
Lab3  DQN for Highway 
Driving

Zonghua Gu 2021

1
Acknowledgement: slides based on https://github.com/eleurent/highway-env



Highway Env

• A collection of environments for 
autonomous driving and tactical decision-
making tasks, by Edouard Leurent

– Source code: 
https://github.com/eleurent/highway-env

– Documentation:  
https://eleurent.github.io/highway-env/

2

https://github.com/eleurent/highway-env
https://eleurent.github.io/highway-env/


Making an env with gym.make()
• import gym

• import highway_env

• from matplotlib import pyplot as plt

• %matplotlib inline

• env = gym.make('highway-v0’) 

• # 5 environments: Highway,  Merge, Roundabout, Parking, Intersection, 

• env.reset()

• for _ in range(3):

• action = env.action_type.actions_indexes["IDLE"]

• obs, reward, done, info = env.step(action)

• env.render()

• plt.imshow(env.render(mode="rgb_array"))

• plt.show()

• (Lab3 uses a different method env = load_environment(env_config))

3



Training an agent

• RL agents can be trained using libraries 

such as rl-agents (by Leurent), OpenAI

baselines or stable-baselines3.

4



rl-agents

• A collection of RL agents authored by Leurent: https://github.com/eleurent/rl-
agents

• Planning
• Value Iteration
• Cross-Entropy Method
• Monte-Carlo Tree Search

• Upper Confidence Trees
• Deterministic Optimistic Planning
• Open Loop Optimistic Planning
• Trailblazer
• PlaTγPOOS

• Safe planning
• Robust Value Iteration
• Discrete Robust Optimistic Planning
• Interval-based Robust Planning

• Value-based
• Deep Q-Network
• Fitted-Q

• Safe value-based
• Budgeted Fitted-Q

5

https://github.com/eleurent/rl-agents
https://github.com/eleurent/rl-agents#vi-value-iteration
https://github.com/eleurent/rl-agents#cem-cross-entropy-method
https://github.com/eleurent/rl-agents#uct-upper-confidence-bounds-applied-to-trees
https://github.com/eleurent/rl-agents#opd-optimistic-planning-for-deterministic-systems
https://github.com/eleurent/rl-agents#olop-open-loop-optimistic-planning
https://github.com/eleurent/rl-agents#trailblazer
https://github.com/eleurent/rl-agents#plaT%CE%B3poos
https://github.com/eleurent/rl-agents#rvi-robust-value-iteration
https://github.com/eleurent/rl-agents#drop-discrete-robust-optimistic-planning
https://github.com/eleurent/rl-agents#irp-interval-based-robust-planning
https://github.com/eleurent/rl-agents#dqn-deep-q-network
https://github.com/eleurent/rl-agents#ftq-fitted-q
https://github.com/eleurent/rl-agents#bftq-budgeted-fitted-q


Stable Baselines

• A set of improved 

implementations of RL 

algorithms based on 

OpenAI Baselines: 

https://github.com/DLR

-RM/stable-baselines3

• Training a PPO (Proximal 
Policy Gradient) agent 
with Stable Baselines:

6

import gym

from stable_baselines.common.policies import MlpPolicy

from stable_baselines import PPO2

env = gym.make('CartPole-v1')

model = PPO2(MlpPolicy, env, verbose=1)

# Train the agent

model.learn(total_timesteps=10000)

# Enjoy trained agent

obs = env.reset()

for i in range(1000):

action, _states = model.predict(obs, deterministic=False)

obs, reward, done, info = env.step(action)

env.render()

if done:

obs = env.reset()

env.close()

https://github.com/DLR-RM/stable-baselines3


highway-parking-v0 

environment trained with HER 

(Hierarchical Experience 

replay).

7



highway_env.py

• The vehicle is driving on a straight highway 
with several lanes, and is rewarded for 
reaching a high speed, staying on the 
rightmost lanes and avoiding collisions. 

• The observations, actions, dynamics and 
rewards of an environment are parametrized 
by a configuration, defined as a config 
dictionary. After environment creation, the 
configuration can be accessed using the 
config attribute. Here are the default config 
values: 

8



observation.py

• GrayscaleObservation(Ob
servationType)
– Observes the image 

rendered by the simulator 
(top-down view)

• KinematicObservation(Ob
servationType)
– Observes the kinematics 

(position, speed, heading 
angle) of all nearby 
vehicles within 
PERCEPTION_DISTAN
CE=6.0*MDPVehicle.SP
EED_MAX

• LidarObservation(Observa
tionType)
– Observes direction and 

distance to obstacles 
within line of sight

9



action.py
• class ContinuousAction(ActionType)

– Continuous action space for throttle and/or steering angle. If both throttle and steering 
are enabled, they are set in this order: [throttle, steering]. The space intervals are 
always [-1, 1], but are mapped to throttle/steering intervals through configurations.

– ACCELERATION_RANGE = (-5, 5.0)
• [-x, x], in m/s²

– STEERING_RANGE = (-np.pi / 4, np.pi / 4)
• [-x, x], in rad

• class DiscreteMetaAction(ActionType)
– Discrete action space of meta-actions: lane changes, and cruise control set-point.

– ACTIONS_ALL = {0: 'LANE_LEFT', 1: 'IDLE’, 2: 'LANE_RIGHT', 3: 'FASTER’, 4: 
'SLOWER'}

• A mapping of action indexes to labels.

– ACTIONS_LONGI = {0: 'SLOWER', 1: 'IDLE', 2: 'FASTER'}
• A mapping of longitudinal action indexes to labels.

– ACTIONS_LAT = {0: 'LANE_LEFT', 1: 'IDLE', 2: 'LANE_RIGHT’}
• A mapping of lateral action indexes to labels.

10



Actions are controller targets

• The :py:class:`~highway_env.envs.common.ac
tion.DiscreteMetaAction` type adds a layer 
of :ref:`speed and steering controllers 
<vehicle_controller>` on top of the continuous 
low-level control, so that the ego-vehicle can 
automatically follow the road at a desired 
velocity. Then, the available meta-
actions consist in changing the target lane 
and speed that are used as setpoints for the 
low-level controllers.

11

https://github.com/eleurent/highway-env/blob/d6ef0d6d766c3b54a9f06cba3f09677d718109c3/docs/source/actions/index.rst#id16
https://github.com/eleurent/highway-env/blob/d6ef0d6d766c3b54a9f06cba3f09677d718109c3/docs/source/actions/index.rst#id18


vehicle/controller.py

• A vehicle piloted by two 
low-level controllers, 
allowing high-level 
actions such as cruise 
control and lane 
changes.
– The longitudinal 

controller is a speed 
controller;

– The lateral controller 
is a heading controller 
cascaded with a 
lateral position 
controller.

– Control algorithm is 
Proportional control.

– Vehicle model is 
dynamical bicycle 
model, with tire friction 
and slipping.

12



highway_env.py default_config

• In def default_config(cls) -> dict:
– "collision_reward": -1,    # The reward received 

when colliding with a vehicle.

– "right_lane_reward": 0.1,  # The reward received 
when driving on the right-most lanes, linearly 
mapped to zero for other lanes.

– "high_speed_reward": 0.4,  # The reward 
received when driving at full speed, linearly 
mapped to zero for lower speeds according to 
config["reward_speed_range"].

– "lane_change_reward": 0,   # The reward 
received at each lane change action.

– "reward_speed_range": [20, 30],

13



highway_env.py _reward()

14



highway_env.py _reward() 

Explanations
• If crashed, add collision_reward (-1)

• Add right_lane_reward*Lane/max(nLanes-1,1)
– lane_index has 3 elements (from, to, id), so lane_index[2] is the lane id. 

For self.vehicle, consider the target lane; for other vehicles, consider the 
current lane

– neighbours contains all lanes in the same road.

– Suppose nLanes=2, if Lane=0 (left lane), then .1 ∗
0

1
= 0; if Lane=1 (right 

lane), then .1 ∗
1

1
= .1

• utils.lmap(v: float, x: Interval, y: Interval) -> float
– Linear map of value 𝑣 within range x=[𝑥0, 𝑥1] to desired range 

y= 𝑦0, 𝑦1 = 0,1 , returns 𝑦0 +
𝑣−𝑥0 𝑦1−𝑦0

(𝑥1−𝑥0)
∈ [0,1]

• Add high_speed_reward *scaled_speed=.4*np.clip(scaled_speed, 0, 
1)
– scaled_speed = utils.lmap(self.vehicle.speed, 

self.config["reward_speed_range"], [0, 1])

– np.clip(scaled_speed, 0, 1) (if 𝑣 ∉ [20,30], clip output to within [0,1])

• reward = utils.lmap(reward, [-1, .5], [0,1])
– Min reward=-1 (collision_reward); Max reward=.1+.4 

(right_lane_reward+ high_speed_reward ); 
15



roundabout_env.py _reward(self, 

action: int)
• In def default_config(cls) -> dict: "collision_reward": -1, 

"high_speed_reward": 0.2, "right_lane_reward": 0, 
"lane_change_reward": -0.05

• If crashed, add collision_reward(-1)

• Add high_speed_reward*scaled speed index

• Add lane_change_reward*lane_change

• reward = utils.lmap(reward, [-1.05, .2], [0,1])

16



create_road(), create_vehicles()

17



agents

• In random.py:

• def act(self, state):

return 
self.env.action_space.sample()

• In deep_q_network/abstract.py:

• def act(self, state, 
step_exploration_time=True):

if step_exploration_time:

self.exploration_policy.step_time()

values = 
self.get_state_action_values(state)

self.exploration_policy.update(values)

return self.exploration_policy.sample()

18



Env and Agent Configs

• env_config = 'configs/HighwayEnv/env.json’

• agent_config = 'configs/HighwayEnv/agents/DQNAgent/dqn.j

son'

19

env.json

(empty)

dqn.json



abstract.py exploration_factory

20



epsilon_greedy.py get_distribution()

• 𝑛: discrete action space size (# actions)

• For each action: 𝑑𝑖𝑠𝑡 =
𝜖

𝑛

• For the optimal action: 𝑑𝑖𝑠𝑡 =
𝜖

𝑛
+ 1 − 𝜖

21



epsilon_greedy.py update()

• 𝜖 = 𝑓𝑖𝑛𝑎𝑙𝑇 + 𝑇 − 𝑓𝑖𝑛𝑎𝑙𝑇 𝑒−
𝑡𝑖𝑚𝑒

𝜏

•
𝑡𝑖𝑚𝑒

𝜏
= 0 ⇒ 𝜖 = 𝑇 = 1.0

•
𝑡𝑖𝑚𝑒

𝜏
= ∞ ⇒ 𝜖 = 𝑓𝑖𝑛𝑎𝑙𝑇 = .1

• Hyperparam 𝜏 determines the speed of change of 𝜖 from 𝑇 to 
𝑓𝑖𝑛𝑎𝑙𝑇

22


