics)

Lateral PID controller tries to match a target

heading angle towards s* = tan™?! Zy
X

— We first fit an arc to all waypoints and steer towards
a point on the arc to average out prediction error in
individual waypoints.

— The point p = (py, py) Is a projection of one of the
predicted Waypomts onto the arc. We use w, for the
straight and follow-the-road commands (shown in
fig), ws for right turn, and w, for left turn. Later
waypoints allow for a larger turning radius.

— (My thoughts: Paper uses the term steering angle,
but it is actually heading angle (in bicycle model.))

Figure 4: Lateral PID controller.
Here the agent aims at the pro-
jection of the second waypoint
onto the fitted arc. s* denotes the
angle between the vehicle and
the target point p.
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Performance Evaluation

Task Weather MP[8] CIL[6] CIRL[14] CAL[22] CILRS[7] LBC LBCI
Straight 92 97 100 93 96 100 100
One turn rai 61 59 71 82 84 100 100
Navigation o0 24 40 53 70 69 100 98
Nav. dynamic 24 38 41 64 66 99 99
Straight o0 &0 98 94 96 100 100
One turn test 50 48 80 72 92 100 100
Navigation ‘ A7 44 6 88 92 100 100
Nav. dynamic 44 42 62 64 90 100 100

Table 2: Comparison of the success rate of the presented approach (LBC) to the state of the art on
the original CARLA benchmark (CoRL2017) in the test town. (The supplement provides results on
the training town.) LBCT denotes our agent trained and evaluated on CARLA 0.9.6. All other agents
were evaluated on CARLA 0.8 and 0.9.5. Our approach outperforms all prior work and achieves
100% success rate on all routes in the full-generalization setting (test town, test weather).
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Deep Imitative Models (DIM) [Rhinehart
2020]
 Nicholas Rhinehart, Rowan McAllister,

Sergey Levine, Deep Imitative Models for
Flexible Inference, Planning, and Control,

Objects, Ohio
Traffic-lights, i “‘i'{"i Trajectory
Sensor el e Contiols Throttle
Data Perception Predit ML Model:nne Optimizer Stegring

Mid-to-Mid 102



Abstract

Imitation Learning (IL) is an appealing approach to learn desirable
autonomous behavior. However, directing IL to achieve arbitrary
goals is difficult. In contrast, plannlng based algorithms use
dynamics models and reward functions to achieve goals. Yet,
reward functions that evoke desirable behavior are often difficult to
specify. In this paper, we propose “Imitative Models™ to combine the
benefits of IL and goal-directed planning. Imitative Models are
probabilistic predictive models of desirable behavior able to plan
Interpretable expert-like trajectories to achieve specified goals. We
derive families of flexible goal objectives, including constrained goal
regions, unconstrained goal sets, and energy-based goals. We show
that our method can use these objectives to successfully direct
behavior. Our method substantially outperforms six IL approaches
and a planning-based approach in a dynamic simulated autonomous
driving task, and is efficiently learned from expert demonstrations
without online data collection. We also show our approach is robust
to pc?orly specified goals, such as goals on the wrong side of the
road.
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DIM

Training Data: (Scene ¢, Human Future s;.7) pairs

e,
.
.

Region Goal Task : s Point Goals and Potholes Task
Go somewhere in this region ) ” Ll i Go to a goal while avoiding potholes

Imitative Model

(estimated probability density function of future expert behavior)

Q(SI:TI(ZS)

How would a human go to one of

those goals while avoiding potholes?

Potholes

]
] "'tl DAR Scene

Efercncu {lowy

Figure 1: Our method: deep imitative models. Top Center. We use demonstrations to learn a
probability density function g of future behavior and deploy it to accomplish various tasks. Left: A
region in the ground plane is input to a planning procedure that reasons about how the expert would
achieve that task. It coarsely specifies a destination, and guides the vehicle to turn left. Right: Goal
positions and potholes yield a plan that avoids potholes and achieves one of the goals on the right.



DIM Detalls

Expert examples Imitative Model Route planner Path planning PID Controller

Tﬁ argax kg (8., ¢ + PGS, £)

=1 - : 2| O~ Waypoints :
= i b . Chosen plan

S—-ﬂ H - == 1= ,_E L]

g : q ( S1:T ‘ ﬁi)) 2

=| E 3K} E b sarmmlator
-

Figure 5: Ilustration of our method applied to autonomous driving. Our method trains an imitative
model from a dataset of expert examples. After training, the model is repurposed as an imitative
planner. At test-time, a route planner provides waypoints to the imitative planner, which computes
expert-like paths to each goal. The best plan is chosen according to the planning objective and
provided to a low-level PID-controller in order to produce steering and throttle actions. This
procedure 1s also described with pseudocode in Appendix A.
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Bayes Theorem

P(E|\H)P(H
+ P(H|E) = Z5 2

- H: Hypothesis; E: Evidence
« 3BluelBrown on Bayes theorem
— https://www.youtube.com/watch?v=HZGCoVFE3YvM&t=14s

Posterior Beliefs
P(H|E)

\ Evidence
\ P(E|H)

\,fl-“a
Prior Beliefs
P(H)

https://www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english/ 106
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Planning as MAP (Maximum A Posteriori)
Inference

s;.r = argmaxg . logp(si.r|G, @) = argmax,_ . logq(sy.r|¢) +
logp(Gls1.r, @) —logp(Gl¢) = argmax;_ . logq(sy.rl¢) +
logp(G|s1.7, P)

S¢. agent state at time t (t = 0 is current time step; T is planning
horizon).
¢: all of the agent’s observations.

q(si.r|®): learned imitation prior. After training, q(s;.r|¢) can
generate trajectories that resemble those that the expert might
generate — e.g. trajectories that navigate roads with expert-like

maneuvers. However, these maneuvers will not have a specific goal.

Beyond generating human-like behaviors, we wish to direct our
agent to goals and have the agent automatically reason about the
necessary mid-level details. We define general tasks by a set of goal
variables gG.

p(G|s1.7, @) test-time goal likelihood. We give examples of p(Gjs; )
after deriving a maximum a

p(s1.7|G, @): an expert-like plan that also tries to achieve goals.
Probability of a plan s;.;- conditioned on the goal G, modelled by a
posterior distribution,
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Goal Likelihood

Constraint-based planning to goal sets: p(G|s;.r) = 8s,.(G) delta function
centered around goal (figures below)

- G=1{91,9, -, 9x} Way points (from high-level A* planner)

- G ={seg,,seg,, ..., seg;} Line Segments

- G = Polygon Region
Unconstrained planning to goal sets: Gaussian distribution instead of delta
function

- p(Gls, ) « N(gr; s, €T) Gaussian Final-State likelihood (reach a single goal state)

- p(Gls, ) « [Mker—x+1 N (gk; sk, €T) Gaussian State Sequence (reach a sequence of K

goal states)

- p(Gls, p) « %H’,ﬁle (g%; sy, €T) Gaussian Final-State Mixture (reach any one of K goal
states)

— Goal likelihood encourages goals, rather than dictating them as for constraint-based.
Useful for tolerating errors in goal-specification. Hyper-param e controls variance.
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Robustness to Errors in Goal-Specification.

« To test model’s capability to stay in the distribution of demonstrated
expert behavior, we designed a “"decoy waypoints” experiment.

— Navigating with high-variance waypoints.

+ Half of the waypoints are highly perturbed versions of the other half, serving as

distractions for our Gaussian Final-State Mixture imitative planner.
— Navigating with waypoints on the wrong side of the road.

« The planned path still stays on the road to mimic the expert behavior,
rather than following the goals blindly, thanks to the learned imitation
prior q(s1.7|¢), WhICh outweighs the influence of bad goals p(G|s;.7, P)
when computing s;.7, if p(Gls, ¢) has high variance (with large ¢).

. Y :
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Plan preference (low t
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.;é;|
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X Past positions
X Goal Centers
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Lo gl

® Chosen plan positions
X Past positions
¥ Goal Centers

Plan prelerence (ow Lo i)

Figure 10: Tolerating bad goals. The planner prefers goals in the distribution of
expert behavior (on the road at a reasonable distance). Left: Planning with 1/2
decoy goals. Right: Planning with all goals on the wrong side of the road.

Figure 11: Test-
time plans steering

around potholes.
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Online 1L Inverse RL

” e
DAgeer (Ross, Bagnell 2011 (Ng., Russell QUUU)

-

. "'IL" baseline * Qur approach
Imitative |

A : Classic model
Classic model based RL
free RL (Kuvayev, Sutton 1996)
— - — - - = - —»
(Rummery, Niranjan 19941]
-,
# 1] £ ) ’
Non-imitative

o LC" baseline “MBT l.}ﬁf}lim Offline dats
Model-free << > Model-based

Figure 2: A brief taxonomy of learning-based
control methods. In our scenario, we avoid on-
line data collection, specifically from the policy
we seek to imitate. We structure our imitation
learner with a model to make it flexible to new
tasks at test time. We compare against other of-
fline approaches (front face).
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Table 1: Desirable attributes of each approach. A green check denotes that a method has a desirable
attribute, whereas a red cross denotes the opposite. A “T” indicates an approach we implemented.

Approach Flexible to New Goals  Trains without goal labels  Outputs Plans  Trains Offline  Has Expert PD.E

CIRL* (Liang et al., 2018) X X X X X
CAL* (Sauer et al., 2018) X X X v X

MT=* (Liet al., 2018) X X X v X

CIL?* (Codevilla et al., 2018) X X X v X
CILRS* (Codevilla et al., 2019) X X X v X
CILSt X v X v X

MBRLT v v v X X

v v v v v

Imitative Models (Ours)t

Table 2: Algorithmic components of each approach. A “T” indicates an approach we implemented.

Approach  Control Algorithm < Learning Algorithm  + Goal-Genperation Algorithm <+ Routing Algorithm  High-Dim. Obs.

CIRL* (Liang et al., 20018)  Policy Behavior Cloning+RL Waypoint Classifier A* Waypointer Image
CAL* (Saveret al., 2018)  PID Affordance Learmning Waypoint Classifier A* Waypointer Image
MT+ (Lietal, 2018)  Policy Behavior Cloning Waypoint Classifier A* Waypointer Image
CIL* (Codevillaet al., 2018)  Policy Behavior Cloning Waypoint Classifier A* Waypointer Image
CILES* (Codevilla et al., 2019} Policy Behavior Cloning Waypoint Classifier A* Waypointer Image
CILST  PID Trajectory Regressor Waypoint Classifier A* Waypointer (LIDARA)
MBRL"  Reachability Tree State Regressor Waypoint Selector A* Waypointer (LIDAR,A)
Imitative Models (OQurs)’  Imitative Plan+PID Traj. Density Est Goal Likelihoods A* Waypointer (LIDAR_A)
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Summary

We proposed “Imitative Models” to combine the
benefits of IL and MBRL. Imitative Models are
probabilistic predictive models able to plan
inte{pretable expert-like trajectories to achieve new
goals.

Inference with an Imitative Model resembles trajectory
optimization in MBRL, enabling it to both incorporate
new goals and plan to them at test-time, which IL
cannot.

Learning an Imitative Model resembles offline IL,
enabling it to circumvent the difficult reward-
engineering and costly online data collection
necessities of MBRL.

ICLR 2020 Talk:

— https://iclr.cc/virtual_2020/poster SkIAmRNYDr.html
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