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RL Reward Function Issues

• RL can be very effective, provided that a suitable reward 
function is available. 

• Bad reward function leads to undesirable behavior
– Suppose you design a vacuum cleaner to maximize reward 

function defined as “cumulative amount of dirt sucked in”.  The 
vacuum cleaner may learn to repeatedly spit out and suck in the 
same pile of dirt!

• For AD in realistic environment, the goal is to reach 
destination with minimum time, while avoiding accidents. But 
how to encode this into a reward function?
– “A great reward function can help you better optimize your 

reinforcement learning model. In AWS DeepRacer, the reward 
function is written in Python code, and uses different input 
parameters to help encourage good behavior and disincentivize 
poor behavior. There’s no single right answer for which 
parameters to include in your reward function, and your best 
reward function will likely require a lot of experimentation.” from 
AWS DeepRacer MOOC.

2https://classroom.udacity.com/courses/ud014/



Imitation Learning (IL)

• IL is useful when it is easier for an expert to 
demonstrate the desired behavior, rather than to 
specify a reward function for RL to learn the policy.
– e.g., for Automated Driving in a realistic environment, 

the reward function would be a huge complex function 
involving everything in the environment 

– Requires access to an expert, either offline (driving 
data logs) or online (query-on-demand)

– Also called Learning from Demonstrations.

• IL variants:
– Learn to mimic the expert’s policy 

• Behavior Cloning

• Direct Policy Learning

– Learn the expert’s value function
• Inverse Reinforced Learning
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Notations

• State: 𝑠 (sometimes 𝑥)

• Action: 𝑎 (sometimes 𝑦)

• Policy 𝜋𝜃 (sometimes ℎ)

– Deterministic policy 𝑎 = 𝜋𝜃(𝑠)

– Stochastic policy 𝑃(𝑎) = 𝜋𝜃(𝑠)

• Environment Model: 𝑃 𝑠′ 𝑠, 𝑎

– Known: model-based

– Unknown: model-free
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Notations Cont’d

• Rollout: sequentially execute policy 𝜋𝜃(𝑠0) from initial state 𝑠0
until timestep 𝑇.
– Produce trajectory 𝝉 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, … )

• 𝑃 𝝉 𝜋 : distribution of trajectories induced by a policy. Repeat 
until 𝑡 = 𝑇:
– 1. Sample 𝑠0 from 𝑃0 (distribution over initial states), initialize 𝑡 =
1

– 2. Sample action 𝑎𝑡 from 𝜋(𝑠𝑡−1)
– 3. Sample next state 𝑠𝑡 from applying 𝑎𝑡 to 𝑠𝑡−1 (requires access 

to env model or simulator)

– 4. Go to Step 2 with 𝑡 = 𝑡 + 1

• 𝑃 𝑠 𝜋 : distribution of states induced by a policy (percentage 
of time spent in each state):

– 𝑃 𝑠 𝜋 =
1

𝑇
σ𝑡𝑃𝑡 𝑠 𝜋

• 𝑃𝑡 𝑠 𝜋 denotes distribution of states at 𝑡-th timestep
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Behavior Cloning (BC)

• Behavior Cloning (BC) is a form of Supervised Learning 
(SL), where an agent is trained to perform a task from 
demonstrations by learning a mapping (e.g., a CNN) 
between states (input data) and actions (labels).

6https://pathmind.com/wiki/deep-reinforcement-learning



SL vs. BC
• Main difference between SL and BC:

– For SL: input 𝑥 for computing label 𝑦 = 𝐹(𝑥) is i.i.d (independent 
and identically distributed) 

• i.e., there is no correlation between one input image 𝑥𝑖 and the next one 
𝑥𝑖+1. 

– For IL/BC (and MDP in general): input (state) 𝑠𝑡 for computing 
action 𝑎𝑡 = 𝜋𝜃(𝑠𝑡) is not i.i.d. but highly correlated, since action 
taken in a given state 𝑠𝑡 induces the next state 𝑠𝑡+1.

• i.e., a vehicle does not randomly jump around, but follows a smooth 
path. If state 𝑠𝑡 is defined as the front-camera video frame at time 𝑡, 
then there is strong correlation between frames across time 𝑠𝑡, 𝑠𝑡+1… in 
the continuous video stream.

• Non-i.i.d input data may cause distributional Shift, where 
training and testing input data distributions densities are 
different.

7https://pathmind.com/wiki/deep-reinforcement-learning



Early Projects of IL (BC) Applied to AD

• ALVINN

– CMU, 1990

– Low-res image as input

– Fully connected NN

• DAVE

– Muller, LeCun, 2003

– Low-res image as input

– CNN
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Distributional Shift in IL/BC
• Errors made in different states add up, therefore a mistake made by 

the agent can easily put it into a state that the expert has never 
visited and the agent has never trained on. In such states, the action 
is undefined and this can lead to catastrophic failures.

• e.g. the expert driver always keeps in the center of lane, so the front 
camera images (input data) in the training set do not contain views 
where the vehicle is heading to go off side of road. So once the 
vehicle heading deviates a little towards the side
– the input data is not in the training set → action is undefined  → vehicle 

deviates even more  → ⋯ → vicious cycle leading to a crash.

9https://medium.com/@SmartLabAI/a-brief-overview-of-imitation-learning-8a8a75c44a9c



Direct Policy Learning (DPL)
• DPL is an improved version of behavioral cloning. Assuming that we have access to an 

interactive expert at training time, 

• First, we start with an initial predictor policy based on the initial expert demonstrations. 

• Then, we execute a loop until we converge. In each iteration, we collect trajectories by 
rolling out the current policy (which we obtained in the previous iteration) and using these 
we estimate the state distribution. 

• Then, for every state, we collect feedback from the expert (what would have he done in the 
same state). 

• Finally, we train a new policy using this feedback.

10



BC vs. DPL

• BC: argmin𝜃 𝐸 𝑠,𝑎∗ ∼𝑃∗ 𝐿(𝑎
∗, 𝜋𝜃 𝑠 )

– Assuming perfect imitation so far ( 𝑠, 𝑎∗ ∼ 𝑃∗), 
learn to continue imitating perfectly, where 𝑃∗ =
𝑃 𝑠 𝜋∗ (distribution of states visited by expert)

– Minimize 1-step deviation error along expert 
trajectories

– Distribution provided exogenously from expert 
demos 

• Agent is a passenger. Its own actions are never carried 
out. At every timestep, it computes the loss function 
that measures difference between its own action by its 
policy at current timestep with that of the expert.

• DPL:

– argmin𝜃 𝐸𝑠∼𝑃 𝑠 𝜋𝜃 𝐿(𝜋∗(𝑠), 𝜋𝜃 𝑠 )

– Distribution depends on agent’s rollout based on 
current policy 𝜋𝜃

• Agent is the driver that carries out its own action at 
every timestep, while computing the loss function that 
measures difference between its action/policy at 
current timestep with that of the expert.
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Two Variants of DPL
• Data Aggregation trains the actual policy on all the previous training 

data. 
– e.g., Dagger: expert remains in the loop during the training of the 

controller: the controller is iteratively tested and samples from the 
obtained trajectories are re-labeled by the expert

• Policy Aggregation trains a policy on the training data received on 
the last iteration and then combines this policy with all the previous 
policies using geometric blending. In the next iteration, we use this 
newly obtained, blended policy during the roll-out
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Inverse Reinforcement Learning (IRL)

• Start with a set of expert’s demonstrations (we assume these 
are optimal) and then try to estimate the parameterized 
reward function, that would cause the expert’s 
behavior/policy.
– Problem: reward function is not unique, multiple reward functions 

may lead to the same behavior.

– e.g., an outside observer sees that you work very hard 
(behavior). He may infer your reward function to be “maximize 
WorkTime” (since you really enjoy your job). But your actual 
reward function is “maximize MoneyEarned” (while you really 
hate your job).

– An agent with incorrect value function won’t generalize well in a 
different environment. Suppose someone trains an agent to 
imitate you. The agent has the same behavior as you in the 
current environment, but faced with a job offer with higher salary, 
the agent may take a different action than you.

– Solution: try to learn the correct value function by observing the 
expert in diverse environments.

13



IRL Details

• Repeat until we find a good enough policy:

– Update the reward function parameters.

– Solve the RL problem to find the optimal 

policy.

– Compare the newly learned policy with the 

expert’s policy.
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Learn Policy 

Directly

Learn Reward 

Function

Access to 

Env.

Interaction 

Demos

Pre-

collected 

demos

BC Y N N N Y

DPL Y N Y Y Optional

IRL N Y Y N Y
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Classic Pipeline

Mid-to-Mid Driving (Waymo’s ChauffeurNet)

End-to-End Driving (NVIDIA’s PilotNet)



Advantages of Mid-to-Mid

• On the left: 
– End-to-end: Raw sensor data contains extremely high dimensional 

information which can be influenced by different textures and 
appearances of roads and objects, different weather conditions, and 
different daytime. 

– Mid-to-mid: Separate perception module, the bird-view representation is 
a concise description of only the useful information for decision making 
and planning, discarding irrelevant information such as texture, light 
conditions and object appearances

• On the right:
– IL needs labeled data in the form of expert driver’s action 𝑎𝑖

∗ at each 
step 𝑖 to obtain a trace of (𝑠𝑖

∗, 𝑎𝑖
∗).

– End-to-end: must record expert driver’s low-level actions 
(steering/brake/acceleration) by tapping into and capturing signals from 
the vehicle’s internal bus. 

– Mid-to-mid: only need to record expert driver’s vehicle trajectory logs.

• Overall:
– Mid-to-mid: Execution frequency of ML components is lower than end-

to-end, since planner typically executes at lower freq than controller.
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[Zhou 2019]

• Zhou, Brady, Philipp Krähenbühl, and 

Vladlen Koltun. "Does computer vision 

matter for action?." arXiv preprint 

arXiv:1905.12887 (2019). (Intel Labs, UT 

Austin)
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Computer Vision vs. End-to-End

• Computer vision tasks as perception module
– Object recognition, depth estimation, optical flow, semantic 

segmentation…

– e.g., train a model (CNN or others) with a large dataset to classify Stop 
Signs from images.

• End-to-end approach
– Map input images (raw pixels) directly to action, bypassing explicit 

computer vision tasks. Perceptual capabilities will arise as needed, as a 
result of training for the specific task. 

– e.g., if the training dataset is highway driving, then E2E model will never 
learn features of Stop Signs; 

– If the training dataset is urbane driving, then E2E model may learn 
features of Stop Signs implicitly in the intermediate layers of a CNN, 
during the process of learning the mapping from “Stop Sign” input 
images to “braking” action.  But there is no explicit classification layer 
that outputs the label “StopSign”.

• We report controlled experiments that assess whether specific vision 
capabilities are useful in mobile sensorimotor systems.

• Does Computer Vision Matter for Action?
– https://www.youtube.com/watch?v=4MfWa2yZ0Jc
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Performance Evaluation Results
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Conclusions

• Computer vision does matter.

• When agents are provided with 
representations studied in computer vision, 
they achieve higher performance in 
sensorimotor tasks.

• Some computer vision capabilities appear to 
be more impactful for mobile sensorimotor 
operation than others. Specifically, depth 
estimation and semantic segmentation 
provide the highest boost in task 
performance.

• My thoughts: this explains rising popularity of 
mid-to-mid over end-to-end approaches.

22



PilotNet [Bojarski 2016]

• Bojarski M, Del Testa D, Dworakowski D,

et al. End to end learning for self-driving

cars[J]. arXiv preprint arXiv:1604.07316,

2016.
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Training Method

• End-to-End model trained with Imitation Learning (BC)
– Human drives vehicle

– Record sensor data and human actuator commands as training pairs

– Train a DNN to map sensor data to actuator commands, mimicking a 
human. (PilotNet controls steering only. I think acceleration/braking are 
controlled separately, but the paper did not say how.)

• PilotNet driving video:
– https://www.youtube.com/watch?v=_N7nC-8YxzE

24https://github.com/lhzlhz/PilotNet
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Data Collection System
• Three cameras are mounted behind the windshield of the data-acquisition car, and 

timestamped video from the cameras is captured simultaneously with the steering angle 
applied by the human driver. The steering command is obtained by tapping into the vehicle’s 
Controller Area Network (CAN) bus. 

• In order to make our system independent of the car geometry, we represent the steering 
command as 

1

𝑅
, where 𝑅 is the turning radius in meters. We use 

1

𝑅
instead of 𝑅 to prevent a 

singularity when driving straight (the turning radius for driving straight is infinity). 
1

𝑅
smoothly 

transitions through zero from left turns (negative values) to right turns (positive values).

• Training data contains single images sampled from the video, paired with the corresponding 
steering command (

1

𝑅
).

25https://devblogs.nvidia.com/deep-learning-self-driving-cars/
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𝑅
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Training Data Augmentation
• Problem: training data 

from human driver 
always stays in center 
of lane. So if car 
deviates from center, 
the image it sees is not 
in the training set, so it 
does not know the 
correct action.

• Solution: Augment 
training data with 
additional images that 
show the car in different 
shifts from the center of 
the lane and rotations 
from the direction of the 
road. The images for 
two specific off-center 
shifts can be obtained 
from the left and the 
right cameras.

26
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Training Data Augmentation Details

• We augment the data by adding artificial shifts and rotations to teach the 
network how to recover from a poor position or orientation.

• Images for two specific off-center shifts can be obtained from the left and 
the right camera. Additional shifts between the cameras and all rotations are 
simulated by viewpoint transformation of the image from the nearest 
camera. The steering label for transformed images is adjusted to one that 
would steer the vehicle back to the desired location and orientation in two 
seconds.

• Ex.: Image from center camera shows car is driving straight; Shifted image 
from left camera shows car is leaning left. Associate this image with 
synthetic “turn right” command (even though human driver never issued it). 
During operation, if the center camera sees this image, issue “turn right” 
command.
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Driving Simulator

• The simulator transforms the original images 
to account for departures from the ground 
truth. The magnitude of these perturbations is 
chosen randomly from a normal distribution.
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PilotNet

• ~250K distinct 

weights

• ~27M 

connections
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Visualization of Salient Objects

• The visualization 
shows which regions 
of the input image 
contribute most to the 
output of the network. 
These regions identify 
the salient objects 
(highlighted in green). 

• PilotNet focuses on 
the same things a 
human driver would, 
including lane 
markers, road edges 
and other cars.
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Visualization Method
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On-Road Tests

• After a trained network has demonstrated 
good performance in the simulator, the 
network is loaded on the DRIVE PX in our 
test car and taken out for a road test. 

• For a typical drive in Monmouth County NJ 
from our office in Holmdel to Atlantic 
Highlands, we are autonomous 
approximately 98% of the time. We also 
drove 10 miles on the Garden State Parkway 
(a multi-lane divided highway with on and off 
ramps) with zero intercepts.
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Chauffeurnet [Bansal 2018]

• Bansal M, Krizhevsky A, Ogale A.

Chauffeurnet: Learning to drive by

imitating the best and synthesizing the

worst[J]. arXiv preprint arXiv:1812.03079,

2018.

33
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Abstract

• Our goal is to train a policy for autonomous driving via imitation 
learning that is robust enough to drive a real vehicle. We find that 
standard behavior cloning is insufficient for handling complex driving 
scenarios, even when we leverage a perception system for 
preprocessing the input and a controller for executing the output on 
the car: 30 million examples are still not enough. 
– Training data: 30 million real-world expert driving examples, 

corresponding to about 60 days of continual driving

• We propose exposing the learner to synthesized data in the form of 
perturbations to the expert’s driving, which creates interesting 
situations such as collisions and/or going off the road. 

• Rather than purely imitating all data, we augment the imitation loss 
with additional losses that penalize undesirable events and 
encourage progress – the perturbations then provide an important 
signal for these losses and lead to robustness of the learned model.
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BC Experiments

• Agent trained with pure BC gets stuck behind a parked vehicle (left) 
and is unable to recover from a trajectory deviation while driving 
along a curved road (right). The teal path depicts the input route, 
yellow box is a dynamic object in the scene, green box is the agent, 
blue dots are the agent’s past positions and green dots are the 
predicted future positions.
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ChauffeurNet Experiments

• ChauffeurNet model can now successfully nudge 
around the parked vehicle (left) and recover from the 
trajectory deviation to continue smoothly along the 
curved road (right).
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ChauffeurNet Input/Output

• We use a perception system that processes raw sensor information and 
produces our input: a top-down representation of the environment and 
intended route, where objects such as vehicles are drawn as oriented 2D 
boxes along with a rendering of the road information and traffic light states. 
We present this mid-level input to a recurrent neural network (RNN), named 
ChauffeurNet, which then outputs a driving trajectory that is consumed by a 
controller which translates it to steering and acceleration.
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ChauffeurNet Input/Output in Detail
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Rendered inputs and outputs

• Top-row left-to-right: Roadmap, Traffic lights (bright lines denote red light), Speed-limit, and 
Planned Route (intent: ego-car should turn right).

• Bottom-row left-to-right: Current Agent Box, Dynamic Boxes (history of past 1-2s), Past Agent 
Poses, and the output Future Agent Poses (shown in last slide).

39
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ChauffeurNet Architecture

• ChauffeurNet is a Convolutional Recurrent 
Neural Network (RNN), consisting of the CNN 
FeatureNet, and the AgentRNN.

• Trained with IL, guided by ground truth data 
(green) and loss functions (blue)

– 26M examples from real driving logs

• Compare to PilotNet

– PilotNet uses CNN to map from current camera 
image to steering angle, no history info is use.

– ChauffeurNet uses RNN, and exploits the history 
(past agent location and past prediction for a few 
seconds) to make better predictions and decisions.
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ChauffeurNet Details
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Beyond Pure Imitation

• Synthesizing Perturbations

• Beyond the Imitation Loss

– Collision Loss

– On Road Loss 

– Geometry Loss 

– Auxiliary Losses

• Imitation Dropout 
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Trajectory Perturbation

• Running the model as a part of a closed-loop system over time can 
cause the input data to deviate from the training distribution. To 
prevent this, we train the model by adding some examples with 
realistic perturbations to the agent trajectories. 
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Collision Loss

• Since our training data does not have any 
real collisions, the idea of avoiding collisions 
is implicit and will not generalize well. To 
alleviate this issue, we add a specialized loss 
that directly measures the overlap of the 
predicted agent box 𝐵𝑘 with the ground-truth 
boxes of all the scene objects at each 
timestep

• (Details of On Road Loss, Geometry Loss, 
Auxiliary Losses omitted.)
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Imitation Dropout 
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IL with Safety [Chen 2019]

• Chen J, Yuan B, Tomizuka M. Deep 

imitation learning for autonomous driving 

in generic urban scenarios with enhanced 

safety[J]. arXiv preprint arXiv:1903.00640, 

2019.
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Abstract

• The decision and planning system for AD in urban 
environments is hard to design. Most current methods are to 
manually design the driving policy, which can be sub-optimal 
and expensive to develop and maintain at scale. Instead, with 
imitation learning we only need to collect data and then the 
computer will learn and improve the driving policy 
automatically. However, existing imitation learning methods 
for autonomous driving are hardly performing well for complex 
urban scenarios. Moreover, the safety is not guaranteed when 
we use a DNN policy. In this paper, we proposed a framework 
to learn the driving policy in urban scenarios efficiently given 
offline collected driving data, with a safety controller 
incorporated to guarantee safety at test time. The 
experiments show that our method can achieve high 
performance in realistic three-dimensional simulations of 
urban driving scenarios, with only hours of data collection and 
training on a single consumer GPU.
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Framework Overview

• The agent takes information from the perception and 
routing modules, generates a bird-view image and 
outputs the planned trajectory using a DNN policy 
network. The safety & tracking controller then 
calculates the safe control command to be applied to 
the ego vehicle in the driving environment
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Deep Imitation 

Learning

• DNN output is future 
trajectory in a 
preview horizon 𝐻: 
[𝑥𝑡+1, 𝑦𝑡+1, … , 𝑥𝑡+𝐻, 𝑦𝑡+𝐻]
, which is tracked by 
a low-level controller 
(PID, MPC).
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DNN Architecture & Loss Function

• Based on CNN (VGGNet16). Output layer 
has 𝐻 units corresponding to 𝐻 predicted 
trajectory points ො𝑥𝑡+𝑖 , ො𝑦𝑡+𝑖 , 𝑖 ∈ [1, 𝐻].

• Loss function to be minimized:

– 𝐿𝑡 =
1

𝐻
σ𝑖=1
𝐻 𝑑𝑡+𝑖

2

– where displacement error 𝑑𝑡+𝑖 between the 
expert’s motion trajectory point position 
(𝑥𝑡+𝑖 , 𝑦𝑡+𝑖) and the predicted point position 
( ො𝑥𝑡+𝑖 , ො𝑦𝑡+𝑖): 𝑑𝑡+𝑖 = ൫

൯

𝑥𝑡+𝑖 − ො𝑥𝑡+𝑖
2 + (

)

𝑦𝑡+𝑖 −

ො𝑦𝑡+𝑖
2

1

2
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Data Collection and Augmentation

• Based on CARLA simulator.

• At data collection phase, we use a model-based controller to 
act as the expert. The controller is same as other agents, 
which performs normal urban driving behaviors and make 
random turns at intersections. When ego vehicle is running, 
we record the rendered bird-view images and the 
corresponding ego vehicle states (global positions and yaw 
angle) every 0.1 second.

• We introduce control noise to the expert controller during the 
data collection phase, and let the expert recover from the 
perturbation. The control noise is added periodically every 8 
seconds, and will last for 1 second. The vehicle’s pose might 
be pushed away from the way points. The expert then 
provides demonstrations of recovering from perturbations. 
The states during the noise phase are removed in order not to 
contaminate the dataset
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Trajectory Tracking Controller

• Given the planned future trajectory 
[ ො𝑥𝑡+1, ො𝑦𝑡+1, … , ො𝑥𝑡+𝐻, ො𝑦𝑡+𝐻], the tracking controller 
outputs the desired acceleration 𝑎𝑡 and steering angle 
𝛿𝑡 to drive the vehicle to follow the trajectory. A way 
point ( ො𝑥𝑡+𝑚, ො𝑦𝑡+𝑚) is selected with 𝑚 ∈ [1,𝐻 − 1] (we 
pick 𝑚 = 5 here).
– At any time instant 𝑡, aim for the 5th point (ො𝑥𝑡+5, ො𝑦𝑡+5) on 

the planned trajectory

• Decomposed into longitudinal controller and lateral 
controller, both PID controllers.  
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Longitudinal Controller

• Target speed is set to be:

– 𝑣𝑑 =
1

𝑑𝑡
ො𝑥𝑡+𝑚+1, ො𝑦𝑡+𝑚+1 − ො𝑥𝑡+𝑚, ො𝑦𝑡+𝑚 2

– Where 𝑑𝑡 is the time interval between two 

subsequent time steps.

• The desired acceleration is obtained using 

PID control to minimize speed tracking 

error 

– 𝑒𝑣 𝑡 = 𝑣𝑑 − 𝑣(𝑡)

– where 𝑣(𝑡) is current speed of ego vehicle.
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Lateral Controller

• The normal vector from the ego vehicle position to the target way 
point is

– 𝒏𝑡𝑎𝑟𝑔𝑒𝑡 =
ො𝑥𝑡+𝑚, ො𝑦𝑡+𝑚

ො𝑥𝑡+𝑚, ො𝑦𝑡+𝑚 2

• The normal vector of the ego vehicle heading is 

– 𝒏𝑒𝑔𝑜 = (cos 𝜃𝑡 , sin 𝜃𝑡)

– where 𝜃𝑡 is the heading angle of the ego vehicle

• Then the desired steering angle is obtained using PID control to 
minimize the heading error:

– 𝑒𝑦𝑎𝑤 𝑡 = cos−1(𝒏𝑒𝑔𝑜 𝑡 ⋅ 𝒏𝑒𝑔𝑜 𝑡 )

• Recall vector dot product: 𝑥 ⋅ 𝑦 = 𝑥 𝑦 cos 𝜃

56https://en.wikipedia.org/wiki/Dot_product
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Safety Enhancement Controller

• The acceleration and steering command 
𝑎𝑡
𝛿𝑡

calculated by 

the trajectory tracking controller does not guarantee safety, 
e.g, no collisions to other agents. 

• Safety controller for collision avoidance will modify 
𝑎𝑡
𝛿𝑡

to 

enhance safety, if their original values are not safe.

• The safe set algorithm: for each time step 𝑡, calculate a 

control safe set 𝑈𝑆(𝑡), s.t. if control command 𝑢 𝑡 =
𝑎𝑡
𝛿𝑡

∈

𝑈𝑆(𝑡), the ego vehicle would stay safe. 
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Safety Index
• Safety index 𝜙 𝑥 : function of vehicle state 𝑥, which includes states (position, velocity, 

heading) of both ego vehicle (𝑥0) and a surrounding object (𝑥𝑗). The system is considered 
safe if 𝜙 𝑥 ≤ 0 ∧ 𝑑 ≥ 0, and unsafe otherwise. 

• 𝜙 𝑥 = 𝐷 − 𝑑2 𝑥 − 𝛼 ሶ𝑑 𝑥

• where 𝑑 𝑥 = 𝑝0 − 𝑝𝑗
𝑇
𝑄 𝑝0 − 𝑝𝑗 is shaped distance between ego vehicle and 

surrounding vehicle. 𝑝0 indicates position of ego vehicle, and 𝑝𝑗 indicates position of the 

surrounding object. 𝑄 is a 2 × 2 matrix s.t. 𝑝0 − 𝑝𝑗
𝑇
𝑄 𝑝0 − 𝑝𝑗 = 1 encodes an ellipse 

around the surrounding vehicle with long axis equal to 1 and short axis equal to 
1

𝛽
, where 𝛽

is the aspect ratio of the ellipse. 𝛼 is a tunable parameter.
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Safety Index Illustration

• 𝜙 𝑥 = 𝐷 − 𝑑2 𝑥 − 𝛼 ሶ𝑑 𝑥

• 𝜙 𝑥 ≤ 0 ⇒ 𝑑2 𝑥 + 𝛼 ሶ𝑑 𝑥 ≥ 𝐷

• The larger the distance 𝑑(𝑥), the larger relative speed ሶ𝑑 𝑥
(positive speed means moving away from each other), the 
safer it is.
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State Safe Set and Control Safe 

Set
• State safe set 𝑋𝑆: level set of the safety index 

– 𝑋𝑆 = 𝑥:𝜙 𝑥 ≤ 0 = {𝑥: 𝑑2 𝑥 + 𝛼 ሶ𝑑 𝑥 ≥ 𝐷}
– It injects an ellipse constraint as shown in Fig. 3, also considering the relative speed 

between the ego and surrounding object.

• Control safe set
– 𝑈𝑆(𝑡) = 𝑢 𝑡 : ሶ𝜙 ≤ −𝜂 if 𝜙 ≥ 0 where 𝜂 > 0 is some margin. It is easy to prove that if  

𝑥 0 ∈ 𝑋𝑆 ∧ 𝑢 𝑡 ∈ 𝑈𝑆 for 𝑡 ≥ 0, then 𝑥 𝑡 ∈ 𝑋𝑆
• If we approximate ego vehicle dynamics to a control affine function ሶ𝑥0 =

𝑓 𝑥0 + 𝐵𝑢, the control safe set can be written as:

– 𝑈𝑆(t) = {𝑢 𝑡 : 𝐿 𝑡 𝑢 𝑡 ≤ 𝑆 𝑡 if 𝜙 ≥ 0}

– where 𝐿 𝑡 =
𝜕𝜙

𝜕𝑥0
𝐵, 𝑆 𝑡 = 𝜂 −

𝜕𝜙

𝜕𝑥𝑗
ሶ𝑥𝑗 −

𝜕𝜙

𝜕𝑥0
𝑓

– Derivation: ሶ𝜙 𝑥 =
𝜕𝜙

𝜕𝑥0
ሶ𝑥0 +

𝜕𝜙

𝜕𝑥𝑗
ሶ𝑥𝑗 =

𝜕𝜙

𝜕𝑥0
𝑓 + 𝐵𝑢 +

𝜕𝜙

𝜕𝑥𝑗
ሶ𝑥𝑗 ≤ 𝜂

• If there are multiple surrounding objects, we can calculate the intersection of 
the control safe set for each object, which is a convex polytope, denoted as 
𝑈𝑆 t .
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Safe Control Command

• Control command 𝑢 𝑡 =
𝑎𝑡
𝛿𝑡

from the 

trajectory tracking controller may be unsafe. 
The safety controller maps it into the control 
safe set 𝑈𝑆 by solving Quadratic 
Programming (QP) problem, to stay in 𝑈𝑆
while minimizing its deviation from the 
potentially unsafe 𝑢 𝑡 :

– 𝑢∗ 𝑡 = argmin𝑢∈𝑈𝑆
1

2
𝑢 − 𝑢(𝑡) 𝑇𝑊 𝑢 − 𝑢(𝑡)

– where 𝑊 is a 2 × 2 weight matrix

• We thus obtain the modified safe control 

command 𝑢∗ 𝑡 =
𝑎𝑡
∗

𝛿𝑡
∗ .
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Conditional IL (CIL) [Codevilla 2018]

• Codevilla, Felipe, et al. "End-to-end driving 

via conditional imitation learning." 2018 

IEEE International Conference on 

Robotics and Automation (ICRA). IEEE, 

2018.
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Standard IL Limitations
• Standard IL: training data is a set of observation-action pairs 

𝐷 𝑜𝑖 , 𝑎𝑖 𝑖=1
𝑁 generated by expert. We train a function (DNN) 

to mimic expert actions 𝑎𝑖
• min

𝜃
σ𝑖 𝑙(𝐹 𝑜𝑖; 𝜃 , 𝑎𝑖) (Note different notations: here 𝑜𝑖 is the same 

as state 𝑠𝑖 we saw before, e.g., video captured by front camera.)

• An implicit assumption of this formulation is that the expert’s 
actions are fully explained by the observations; that is, there 
exists a function 𝐸 that maps observations to the expert’s 
actions: 𝑎𝑖 = 𝐸(𝑜𝑖)

• IL works well if this assumption holds, e.g., for lane following. 
However, in more complex scenarios the assumption breaks 
down. Consider a driver approaching an intersection. His 
subsequent actions are not explained by his observations, but 
are additionally affected by his intention (do I want to turn left, 
go straight or turn right?). The same observations could lead 
to different actions, depending on this intention.
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Command Conditional IL
• At training time, command 𝑐 is provide by expert, e. g., go (left, straight, 

right) a few seconds before reaching next intersection.
• e.g., human drivers already use turn signals to communicate their intention when 

approaching intersections; these turn signals can be used as commands. 

• The training dataset becomes 𝐷 𝑜𝑖 , 𝑐𝑖 , 𝑎𝑖 𝑖=1
𝑁 . Command-conditional IL objective 

min
𝜃

σ𝑖 𝑙(𝐹 𝑜𝑖 , 𝑐𝑖 ; 𝜃 , 𝑎𝑖)

• At test time, commands can come from a human user (passenger), or a 
high-level planning module (with A*, Dijkstra…). They affect behavior of the 
controller in two possible architectures.

• (My comment: shouldn’t the high-level planner always be present in any AD system?)

• ICRA 2018 Spotlight Video
– https://www.youtube.com/watch?v=GNVHds_mvlg
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Two Architectures
• Each observation 𝑜 = 𝑖,𝑚 comprises 

– Front camera image 𝑖
– and a low-dimensional vector 𝑚 (e.g., car speed)

• Action 𝒂 = 𝑠, 𝑎 (steering angle and acceleration)

• Loss function for each sample: 𝑙 𝒂, 𝒂𝑔𝑡 = 𝑙 𝑠, 𝑎 , 𝑠𝑔𝑡, 𝑎𝑔𝑡 = 𝑠 − 𝑠𝑔𝑡
2
+

𝜆𝑎 𝑎 − 𝑎𝑔𝑡
2

(𝑔𝑡 is ground truth from expert demo)

• Left: Command 𝑐 is one of the inputs.

• Right: Command 𝑐 acts as a switch.
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Data Augmentation
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Comparisons

• View representation:
– PilotNet and CIL [Codevilla18] use front camera view

– ChauffeurNet and IL with Safety [Chen19] use bird-view representation, 
which helps simplify the visual information while maintaining useful 
information for driving.

• Where DNN is used:
– PilotNet and CIL are end-to-end.

– ChauffeurNet and IL with Safety are mid-to-mid (DNN used for behavior 
prediction and planning to generate trajectory). 

• DNN Architecture
– PilotNet, CIL and IL with Safety use CNN, input is current video frame 

only, with no history info.
• I find it strange, as you can input a past history of N frames to capture recent 

history.

– ChauffeurNet uses Convolutional RNN with an explicit memory, taking 
into account recent history.

• CIL : adds a condition variable to help with the decision process at 
intersections.

• IL with Safety has a safety controller that limits final control 
command to safe set.
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[Müller 2018]

• Müller, Matthias, et al. "Driving policy 

transfer via modularity and 

abstraction." arXiv preprint 

arXiv:1804.09364 (2018). (KAUST, Intel 

Labs)
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Abstract

• End-to-end approaches to autonomous driving have high 
sample complexity and are difficult to scale to realistic urban 
driving. Simulation can help end-to-end driving systems by 
providing a cheap, safe, and diverse training environment. Yet 
training driving policies in simulation brings up the problem of 
transferring such policies to the real world. We present an 
approach to transferring driving policies from simulation to 
reality via modularity and abstraction. Our approach is 
inspired by classic driving systems and aims to combine the 
benefits of modular architectures and end-to-end deep 
learning approaches. The key idea is to encapsulate the 
driving policy such that it is not directly exposed to raw 
perceptual input or low-level vehicle dynamics. We evaluate 
the presented approach in simulated urban environments and 
in the real world. In particular, we transfer a driving policy 
trained in simulation to a 1/5-scale robotic truck that is 
deployed in a variety of conditions, with no finetuning, on two 
continents.
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Modular Architecture

• The perception module takes as input a raw RGB image and 
outputs a segmentation map. 

• The driving policy then takes this segmentation as input and 
produces waypoints indicating the desired local trajectory of 
the vehicle. 

• The low-level controller, given the waypoints, generates the 
controls: steering angle and throttle.

• Driving Policy Transfer via Modularity and Abstraction
– https://www.youtube.com/watch?v=BrMDJqI6H5U
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Perception Module for Image Segmentation
• We use a per-pixel binary segmentation of the image into “road” and 

“not road” regions. It abstracts away texture, lighting, shading, and 
weather, leaving only a few factors of variation: the geometry of the 
road, the camera pose, and the shape of objects occluding the road. 
Such segmentation contains sufficient information for following the 
road and taking turns, but it is abstract enough to support transfer.

• Generalization to new environments (e.g., different weather, country, 
etc.) or transfer to new domains (e.g., simulation to physical world) 
can be achieved by appropriately tuning the perception module.
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Driving Policy Module
• Driving policy trained with Conditional IL [Codevilla 2018].

• At every frame, we predict two waypoints. One would be sufficient to control 
steering, but the second can be useful for longer-term maneuvers, such as 
controlling the throttle ahead of a turn. The waypoints 𝑤𝑗 are encoded by the 
distance 𝑟𝑗 and relative angle 𝜙𝑗 with respect to the heading direction:

– 𝜙𝑗 = ∠ 𝑤𝑗 , 𝑣 , 𝑟𝑗 = 𝑤𝑗
– We fix 𝑟1 = 5, 𝑟2 = 20, and only predict angles 𝜙1, 𝜙2.
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Loss Function for Training Driving 

Policy
• We start by collecting a training dataset 𝑜𝑖 , 𝑐𝑖 , 𝑎𝑖 𝑖=1

𝑁 of 
observation-command-action tuples, from trajectories of an 
expert driving policy. 
– Observation 𝑜𝑖 can be an image or a segmentation map;

– Action 𝑎𝑖 can be either vehicle controls (steering, throttle) or 
waypoints; 

– Command 𝑐𝑖 is a categorical variable indicating one of three 
high-level navigation instructions (left, straight, right) at the next 
intersection.

• A function approximator 𝑓 (a DNN) with learnable parameters 
𝜃 is trained to predict actions from observations and 
commands: 𝜃∗ = argmin

𝜃
σ𝑖 𝑙(𝑎𝑖 = 𝑓 𝑜𝑖 , 𝑐𝑖 , 𝜃 , 𝑎𝑔𝑡)

– L2 Loss function for each sample: 𝑙 𝑎𝑖 , 𝑎𝑔𝑡 =
𝑙 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑔𝑡, 𝑎𝑔𝑡 = 𝑠𝑖 − 𝑠𝑔𝑡

2
+ 𝜆𝑎 𝑎𝑖 − 𝑎𝑔𝑡

2
(𝑎𝑔𝑡 is ground 

action by expert).
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The Expert Agent

• We program an expert agent to drive 
autonomously based on privileged information: 
precise map and location of the ego-vehicle. 

• A global planner is used to randomly pick routes 
through a town and produce waypoints along the 
route. A PID controller is used to follow these 
waypoints. 

• In order to increase the diversity of the dataset, 
the car is randomly initialized within the lane (not 
always in the center). In total, we record 28 hours 
of driving. To improve the robustness of the 
learned policy, we follow [Codevilla 2018] and 
introduce noise into the controls in approximately 
20% of the data.
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Data Augmentation

• We performing augmentation on the input 
images, not the segmentation maps

• When training segmentation networks we 
randomly perturb the input images:

– Brightness, Saturation, Hue, Contrast

• When training driving policies, we 
randomly perturb the input images:

– Gaussian blur, Additive Gaussian noise, 
Spatial dropout, Brightness additive, 
Brightness multiplicative, Contrast 
multiplicative, Saturation multiplicative…
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Simulation Environment
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Performance Evaluation

• img2ctrl: end-to-end

• img2wp: end-to-mid

• seg2ctrl: mid-to-end

• Ours: mid-to-mid
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Conditional Affordance Learning (CAL) 

[Sauer 2018]

• Sauer A, Savinov N, Geiger A. Conditional 

affordance learning for driving in urban 

environments[J]. arXiv preprint 

arXiv:1806.06498, 2018. (ETHZ, TU 

Munich and Max Planck Institute)
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Abstract

• Most existing approaches to autonomous driving fall into one of two 
categories: modular pipelines, that build an extensive model of the 
environment, and imitation learning approaches, that map images 
directly to control outputs. A recently proposed third paradigm, direct 
perception, aims to combine the advantages of both by using a 
neural network to learn appropriate low-dimensional intermediate 
representations. However, existing direct perception approaches are 
restricted to simple highway situations, lacking the ability to navigate 
intersections, stop at traffic lights or respect speed limits. In this 
work, we propose a direct perception approach which maps video 
input to intermediate representations suitable for autonomous 
navigation in complex urban environments given high-level 
directional inputs. Compared to state-of-the-art reinforcement and 
conditional imitation learning approaches, we achieve an 
improvement of up to 68% in goal-directed navigation on the 
challenging CARLA simulation benchmark. In addition, our approach 
is the first to handle traffic lights and speed signs by using image-
level labels only, as well as smooth car-following, resulting in a 
significant reduction of traffic accidents in simulation.
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Conditional Affordance Learning (CAL)
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Affordances
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Perception DNN
• Loss function ℒ = σ𝑗=1

3 𝐻𝑗 + σ𝑘=1
3 𝑀𝐴𝐸𝑘

– 𝐻𝑗: Cross-Entropy Loss for classification;

– 𝑀𝐴𝐸𝑘: Mean Absolute Error for regression

• Condition 𝑑 acts as a switch in task blocks for “relative angle” and “distance to centerline”.
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Longitudinal Control
• The states are ordered in descending importance from top-to-bottom as indicated by the 

color intensity. Control laws in each state:

• over_limit: 𝑏𝑟𝑎𝑘𝑒 = .3 ⋅
𝑣 𝑡

𝑣∗ 𝑡
– 𝑣 𝑡 : current speed; 𝑣∗ 𝑡 : speed limit

• red_light: 𝑏𝑟𝑎𝑘𝑒 = .2 ⋅
𝑣 𝑡

30
– We use smaller multiplier .2 to slow down gradually; 30km/h is the typical speed zone where red 

lights are located.

• hazard_stop: 𝑏𝑟𝑎𝑘𝑒 = 1 (full braking)

• following and cruising: PID controller tuned with Ziegler-Nichols.

• Lateral control: standard Stanley controller (omitted)

• My thoughts: control based on affordances instead of a planned trajectory (waypoints).
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Visualization
• We visualized which parts of the image the network attends to when 

predicting a specific affordance. We found that the network “looks” 
at the relevant parts of the image similar to what a human would do. 

• e.g., when looking for a red light it observes the sides, where traffic 
lights are usually located. (Green color indicates no red light.)

• It recognizes crossing pedestrians as obstacles even before they 
appear in the input image by observing their shadows.
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Performance Evaluation

• MP: Modular Pipeline

• CIL: Conditional IL [Codevilla 2018]

• RL: A3C [Mnih 2016]
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CILRS [Codevilla 2019]

• Codevilla F, Santana E, López A M, et al. 

Exploring the limitations of behavior 

cloning for autonomous 

driving[C]//Proceedings of the IEEE 

International Conference on Computer 

Vision. 2019: 9329-9338. (U Barcelona, 

KAUST, Intel Labs)
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Abstract

• we propose a new benchmark to experimentally 
investigate the scalability and limitations of 
behavior cloning. We show that behavior cloning 
leads to state-of-the-art results, including in 
unseen environments, executing complex lateral 
and longitudinal maneuvers without these 
reactions being explicitly programmed. However, 
we confirm well-known limitations (due to dataset 
bias and overfitting), new generalization issues 
(due to dynamic objects and the lack of a causal 
model), and training instability requiring further 
research before behavior cloning can graduate to 
real-world driving. 
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Limitations

• Bias in Naturalistic Driving Datasets
– Most of real-world driving consists in either a few simple behaviors or a heavy tail of 

complex reactions to rare events.

• Causal Confusion
– Spurious correlations cannot be distinguished from true causes in observed training 

demonstration pattern.

– The inertia problem: When the ego vehicle is stopped (e.g., at a red traffic light), the 
probability it stays static is overwhelming in the training data. This creates a spurious 
correlation between low speed and no acceleration, inducing excessive stopping and 
difficult restarting in the imitative policy. Although mediated perception approaches 
that explicitly model causal signals like traffic lights do not suffer from this theoretical 
limitation, they still under-perform end-to-end learning in unconstrained environments, 
because not all causes might be modeled (e.g., some potential obstacles) and errors 
at the perception layer (e.g., missed detections) are irrecoverable.

• High variance
– With a fixed off-policy training dataset, one would expect CIL to always learn the same 

policy in different runs of the training phase. However, the cost function is optimized 
via Stochastic Gradient Descent (SGD), which assumes the data is (i.i.d independent 
and identically distributed). When training a reactive policy on snapshots of longer 
human demonstrations included in the training data, the i.i.d. assumption does not 
hold. Consequently, we might observe a high sensitivity to the initialization and the 
order in which the samples are seen during training.
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CILRS

• We propose a robustified CIL model designed to improve on [Codevilla
2018]

– Deeper Residual Architecture (ResNet34)

– Speed Prediction Regularization: jointly train a sensorimotor controller that predicts 
action 𝑎, with a network that predicts the ego vehicle’s speed 𝑣𝑝. this joint optimization 
enforces the perception module to put speed-related features (e.g., traffic lights) into 
the learned representation, and alleviates the Causal Confusion problem.

– (e.g., free space, curves, traffic light states, etc).

– Use L1 Loss instead of L2 Loss, as it is more correlated to driving performance

– Collect demonstrations from an expert game AI using privileged information to drive 
correctly (i.e. always respecting rules of the road and not crashing into any obstacle).

90
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NoCrash Benchmark

• More tasks and metrics than the original CARLA 
benchmark.

• We propose three different tasks, each one 
corresponding to 25 goal directed episodes. In 
each episode, the agent starts at a random 
position and is directed by a high-level planner into 
reaching some goal position. The three tasks have 
the same set of start and end positions, as well as 
an increasing level of difficulty: 
– Empty Town

– Regular Traffic

– Dense Traffic

• We end the episode as failing when any collision 
bigger than a fixed magnitude happens
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Performance Evaluation

• CIL: Conditional IL [Codevilla 2018]

• CAL: Conditional Affordance Learning [Sauer 
2018]

• MT: Multitask [Li 2018] (not discussed)

• CILR: CIL with ResNet but no Speed 
prediction

• CILRS: CIL with both ResNet and Speed 
prediction
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Learning by Cheating (LBC) [Chen 2019]

• Chen D, Zhou B, Koltun V, et al. Learning 

by cheating[J]. arXiv preprint 

arXiv:1912.12294, 2019. (UT Austin, Intel 

Labs)
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Abstract

• Vision-based urban driving is hard. The autonomous system needs to learn 
to perceive the world and act in it. We show that this challenging learning 
problem can be simplified by decomposing it into two stages. 

• We first train an agent that has access to privileged information. This 
privileged agent cheats by observing the ground-truth layout of the 
environment and the positions of all traffic participants. 

• In the second stage, the privileged agent acts as a teacher that trains a 
purely vision-based sensorimotor agent. The resulting sensorimotor agent 
does not have access to any privileged information and does not cheat. 

• This two-stage training procedure is counter-intuitive at first, but has a 
number of important advantages that we analyze and empirically 
demonstrate. We use the presented approach to train a vision-based 
autonomous driving system that substantially outperforms the state of the 
art on the CARLA benchmark and the recent NoCrash benchmark. Our 
approach achieves, for the first time, 100% success rate on all tasks in the 
original CARLA benchmark, sets a new record on the NoCrash benchmark, 
and reduces the frequency of infractions by an order of magnitude 
compared to the prior state of the art.

• Learning by Cheating
– https://www.youtube.com/watch?v=u9ZCxxD-UUw
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Overview

• (a) Privileged agent imitates the expert (Behavior Cloning (off-policy))

• (b) Sensorimotor agent imitates the privileged agent (first Behavior 
Cloning (off-policy), then Direct Policy Learning (on-policy))
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Why Does it Work?
• The effectiveness of this decomposition is counter-intuitive. If direct IL – from expert 

trajectories to vision-based driving – is hard, why is the decomposition of the learning 
process into two stages, both of which perform imitation, any better? 

• First, the privileged agent operates on a compact intermediate representation of the 
environment, and can thus learn faster and generalize better. In particular, the 
representation we use (a bird’s-eye view) enables simple and effective data augmentation 
that facilitates generalization. 

• Second, the trained privileged agent can provide much stronger supervision than the 
original expert trajectories. It can be queried from any state of the environment, not only 
states that were visited in the original trajectories. It turns passive expert trajectories into an 
online agent that can provide adaptive on-policy supervision. 

• Third, if the privileged agent is trained via conditional imitation learning, it can provide an 
action for each possible command (e.g., “turn left”, “turn right”), all at once, in any state of 
the environment. Thus all conditional branches of the privileged agent can train all 
branches of the sensorimotor agent in parallel. In every state visited during training, the 
sensorimotor student can in effect ask the privileged teacher “What would you do if you 
had to turn left here?”, “What would you do if you had to turn right here?”, etc. 

• My thoughts: an analogy: expert is a Kung Fu master who lives in the mountains, provides 
recorded video lectures, but is not available for interactive instructions; privileged agent is a 
student with perfect eyesight (with bird’s-eye view), hence can learn effectively from the 
master; sensorimotor agent is a young pupil with poor eyesight (with front-camera view), 
who can learn more effectively from the junior privileged agent with interactive instructions 
than from the master directly.
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Agent Architecture
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Loss Functins

• Privileged agent tries to imitate expert by minimizing 
expected difference between ground truth trajectory 
and predicted trajectory: min

𝜃
𝐸 𝑀,𝑣,𝑐,𝒘 ∼𝜏ԡ

ԡ
𝒘 −

𝑓𝜃
∗ 𝑀, 𝑣 𝑐

1
• Sensorimotor agent tries to imitate privileged agent by 

minimizing expected difference between own 
predicted trajectory and that by privileged agent : 
min
𝜃

𝐸 𝑀,𝐼,𝑣 ∼𝐷 𝑇𝑝 𝑓(𝐼, 𝑣) − 𝑓𝜃
∗(𝑀, 𝑣) 1

– 𝐷 is a dataset of corresponding road maps 𝑀, images 𝐼, 
and velocities 𝑣. 

– Sampling is no longer restricted to the offline trajectories 
provided by the original expert. In particular, the learning 
algorithm can sample states adaptively by rolling out the 
sensorimotor agent during training. 

– The sensorimotor agent can be supervised on all its 
waypoints and across all commands 𝑐 at once.
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Data Augmentation
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Controller
• Both privileged and sensorimotor agents rely on 

low-level controller
– Input: a set of waypoints ෝ𝑤 = {ෝ𝑤1, … , ෝ𝑤𝐾} in vehicle’s 

coordinate frame

– Output: steering, throttle, braking commands

• Longitudinal PID control tries to track target velocity 

𝑣𝑡
∗ =

1

𝐾
σ𝑘=1
𝐾 ෝ𝑤𝑖−ෝ𝑤𝑖−1 2

𝛿𝑡
– 𝛿𝑡: temporal spacing between waypoints

– https://en.wikipedia.org/wiki/Norm_(mathematics)

• Lateral PID controller tries to match a target 
heading angle towards 𝑠∗ = tan−1

𝑝𝑦

𝑝𝑥
. 

– We first fit an arc to all waypoints and steer towards 
a point on the arc to average out prediction error in 
individual waypoints. 

– The point 𝑝 = (𝑝𝑥, 𝑝𝑦) is a projection of one of the 
predicted waypoints onto the arc. We use 𝑤2 for the 
straight and follow-the-road commands (shown in 
fig), 𝑤3 for right turn, and 𝑤4 for left turn. Later 
waypoints allow for a larger turning radius.

– (My thoughts: Paper uses the term steering angle, 
but it is actually heading angle (in bicycle model.))
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Performance Evaluation
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Deep Imitative Models (DIM) [Rhinehart 

2020]

• Nicholas Rhinehart, Rowan McAllister, 

Sergey Levine, Deep Imitative Models for 

Flexible Inference, Planning, and Control, 

ICLR 2020
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Abstract

• Imitation Learning (IL) is an appealing approach to learn desirable 
autonomous behavior. However, directing IL to achieve arbitrary 
goals is difficult. In contrast, planning-based algorithms use 
dynamics models and reward functions to achieve goals. Yet, 
reward functions that evoke desirable behavior are often difficult to 
specify. In this paper, we propose “Imitative Models” to combine the 
benefits of IL and goal-directed planning. Imitative Models are 
probabilistic predictive models of desirable behavior able to plan 
interpretable expert-like trajectories to achieve specified goals. We 
derive families of flexible goal objectives, including constrained goal 
regions, unconstrained goal sets, and energy-based goals. We show 
that our method can use these objectives to successfully direct 
behavior. Our method substantially outperforms six IL approaches 
and a planning-based approach in a dynamic simulated autonomous 
driving task, and is efficiently learned from expert demonstrations 
without online data collection. We also show our approach is robust 
to poorly specified goals, such as goals on the wrong side of the 
road.
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DIM
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DIM Details
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Bayes Theorem
• 𝑃 𝐻 𝐸 =

𝑃(𝐸|𝐻)𝑃 𝐻

𝑃 𝐸

– 𝐻: Hypothesis; 𝐸: Evidence

• 3Blue1Brown on Bayes theorem
– https://www.youtube.com/watch?v=HZGCoVF3YvM&t=14s

106https://www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english/

𝑃 𝐻 𝐸

𝑃(𝐸|𝐻)

𝑃 𝐻

https://www.youtube.com/watch?v=HZGCoVF3YvM&t=14s


Planning as MAP (Maximum A Posteriori) 

Inference

• 𝑠1:𝑇
∗ = argmax𝑠1:𝑇 log 𝑝(𝑠1:𝑇|𝒢, 𝜙) = argmax𝑠1:𝑇 log 𝑞(𝑠1:𝑇|𝜙) +

log 𝑝(𝒢|𝑠1:𝑇 , 𝜙) − log 𝑝 𝒢 𝜙 = argmax𝑠1:𝑇 log 𝑞(𝑠1:𝑇|𝜙) +

log 𝑝(𝒢|𝑠1:𝑇 , 𝜙)
• 𝑠𝑡: agent state at time 𝑡 (𝑡 = 0 is current time step; 𝑇 is planning 

horizon).

• 𝜙: all of the agent’s observations.

• 𝑞(𝑠1:𝑇|𝜙): learned imitation prior. After training, 𝑞(𝑠1:𝑇|𝜙) can 
generate trajectories that resemble those that the expert might 
generate – e.g. trajectories that navigate roads with expert-like 
maneuvers. However, these maneuvers will not have a specific goal. 
Beyond generating human-like behaviors, we wish to direct our 
agent to goals and have the agent automatically reason about the 
necessary mid-level details. We define general tasks by a set of goal 
variables 𝒢.

• 𝑝(𝒢|𝑠1:𝑇 , 𝜙): test-time goal likelihood. We give examples of p(Gjs; ) 
after deriving a maximum a

• 𝑝(𝑠1:𝑇|𝒢, 𝜙): an expert-like plan that also tries to achieve goals. 
Probability of a plan 𝑠1:𝑇 conditioned on the goal G, modelled by a 
posterior distribution, 
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Goal Likelihood
• Constraint-based planning to goal sets: 𝑝 𝒢 𝑠1:𝑇 = 𝛿𝑆𝑇 𝒢 delta function 

centered around goal (figures below)
– 𝒢 = 𝑔1, 𝑔2, … , 𝑔𝑘 Way points (from high-level A* planner)

– 𝒢 = 𝑠𝑒𝑔1, 𝑠𝑒𝑔2, … , 𝑠𝑒𝑔𝑘 Line Segments

– 𝒢 = 𝑃𝑜𝑙𝑦𝑔𝑜𝑛 Region

• Unconstrained planning to goal sets: Gaussian distribution instead of delta 
function
– 𝑝 𝒢 𝑠, 𝜙 ← 𝒩(𝑔𝑇; 𝑠𝑇 , 𝜖𝑇) Gaussian Final-State likelihood (reach a single goal state)

– 𝑝 𝒢 𝑠, 𝜙 ← ς𝑘=𝑇−𝐾+1
𝑇 𝒩(𝑔𝑘; 𝑠𝑘 , 𝜖𝑇) Gaussian State Sequence (reach a sequence of 𝐾

goal states)

– 𝑝 𝒢 𝑠, 𝜙 ←
1

𝐾
ς𝑘=1
𝐾 𝒩(𝑔𝑇

𝑘; 𝑠𝑇 , 𝜖𝑇) Gaussian Final-State Mixture (reach any one of 𝐾 goal 
states)

– Goal likelihood encourages goals, rather than dictating them as for constraint-based. 
Useful for tolerating errors in goal-specification. Hyper-param 𝜖 controls variance.
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Robustness to Errors in Goal-Specification.
• To test model’s capability to stay in the distribution of demonstrated 

expert behavior, we designed a “decoy waypoints” experiment.
– Navigating with high-variance waypoints. 

• Half of the waypoints are highly perturbed versions of the other half, serving as 
distractions for our Gaussian Final-State Mixture imitative planner. 

– Navigating with waypoints on the wrong side of the road. 

• The planned path still stays on the road to mimic the expert behavior, 
rather than following the goals blindly, thanks to the learned imitation 
prior 𝑞(𝑠1:𝑇|𝜙), which outweighs the influence of bad goals 𝑝 𝒢 𝑠1:𝑇 , 𝜙
when computing 𝑠1:𝑇

∗ , if 𝑝 𝒢 𝑠, 𝜙 has high variance (with large 𝜖).
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Summary

• We proposed “Imitative Models” to combine the 
benefits of IL and MBRL. Imitative Models are 
probabilistic predictive models able to plan 
interpretable expert-like trajectories to achieve new 
goals. 

• Inference with an Imitative Model resembles trajectory 
optimization in MBRL, enabling it to both incorporate 
new goals and plan to them at test-time, which IL 
cannot. 

• Learning an Imitative Model resembles offline IL, 
enabling it to circumvent the difficult reward-
engineering and costly online data collection 
necessities of MBRL.

• ICLR 2020 Talk:
– https://iclr.cc/virtual_2020/poster_Skl4mRNYDr.html
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