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Logistics

• Lecture Times

– Mon, Wed 15:00-16:30

• Instructors 

– Zonghua Gu, Kalle Prorok, Siyu luan

– Emails: firstname.lastname@umu.se

• Zoom link:

• https://umu.zoom.us/j/67824756675
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My Instruction Style
• No textbook. Will discuss classic techniques as 

well as latest research advances.

• I provide detailed, self-contained PowerPoint 
slides.

– All exam questions will come from these slides. Some 
slides may be verbose for the sake of completeness.

• In-class questions and discussions are welcome. 
You can either speak up during lecture, or type in 
the chat window. For questions after class, please 
use the Canvas discussion board so everyone can 
see the discussions.

• Lecture videos are recorded and available in UmU
Play, so in-class attendance is not mandatory.
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Lecture Schedule (Tentative)

• I will put lecture materials here instead of 

on Canvas. Please bookmark this link

– https://guzonghua.github.io/saav/ (under 

construction)

– Since I may update slides slightly after each 

class, it is more convenient to put them here

• Last year’s materials available on 

https://guzonghua.github.io/saav2021/ and 

YouTube

– Contents will be updated to have broader 

scope and less math
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Labs and Grades

• Labs 
– Lab1 in W3-4. Adversarial attack on CNN for traffic sign 

classification

– Lab2 in W7-8. PID control

– Lab3 in W9-10. Planning for Highway Driving with DQN RL

• We will keep the projects’ computing demands low, so 
you can use Google Colab, or work on your own 
computer without powerful GPUs. (Programming 
language is Python.)

• We will keep the programming workload relatively low, 
e.g., you may be given a semi-complete program, and 
asked to  tune some hyper parameters, or fill in a few 
lines of missing code (no large-scale coding)

• Grade distribution: 
– Final exam (open-book): 60% 

– Lab sections: 40%
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Final Exam Format
• Multiple choice questions, e.g.

– Which path planning algorithm(s) are guaranteed to find the optimal 

solution? 

– A. A* algorithm 

– B. Rapidly-exploring Random Tree (RRT) 

– C. Probabilistic Roadmap (PRM) 

– D. All of them 

– E. None of them 

• Simple calculation questions, e.g.,
– Convolutional Neural Networks I 

– Input volume: 56×56×64 (𝑊1=𝐻1=𝑁1=56,𝐷1=64). 32 1×1×64 filters 

(𝐾=32,𝐹=1) w. stride 𝑆=1, no pad 𝑃=0. Show the formulas and 

calculation process. 

– 1) Calculate the dimensions of the output volume, including spatial size 

and depth. 

– 2) Calculate the total number of parameters, including weights and 

biases. 6



Pass or Fail?

• In the past, the vast majority of students 

pass the course, if they put in reasonable 

effort

• The course workload is not very high. 

Most students manage it quite well

– Use the anonymous feedback link to provide 

comments on course pace, level of difficulty, 

etc.
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Today’s Agenda

• I will give a broad review of the major 

issues involved in AD. 

– Background

– Sensors and perception

– HD maps

– Hardware platforms

– Software platforms

– V2X

– Ethical Issues
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• Can refer to any type of Autonomous 
Mobile Robot.

– Not just Self-Driving Cars (SDCs)

• Many techniques for SDCs covered in this 
course are generally applicable to other 
types of AVs. 
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Self-Driving Cars Drones

Autonomous Vehicles (AVs)

Indoor-Cleaning 

Robots

Warehouse Robots



Why AD?

• Reduced traffic accidents and fatalities
– In the USA: in 2019, an estimated 38,800 people 

lost their lives to car crashes. About 4.4 million 
people were injured seriously enough to require 
medical attention in crashes.

• Reduced congestion and pollution

• More productive time spent on the road

• Autonomous Mobility-on-Demand (AMoD) 
with a fleet of AVs
– Low-cost, safe and efficient mode of 

transportation that may make vehicle ownership 
obsolete. 

– The dream of Uber (and many other companies)
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Advanced Driver Assistance 

(ADAS)
• Since the initial introduction of Cruise 

Control in 1948, ADAS functions are 

increasingly prevalent in modern vehicles. 

– Adaptive cruise control (ACC), Anti-lock 

braking system, Collision avoidance system 

(Pre-crash system), Driver Monitoring System 

(DMS), Electronic Stability Control (ESC), 

Forward Collision Warning (FCW), Lane 

Departure Warning (LDW), Lane Change 

Assistance, Surround View…

11https://en.wikipedia.org/wiki/Advanced_driver-assistance_systems



DARPA Grand Challenge (2004)

• Held in the Mojave Desert region of the USA, 

along a 150-mile route. 

• None of the robot vehicles finished the route. 

Carnegie Mellon University's Red Team and 

car Sandstorm (a converted Humvee) 

traveled the farthest distance, completing 

7.32 mi of the course before getting hung up 

on a rock after making a switchback turn. 

• No winner was declared, and the cash prize 

was not given.
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DARPA Grand Challenge (2005)

• Vehicles passed through three narrow 

tunnels and negotiated more than 100 

sharp left and right turns.

• Five vehicles successfully completed the 

132 mi course. Stanford’s Stanley won the 

$2M top prize.
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DARPA Urban Challenge (2007)

• Held at the site of the now-closed George Air Force Base. The 
course involved a 60 mi urban area course, to be completed in less 
than 6 hours. Rules included obeying all traffic regulations while 
negotiating with other traffic and obstacles and merging into traffic.

• CMU’s Boss won the $2M top prize, and Stanford’s Junior won the 
$1M second prize.

• The 3 Grand Challenge races jump-started the Self-Driving Car 
industry. Faculty and students from winning teams such as Stanford 
and CMU later became leaders in SDC projects at companies like 
Google/Waymo and Uber and numerous startups.
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Highway vs. City Driving

• Highway driving is perceived as an easier problem 
than city driving.
– Has potential of massive displacement of truck driver jobs

– But traffic merging is tricky and may require human 
operator assistance 
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Highway Driving City Driving

Travel Speed High Low to medium

Traffic Volume High Medium to high

Number of Lanes Large (6-8) Small (2-4)

Others Entry and exit 

points for traffic 

merging

Many intersections 

with traffic lights



Brief History of SDCs

16https://www.mcca.com/wp-content/uploads/2018/04/Autonomous-Vehicles.pdf
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Operational Design Domain (ODD)

• The ODD defines the conditions under which 
a vehicle is designed to function and is 
expected to perform safely. The ODD 
includes (but isn’t limited to) environmental, 
geographical, and time-of-day restrictions, as 
well as traffic or roadway characteristics.

– e.g., an autonomous freight truck might be 
designed to transport cargo from a seaport to a 
distribution center 30 Km away, via a specific 
route, in day-time only. This vehicles ODD is 
limited to the prescribed route and time-of-day, 
and it should not operate outside of it
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Five Levels of Automation
• L1: ADAS features that either control steering or speed to support the driver. 

• L2: both steering and acceleration are simultaneously handled by AD system. The human driver 
still monitors the environment and supervises the support functions. 

• L3: Conditional automation: the system can drive without the need for a human to monitor and 
respond. However, the system might ask a human to intervene, so the driver must be able to take 
control at all times. 

• L4: These systems have high automation and can fully drive themselves under certain conditions. 
The vehicle won’t drive if not all conditions are met. 

• L5: Full automation, the vehicle can drive wherever, whenever, with unlimited ODD.

18https://www.wevolver.com/article/2020.autonomous.vehicle.technology.report



State of the Art
• Current commercial products are at most L2 (e.g., 

Tesla Autopilot)

• L2 to L3 is perceived to be a giant leap

• Automakers keep pushing the timeline of L3 and 
above to the future…
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Two Different Paths to L4/5

• Tesla starts from L2 and mass deployment, and gradually moves to L4/5.

• Waymo, nuTonomy…starts from L4 in limited ODD, and gradually expands 

deployment

20Emilio Frazzoli, nuTonomy



AD Safety Evaluation Metric: Miles 

Driven?
• Not All Miles are Equal. 

– Driving conditions may be dramatically different. 

– Companies may be incentivized to avoid difficult 

driving conditions.
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Total Miles Driven
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Waymo Reaches 10 Million Miles Tesla Autopilot Reaches 1 Billion Miles in 2019



Miles Driven per Disengagement 

(2018)
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The California Department of Motor Vehicles defines a 

disengagement as a “deactivation of the autonomous 

mode when a failure of the autonomous technology is 

detected or when the test driver disengages the 

autonomous mode.”

There is a lot of disagreement on the level of accuracy 

of the metric as it may be too vague, is valid only for 

California, and may not reflect the difficulty of the 

chosen driving environment.



“The Moore’s Law for Self-Driving Vehicles”, 

Edwin Olson, CEO of May Mobility

• Moore’s law in the semiconductor industry says that “the number of transistors on a chip 
doubles approximately every 18 months”, i.e., w. exponential growth rate

• Can we have a Moore’s law for AD? “The number of miles between disengagements will 
double approximately every 16 months.”

– Between human performance (10⁸ miles per fatality) and the best-reported self-driving car 
performance (10⁴ miles per disengagement) is a gap of 10,000x. Even with performance doubling 
every 16 months, it will reach human levels of performance in 2035. 
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When will AD Really Arrive?

• Chris Urmson, co-founder and CEO of 

Aurora:

– “In 5 years” - 2009

– “In 5 years” - 2012

– “In 5 years” - 2015

– “In 5 years” - 2018
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The Tesla Fatality in May 2016
• The Tesla Model S (L2) was driving 74 mph on the highway when it was struck by a 

semitruck

• The driver’s hands were off the steering wheel for a total of 37 minutes during the 37.5
minutes of time the car was in Autopilot, despite repeated visual warnings

• Tesla: “Neither Autopilot nor the driver noticed the white side of the tractor trailer against a 
brightly lit sky, so the brake was not applied.”

– A failure of computer vision algorithm for object detection; maybe a lidar could have prevented the 
accident.

• Tesla used to use Mobileye’s hardware platform EyeQ, but they broke up after the accident, 
and Tesla started to develop its hardware platform FSD. 
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The Tesla Fatality in Mar 2018
• In 2018, a man died from a high-speed crash because his Tesla Autopilot system steered the car 

into a median on Highway 101 in Mountain View, CA.

• NTSB’s investigation report, released in Feb 2020, lists 23 findings that enumerate all the factors 

that contributed to the fatal collision. 

– Limitations on Tesla's Autopilot Lane-Keeping Assistance (LKA) caused the vehicle to veer into the median 

and failed to provide an alert to the driver in the seconds leading to the crash.

– The collision avoidance system was not designed to detect a crash attenuator, which resulted in a severe 

crash in which the automatic braking and collision warning systems failed to activate.

– A failure of computer vision algorithm for lane tracking.

• Tesla Autopilot 2 almost crashes Into Barrier (similar to this crash)

– https://www.youtube.com/watch?v=TIUU1xNqI8w
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Tesla still cannot recognize white 

trucks in 2020

• Tesla on autopilot crashes into overturned 

truck on busy highway in Taiwan

– https://www.youtube.com/watch?v=X3hrKnv0

dPQ
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The Uber Pedestrian Fatality in Mar 

2018
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• Police release video of Uber collision that killed pedestrian
– https://www.youtube.com/watch?v=q7d90ZFhg28

• “The recorded telemetry showed the system had detected 
Herzberg six seconds before the crash, and classified her first 
as an unknown object, then as a vehicle, and finally as a 
bicycle, each of which had a different predicted path 
according to the autonomy logic.”

https://www.youtube.com/watch?v=q7d90ZFhg28


The Uber Pedestrian Fatality in Mar 

2018
• The AV (L3/4) was equipped with both Lidar 

and Radar. After the woman was detected on 
the road (6 sec before)
– first classified as unknown object

– then misclassified as a vehicle

– then a bicycle

• 1.3 sec before, the Volvo system tried to do 
emergency braking maneuver
– but Uber had disabled it for testing

• The safety driver was not watching the road 
moments before the vehicle struck her.
– It was probably too dark for the driver to see her in 

time.
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AD Landscape Today

31
https://medium.com/@firstmilevc/avlandscape-8a21491f1f54



Four Major Tasks of an AV

32

Localization: Where am I? Detection: What is around me?

Prediction: Where are they going? Planning and Control: Where should I go?



AD Processing Pipeline
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Sensing:
Understanding the 

surrounding environment, 

incl. localization, detection, 

prediction

Planning:
Decision making in the 

context of other road users

Acting:
Moving the vehicle to follow 

the planned trajectory



Environment Perception
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Prediction

• Based on state
– Kalman filter

– Particle filter

• Data-driven
– ML-based classification 

• Pedestrian intention prediction
– Based on visual cues such as pose, etc.

– Very difficult problem
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Environmental Maps
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Motion Planning
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Mission Planner

• Use graph search to find a path from 

source to destination on the map
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Behavior Planner

• Plan the set of high-level driving actions or 

maneuvers to safely achieve the driving 

mission under various driving conditions
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Local Planner

• Plan a safe and smooth trajectory (vehicle 

pose as function of time)
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Controller

• Velocity controller for longitudinal speed control

• Steering controller for lateral speed control

• Common control algorithms
– PID: Proportional Integral Derivative

– MPC: Model-Predictive Control
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Classic Pipeline vs. ML/DL

• Classic AD processing pipeline: separate algorithms for each 
processing stage. 

• Where does ML/DL come in?
– CNN (Convolutional Neural Networks) for perception is well 

accepted.

– DNN trained with Imitation Learning (IL) or Reinforcement 
Learning (RL) is still in the early-research stage.

• “End-to-end” mapping from pixels to control commands

• Many variants of hybrid approaches, e.g., “half-way” mapping from pixels 
to waypoints used for planning

• Several companies are making a bet on it, incl. Waymo, Voyage, 
Wayve…
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SENSORS AND PERCEPTION
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Perception Tasks

• 4 main perception tasks
– Detection

• Detect the existence of an object in the environment

– Classification
• Identify what the object is, e.g., traffic sign, traffic light, pedestrian

– Tracking
• Track a moving object across time

– Segmentation
• Semantic segmentation: classify each pixel to its semantic category, e.g., road, car, 

sky… 

• Instance segmentation: classify each pixel to an object instance, e.g., car1, car2…

• Mobileye's Autonomous Car What the System Sees
– https://www.youtube.com/watch?v=jKfwHsHUdVc
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The variety of static and

moving objects that an AV needs to detect and recognize
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Perception is Challenging
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• The long tail distribution is challenging: anything can happen on the road!

• Video from 2015, recorded by Google’s AV.



The Typical AV Sensor Configuration
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Configuration of Sensors of Some Research 

AVs
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Uber Waymo GM Cruise Navya

Autonomy 

Cab

Drive.ai Nissan Tesla

Autopilot

V9

Cameras 8 8 16 6 10 12 8

Lidars 1 6 5 10 4 6 0

Radars 4 4 8 4 2 9 1

• Tesla is one of the few AD companies that do not use Lidar.

• Elon Musk, 2017: 

– “Once you solve cameras for vision, autonomy is solved; if you don’t 

solve vision, it’s not solved … You can absolutely be superhuman with 

just cameras.” 

– “In my view, Lidar is a crutch that will drive companies to a local 

maximum that they will find very hard to get out of. Perhaps I am 

wrong, and I will look like a fool. But I am quite certain that I am not.”



Passive vs. Active Sensors
• Passive sensors detect existing energy, like 

light or radiation, reflecting from objects in the 
environment.
– Cameras

• Active sensors (also called range sensors) 
send their own signal and sense its reflection
– Lidar, Radar, ultrasound

49https://www.wevolver.com/article/2020.autonomous.vehicle.technology.report



Camera
• Pro: cheap, versatile, stereo vision w. two cameras

• Con: easily affected by illumination conditions, needs additional light at night

• Key parameters
– Resolution

• e.g.,1080p HD cameras provide 1920x1080-pixel resolution, or 2.1 megapixels.

– Field of View (FOV)
• The extent of the observable world that is seen at any given moment

• Given same resolution, wider FOV results in large image distortion.

– Dynamic range
• Maximum difference between the darkest and lightest pixel intensities in an image, measured in dB.

An AV needs HDR (High-Dynamic-Range) cameras with at least 100dB.
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Range Sensors

• They rely on Time of Flight (ToF) to measure distance 
(range), a key element for localization and environment 
modeling
– Lidar uses electromagnetic waves.

– Radar uses radio waves

– Ultrasonic uses sound waves

• The traveled distance of a wave is given by 𝑑 =
𝑣∗𝑡

2
– 𝑑: distance

– 𝑣: speed of wave propagation

– 𝑡: ToF (roundtrip)
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Range Sensors

• Propagation speed 𝑣
– Sound: 0.3 m/ms

– Electromagnetic wave (incl. light): 0.3 m/ns
• 1 M times faster than sound

• To travel 3 meters:
– 10 ms for ultrasonic sensor

– 10 ns for Lidar

– Measuring time of flight with electromagnetic signals is not an 
easy task. Hence Lidars are expensive and delicate

• The quality of range sensors mainly depends on:
– Inaccuracies in the time of fight measurement (laser range 

sensors)

– Opening angle of transmitted beam (especially ultrasonic range 
sensors)

– Interaction with the target (surface, specular reflections)

– Variation of propagation speed (sound)

– Speed of vehicle and target
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Lidar
• Lidar (Light Detection and Ranging Device) sends millions of light pulses per 

second in a well-designed pattern to generate “Point Clouds” that describe the 
3D geometry of the surrounding environment

• Pro: independent of lighting conditions, precise distance measurements for 
3D perception

• Con: expensive, medium resolution

• Key parameters:
– Laser beam count

– Rotation Speed

– FOV

– Range distance (from tens to hundreds of meters)

53



Velodyne Lidar
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• The high-end Velodyne HDL-64E with 64 laser 
emitters
– Rotation rate up to 15 Hz

– FOV is 360° horizontally and 26.8° vertically

– Angular resolution is 0.09° and 0.4° respectively

– Delivers ~1.3M data points per second

– Expensive (~USD$40-80K) (cheaper versions available)



Many Variants of Lidars in the Market

55http://www.f4news.com/2018/05/04/yole-on-lidar-market/



Apple iPAD Pro has Built-in Lidar (2020)
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• It allows users to 

scan a depth-

accurate depiction of 

the environment.

• Main application: 

Augmented Reality 

(AR)

– Needs depth 

information to place 

virtual objects in the 

environment.



mmWave Radar
• Pro: provides both position and relative speed information; 

can operate in varied conditions (low-lighting, rain, fog…)   

• Con: low resolution

• Key parameters
– Sensing distance, FOV, Position and velocity accuracy

• Two types 
– Short-medium range with wide FOV

– Long range with narrow FOV
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Ultrasound

• Pro: not affected by lighting conditions, rain or fog

• Con: short sensing range (mainly used for parking assistance)

• Key parameters
– Sensing range

– FOV
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Comparison of Sensing Ranges

59
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Other Comparisons

Camera Lidar Radar

Sensing Range Mixed Mixed Good

Functioning in bad weather Poor Mixed Good

Functioning in poor lighting Mixed Good Good

Object Detection Mixed Good Mixed

Object Classification Good Mixed Poor

Lane Tracking Good Poor Poor

60

• Each sensor has its strengths and weaknesses

• Sensor fusion crucial for robust perception



GNSS/GPS
• GNSS (Global Navigation Satellite System) 

provides localization service for outdoor 
applications. Current GNSS systems include:
– GPS (USA), Galileo (Europe), Beidou (China), 

GLONASS (Russia)

• Conventional GPS provides a few meters 
accuracy, affected by cloud covers and tall 
buildings; RTK (Real-Time Kinematic) GPS 
can provide centimeter-level accuracy by 
calculating and transmitting differential 
correction data via radio to allow the roving 
GPS system (vehicle) to correct its position
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IMU
• IMU (Inertial Measurement System) measures 

acceleration (linear and angular) and orientation (yaw, 
pitch, roll)
– For ground vehicles on 2D plane, only yaw is relevant.

– For aerial vehicles in 3D space, all three are relevant

• Often combined with GNSS/GPS to form INS 
(Integrated Navigation System), using sensor fusion to 
achieve higher estimation accuracy
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AV Sensors Generates Big Data
• Sensors, esp. cameras and lidars, generate the most amount of data

• Sensor data must be processed in real-time by perception algorithms

63https://datacenterfrontier.com/autonomous-cars-could-drive-a-deluge-of-data-center-demand/



High-Definition (HD) Maps
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HD Maps

• Different from navigation maps 
(e.g., Google Maps) designed for 
human eyes, HD maps are 
designed for processing by 
computers
– Highly-accurate (centimeter-level) 

3D representation of the road 
network, e.g., cross section 
layout; locations of traffic 
lights/signs; semantic information 
on certain road segments (speed 
limits…)

• Benefits
– Help reduce Region-of-Interest 

(ROI) for detection of traffic 
elements

– Help with AV localization based 
on known object positions

– help with recognition of lane 
center line
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Are HD Maps Necessary?

• Humans don’t need HD maps to drive

• HD maps vs. on-board sensing

– Use of HD maps limits the area of operation; mapless
systems allow universal operation anywhere.

– Use of HD maps reduces the computational burden 
on on-board sensing: the more that has already been 
mapped out, the easier it is for the on-board system to 
focus on the moving parts; mapless systems must 
figure out everything on-the-fly with no prior 
knowledge of the environment

• It is generally agreed that L4-L5 levels of 
automation cannot work without HD maps, at least 
for now; L2-L3 levels may work without them (e.g., 
Tesla does not use HD maps)
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HARDWARE PLATFORMS
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Typical Automotive E/E Architecture
• Ethernet as high-bandwidth 

backbone network
– Ethernet TSN posed to be the 

dominating standard protocol.

– Regular Ethernet is also used for 
diagnostics

• FlexRay for safety-critical X-by-
Wire, where X stands for brake, 
steer, drive…

– Gradually being replaced by 
Ethernet

• Media Oriented Systems 
Transport (MOST) for multimedia 
transmission

– Gradually being replaced by 
Ethernet

• CAN (Controller Area Network) 
for low-bandwidth network and 
interfacing with sensors/actuators

• LIN (Local Interconnect Network) 
for body electronics, e.g., door, 
light, rearview mirrors…

68https://www.renesas.com/eu/en/solutions/automotive/technology/networking-solutions.html



Evolution of Automotive E/E Architecture
• From many (~80-100) distributed and networked ECUs to a 

few (~4) high-performance ECUs with massive computing 
power, and large number of (~60) small ECUs for interfacing 
with sensors and actuators.

• This helps simplify system architecture, reduce network load, 
and improve system reliability.
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Trunk of an Experimental AV from Ford (2017) 

70

Where do I put 

my groceries?

https://www.theverge.com/2017/10/10/16449416/nvidia-pegasus-self-driving-car-ai-robotaxi



AD Hardware Considerations
• Power consumption

– Power consumption of electronics (sensors and computing 
hardware) for AD may be 100x that of a vehicle with regular 
ADAS. This drains battery and implies increased fuel 
consumption or reduced range for EVs 

• EV drivers often turn off air conditioning due to range anxiety; will 
they turn off AD and drive manually for this reason?

– Waymo and Ford now focus on Hybrid Vehicles, while Uber 
uses a fleet of full gasoline SUVs.

• Cooling capacity
– Fan or liquid cooling.

• Form factor
– Must be compact and unobtrusive.

• Cost
– Important for mass deployment.

– Cost of electronics in an experimental AV often exceeds cost 
of the original vehicle.
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SoC Hardware for AVs

• The most compute-intensive workload is Deep Learning
– Mostly inference tasks, but may also perform training tasks in 

case of online-learning.

• Many vendors provide SoC (System-on-Chip) products that 
integrate CPU cores with specialized computational engines 
for Deep Learning:
– GPU (Graphics Processing Unit)

• NVIDIA is the only serious player.

• Other GPU venders, e.g., AMD, ARM, Intel, focus on computer graphics 
instead of general-purpose computing (GPGPU). 

– FPGA (Field-Programmable Gate Arrays) 
• Xilinx, Intel Altera

– ASIC (Application-Specific Integrated Circuit) 
• An explosion of specialized ASICs for Deep Learning in recent years, 

with hundreds of companies and products ranging from high-
performance to embedded.

– DSP (Digital Signal Processor)
• Mainly for image preprocessing, e.g., products from Texas Instruments.
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CPU vs. GPU

• GPU has much simpler control logic than CPU, hence
has more computational elements (Arithmetic Logic 
Units) 

• GPU is ideally suited for processing highly-parallel 
workloads 
– e.g. matrix-multiply, which is a core operation in Deep 

Learning algorithms
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CPU vs. GPU

• When you are plowing a field, would you prefer 4 
strong oxen (a multicore CPU), or 1024 chickens 
(a GPU)?

• Similar arguments for FPGAs (Field-
Programmable Gate Arrays) and ASICs 
(Application-Specific Integrated Circuits)
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NVIDIA DRIVE Hardware
• A family of products, ranging from the low-end Parker to the latest 

high-end THOR with 2000 TOPS (Tera Operations Per Second)

– Besides CPU and GPU cores, also includes NVDLA (NVIDIA Deep 

Learning Accelerator), an ASIC for Deep Learning inference. 

75https://wccftech.com/nvidia-intros-drive-thor-balancing-ai-performance-for-full-vehicle-autonomy/



FPGAs

• FPGA is reprogrammable hardware, consisting of an array of 
Configurable Logic Blocks (CLBs) and interconnections which 
can be configured at design time or runtime.
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FPGA vs. GPU

• FPGA has advantages over GPU for Deep Learning inference tasks.

• GPU performs computation in batches for efficient exploitation of 
SIMD (Single Instruction, Multiple Data) computation model.
– This is ideally suited for training tasks, with well-known algorithms such 

as Stochastic Gradient Descent with mini-batches. 

– But not ideal for inference tasks. 
• Larger batch size leads to high throughput, but also high and nondeterministic 

latency for each data item.

• Smaller batch size leads to low computation efficiency.

• FPGA can perform “batch-less” inference
– Low and deterministic latency for any batch size.
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FPGA for Automotive

• FPGAs can be integrated into sensors (camera, Lidar, 
radar), or serve as central compute engine in domain 
controller or AD computer

• Xilinx FPGAs have 90% market share in lidars.

• Intel is pushing hard into the automotive market, with 
acquisition of Altera in 2015.
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ASICs

• ASICs for Deep Learning are often called Neural 
Processing Units or AI accelerators.

• ASICs, thanks to dedicated circuit design, may 
achieve up to 10x in computation efficiency and 
power consumption compared to CPU/GPU, and 
less dramatic, but still significant improvement 
compared to FPGA. The drawback is loss of 
programmability and flexibility.
– Industry: almost every chip vendor provides some 

kind of AI accelerator, e.g. Google’s Tensor 
Processing Unit (TPU)

– Academia: AI accelerators is a dominating topic in top 
conferences in computer architecture, including ISCA, 
MICRO and HPCA.
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MobileEye

EyeQ Series
• “Computer Vision 

Processors” are 
ASICs

80https://www.mobileye.com/our-technology/evolution-eyeq-chip/



Tesla FSD

• Full Self-Driving Chip (FSD) is designed by Tesla and introduced in early 
2019 for their own cars. 

• It incorporates 3 quad-core Cortex-A72 clusters for a total of 12 CPUs 
operating at 2.2 GHz, a GPU operating 1 GHz, 2 Neural Processing Units 
(NPUs) operating at 2 GHz, and various other hardware accelerators.

– NPU: ASIC for Deep Learning inference
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Products from Automotive OEMs and 

Suppliers
• These companies do not design chips. 

Rather, they offer integration solutions based 
on products from chip vendors like NVIDIA.
– Delphi/Audi zFAS (zentrales Fahrerassistenz-

Steuergeraet)
• based on NVIDIA Tegra K1 and Mobileye EyeQ3 

• Hedging their bet on products from two mortal enemies 
☺

– ZF ProAI
• based on NVIDIA DRIVE PX2

– Bosch AI Car Computer 
• based on NVIDIA DRIVE AGX Xavier

– Continental ADCU; Visteon DriveCore; NXP 
BlueBox; Renesas R-Car…
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SOFTWARE PLATFORMS
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The AUTOSAR Consortium

• AUTomotive Open System ARchitecture (AUTOSAR) is a global 
development partnership of automotive interested parties founded in 
2003. It pursues the objective to create and establish an open and 
standardized software architecture for automotive Electronic Control 
Units (ECUs).
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AUTOSAR Classic Platform

85



AUTOSAR Adaptive Platform

• AUTOSAR-AP is an industry standard that specifies standard 
interfaces required for developing future high-performance multicore 
automotive ECUs. 

• Compared to Classic AUTOSAR for resource-constrained safety-
critical ECUs, AUTOSAR-AP is designed for high-performance ECUs, 
and allows dynamic linking of services and clients during ECU runtime, 
which facilitates Over-the-Air (OTA) Update.
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Integration of Multiple 

Software Platforms

• AUTOSAR CP (labeled 
C) is used for safety-
critical ECUs for low-level 
control and interfacing 
with actuators

• AUTOSAR AP (labeled 
A) is used for high-
performance AD 
computer.

• Non-AUTOSAR (labeled 
N) may be Linux or 
Android, for non-safety-
critical IVI (In-Vehicle 
Infotainment) and COTS 
(Commercial Off-the-
Shelf) applications. 
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EB corbos
• EB corbos is a software platform that uses virtualization technology (hypervisor) to integrate AUTOSAR 

AP, CP and non-AUTOSAR OS on a single multicore ECU, while achieving high degree of isolation 
between different Virtual Machine partitions, including:

– Performance Partitions with complex Performance Cores for high-performance, subject to low-levels of safety 
certification

– Safety Partition with simpler Safety Cores for safety-critical functions, subject to high-levels of safety certification 

– Security Partition with processor security extensions (e.g., ARM TrustZone, Intel Software Guard Extensions (SGX)) 
for secure boot, crypto operations, etc. 

• An example of a Mixed-Criticality System, where subsystems with different safety criticality levels are 
integrated on the same platform
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Robot Operating System (ROS)
• ROS is a set of software libraries and tools for building robotic applications. 

Many companies use ROS to develop AVs. It uses the publish-subscribe 
paradigm for inter-node communication.

– ROS has a Master node that provides naming and registration services to the rest of the 
nodes.

– ROS 2 removed the Master node, and uses publish-subscribe middleware DDS (Data 
Distribution Service). 

• A drawback of ROS compared to AUTOSAR:
– Since ROS uses Linux as the OS, it is not possible to pass high-level of safety 

certification (ASIL-D).

89Maruyama Y, Kato S, Azumi T. Exploring the performance of ROS2[C]//Proceedings of the 13th 
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Apex.OS

• “Safe and certified software framework for autonomous 
mobility systems.”

• Aims to be certified as a Safety Element out of Context 
(SEooC) up to ASIL D.
– Hard real-time, static memory allocation (no new() or malloc()), 

callbacks vs. waitset, security, testing, real-time I/O logging… 

– Real-Time Linux or QNX as the RTOS.
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NVIDIA DRIVE Software Framework

91



NVIDIA DRIVE Software Framework

• An open-source framework for AD (only for 
NVIDIA hardware).

– DRIVE OS is a foundational software stack consisting 
of an embedded Real Time OS (RTOS), hypervisor, 
CUDA libraries, Tensor RT, and other modules that 
give you access to the hardware engines. 

– DriveWorks SDK enables developers to implement 
AV solutions by providing a comprehensive library of 
modules, developer tools, and reference applications.

– DRIVE AV provides perception, mapping, and 
planning modules that utilize the DriveWorks SDK.

– DRIVE IX provides full cabin interior sensing 
capabilities needed to enable AI cockpit solution.
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Autoware

• Open-source AD platform from Japan.
– Autoware.AI (https://www.autoware.ai) is based 

on ROS-1.

– Autoware.auto (https://www.autoware.auto) is the 
new version based on ROS2.
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Baidu Apollo

• An open-source, hardware-neutral AD platform from China.

• Initially based on ROS, but later replaced ROS with their own 
components.
– Real-Time Operating System (RTOS); Linux kernel with real-time 

patch

– Cyber RT: lightweight, high-performance communication middleware
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V2X
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V2X Types
• Four types of V2X applications in 3GPP Standard:

– Vehicle-to-Vehicle (V2V)
• e.g., collision avoidance system

– Vehicle-to-Pedestrian (V2P) 
• e.g., safety alerts to pedestrians and bicyclists

– Vehicle-to-Infrastructure (V2I) 
• e.g., adaptive traffic light control, traffic-light optimal speed advisory

– Vehicle-to-Network (V2N)
• e.g., real-time traffic routing, cloud services

• Also called Vehicle-to-Cloud
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Two Camps

• DSRC (Distributed Short-Range 
Communication): Toyota, GM…
– Based on WiFi, i.e., 802.11p at 5.9GHz

– For latency-sensitive applications.

• C-V2X (Cellular V2X): Qualcomm/Ford…
– Traditionally for latency-tolerant applications e.g., 

Over-the-Air (OTA) updates.

– With the advent of 5G, C-V2X will become more 
prevalent, used also for latency-sensitive 
applications.

• C-V2X seems to be winning over DSRC in 
recent years. The following slides are based 
on Qualcomm’s C-V2X approach

97https://www.qualcomm.com/media/documents/files/accelerating-c-v2x-commercialization.pdf



V2X Applications in AD



C-V2X Evolution towards 5G

• In 2020/07, 3GPP (3rd Generation Partnership 
Project) declared R16 to be frozen
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C-V2X Defines 2 Transmission Modes

• V2X-Cellular: network communications going through base station 
(eNodeB)

• V2X-Direct: Device-to-Device direct communications without going through 
base station 
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V2X-Cellular for Latency-Tolerant Use 

Cases
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V2X-Direct for Latency-Sensitive Active 

Safety Use Cases

• Useful for NLOS (Non-Line-of-Sight) 

scenarios.
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C-V2X Deployment

• Combined RSUs (Road-Side Units) with direct link (PC5) 
interface for V2X-Direct, and 4G/5G base stations for V2X-
Cellular, benefiting from cellular network densification in 5G 
(smaller and denser cells)
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Use Case: Disabled Vehicle after 

Blind Curve
• C-V2X has (at least 2x) longer range than 

DSRC/802.11p, which enables the ego-vehicle to get 
warning message earlier, hence travel at higher speed 
while avoiding collision with the disabled vehicle



Use Case: Do Not Pass Warning
• C-V2X’s longer range enables the ego-vehicle to 

get warning message earlier, hence travel at 
higher speed while avoiding collision with the 
disabled vehicle



Industry Consortium

• 5GAA is a cross-industry consortium that 

defines 5G V2X communications
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5G Accelerates AVs

• My thoughts: Massive deployment of V2X is 
necessary for AVs to benefit from V2X; It is a 
promising technology, but current AV players are 
not counting on V2X. 
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ETHICAL ISSUES
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Two Introductory Videos

• The ethical dilemma of self-driving cars - Patrick Lin

– https://www.youtube.com/watch?v=ixIoDYVfKA0

• Moral Machines: How culture changes values

– https://www.youtube.com/watch?v=jPo6bby-Fcg
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The Trolley Problem

• There is a runaway trolley barreling down the railway tracks. Ahead, on the 
tracks, there are five people tied up and unable to move. The trolley is 
headed straight for them. You are standing some distance off in the train 
yard, next to a lever. If you pull this lever, the trolley will switch to a different 
set of tracks. However, you notice that there is one person on the side track. 
You have two options:

– Do nothing and allow the trolley to kill the five people on the main track.

– Pull the lever, diverting the trolley onto the side track where it will kill one person.

• What is the right thing to do?
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Variant of Trolley Problem with a 

Probability Threshold
• You are in a situation where:

– A. you kill a pedestrian with probability 1, but it’s 
not your fault

– B. you kill a different pedestrian with probability 𝑝, 
and it is your fault

• What is your threshold value 𝑝𝑡ℎ for making 
the choice? 
– if(𝑝 ≥ 𝑝𝑡ℎ) choose A; otherwise choose B
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MIT Moral Machine Experiment
• A 2016 survey indicates that people wanted an autonomous vehicle to protect pedestrians even if it 

meant sacrificing its passengers — but also that they wouldn’t buy self-driving vehicles programmed to 
act this way. This prompted the MIT Moral Machine Experiment, a platform for gathering a human 
perspective on moral decisions made by machine intelligence, such as AVs 
(http://moralmachine.mit.edu/)

• An AV must choose between killing two passengers or five pedestrians. An AV experiences a sudden 
brake failure. Staying on course would result in the death of two elderly men and an elderly woman who 
are crossing on a ‘do not cross’ signal (left). Swerving would result in the death of three passengers: an 
adult man, an adult woman, and a boy (right).

• You can also design other scenarios. Accident scenarios are generated with nine factors: sparing 
humans (versus pets), staying on course (versus swerving), sparing passengers (versus pedestrians), 
sparing more lives (versus fewer lives), sparing men (versus women), sparing the young (versus the 
elderly), sparing pedestrians who cross legally (versus jaywalking), sparing the fit (versus the less fit), 
and sparing those with higher social status (versus lower social status). 

• This platform gathered 40 million decisions in ten languages from millions of people in 233 countries

112Awad, Edmond, et al. "The moral machine experiment." Nature 563.7729 (2018): 59-64.
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Individual Variations

• AMCE (Average Marginal Component Effect)
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Cultural Clusters

• Three large clusters
– Western: Protestant, Catholic, and 

Orthodox countries in Europe and North 
America 

– Eastern: Islamic and Confucian (Asian) 
cultures

– Southern: Central and South America, as 
well as France and former French colonies.

• The preference to spare younger 
characters rather than older characters 
is much less pronounced for countries 
in the Eastern cluster, and much higher 
for countries in the Southern cluster. 

• The same is true for the preference for 
sparing higher status characters. 

• Countries in the Southern cluster exhibit 
a much weaker preference for sparing 
humans over pets, compared to the 
other two clusters. 

• Only the (weak) preference for sparing 
pedestrians over passengers and the 
(moderate) preference for sparing the 
lawful over the unlawful appear to be 
shared to the same extent in all clusters 114



AV Ethical Issues: is it Worth the Time?

• Many argue that ethical issues are just a distraction from the 
real problem of AV safety and security, esp. in the presence 
of ML/DL algorithms.
– None of the AV accidents in recent years involved any ethical 

decisions similar to the Trolley Problem. They are due to failures 
in sensors or perception algorithms.

• Sebastian Thrun (formal head of Google’s SDC project, 
former professor at Stanford who led the development of 
Stanley, winner of DARPA Grant Challenge in 2005): 
– “I think it’s a great thing for philosophers to discuss these kind of 

problems. They can get tenure at their universities, but it's not of 
practical relevance. If we manage with certain car technology to 
halve the traffic deaths in the world, which means if we are able 
to have 500,000 fewer deaths in total, then for this extremely 
rare, purely hypothetical trolley problem that might occur once in 
a hundred years. I think whatever the outcome is, the mental 
energy that philosophers have spent on discussing it is 
completely out of proportion to the benefit of others on one 
problem. I will leave it at that.”
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AV Testing Legislation (USA)

• It is absolutely necessary to 
test AVs on public roads for 
technology development, 
but is it ethical?

• Legislation regulating AV 
testing differs widely across 
states. Several states have 
no proposed legislation, 
meanwhile states like 
Nevada, California, Texas, 
and Arizona are hotbeds for 
testing AVs.

• My opinion: Yes, if Human 
Operators are alert and 
responsible. 
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