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Logistics

Lecture Times
— Mon, Wed 15:00-16:30

Instructors
— Zonghua Gu, Kalle Prorok, Siyu luan
— Emalls: firsthame.lasthame@umu.se

Zoom link:
https://Jumu.zoom.us/|/67824 756675



https://umu.zoom.us/j/67824756675

My Instruction Style

No textbook. Wil discuss classic techniques as
well as latest research advances.

| provide detailed, self-contained PowerPoint
slides.

— All exam questions will come from these slides. Some
slides may be verbose for the sake of completeness.

In-class questions and discussions are welcome.
You can either speak up during lecture, or type in
the chat window. For questions after class, please
use the Canvas discussion board so everyone can
see the discussions.

Lecture videos are recorded and available in UmU
Play, so in-class attendance is not mandatory.




Lecture Schedule (Tentative)

| will put lecture materials here instead of
on Canvas. Please bookmark this link
— https://quzonghua.qgithub.io/saav/ (under
construction)
— Since | may update slides slightly after each
class, it is more convenient to put them here
» Last year’'s materials available on
https://guzonghua.qgithub.io/saav2021/ and
YouTube

— Contents will be updated to have broader
scope and less math



https://guzonghua.github.io/saav/
https://guzonghua.github.io/saav2021/

Labs and Grades

Labs

— Labl in W3-4. Adversarial attack on CNN for traffic sign
classification

— Lab2 in W7-8. PID control
— Lab3 in W9-10. Planning for Highway Driving with DOQN RL

We will keep the projects’ computing demands low, so
you can use Google Colab, or work on your own
computer without powerful GPUs. (Programming
language is Python.)

We will keep the programming workload relatively low,
e.g., you may be given a semi-complete program, and
asked to tune some hyper parameters, or fill in a few
lines of missing code (no large-scale coding)

Grade distribution:
— Final exam (open-book): 60%
— Lab sections: 40%



Final Exam Format

* Multiple choice questions, e.g.

Which path planning algorithm(s) are guaranteed to find the optimal
solution?

A. A* algorithm

B. Rapidly-exploring Random Tree (RRT)
C. Probabilistic Roadmap (PRM)

D. All of them

E. None of them

« Simple calculation questions, e.g.,

Convolutional Neural Networks |

Input volume: 56x56x64 (W1=H1=N1=56,D1=64). 32 1x1x64 filters
(K=32,F=1) w. stride S=1, no pad P=0. Show the formulas and
calculation process.

1) Calculate the dimensions of the output volume, including spatial size
and depth.

2) Calculate the total number of parameters, including weights and
biases.



Pass or Fail?

* In the past, the vast majority of students
pass the course, If they put In reasonable

effort
* The course workload Is not very high.

Most students manage it quite well

— Use the anonymous feedback link to provide
comments on course pace, level of difficulty,

etc.



Today's Agenda

| will give a broad review of the major
Issues Involved in AD.
— Background
— Sensors and perception
— HD maps
— Hardware platforms
— Software platforms
—V2X
— Ethical Issues



Autonomous Vehicles (AVs)

« Can refer to any type of Autonomous
Mobile Robot.

— Not just Self-Driving Cars (SDCs)
* Many techniques for SDCs covered In this

course are generally applicable to other
types of AVs.

Self-Driving Cars Drones Warehouse Robots “ Indoor-Cleaning
Robots



Why AD?

Reduced traffic accidents and fatalities

— In the USA: In 2019, an estimated 38,800 people
ost their lives to car crashes. About 4.4 million
people were injured seriously enough to require
medical attention in crashes.

Reduced congestion and pollution
More productive time spent on the road
Autonomous Mobillity-on-Demand (AMoD)

with a fleet of AVSs

— Low-cost, safe and efficient mode of |
transportation that may make vehicle ownership
obsolete.

— The dream of Uber (and many other companies)
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Advanced Driver Assistance
(ADAS)

» Since the Initial introduction of Cruise
Control in 1948, ADAS functions are
Increasingly prevalent in modern vehicles.

— Adaptive cruise control (ACC), Anti-lock
braking system, Collision avoidance system
(Pre-crash system), Driver Monitoring System
(DMS), Electronic Stability Control (ESC),
Forward Collision Warning (FCW), Lane
Departure Warning (LDW), Lane Change
Assistance, Surround View...

https://en.wikipedia.org/wiki/Advanced_driver-assistance_systems 11



DARPA Grand Challenge (2004)

Held in the Mojave Desert region of the USA,
along a 150-mile route.

None of the robot vehicles finished the route.
Carnegie Mellon University's Red Team and
car Sandstorm (a converted Humvee)
traveled the farthest distance, completing
/.32 mi of the course before getting hung up
on a rock after making a switchback turn.

No winner was declared, and the cash prize
was not given.
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DARPA Grand Challenge (2005)

* Vehicles passed through three narrow
tunnels and negotiated more than 100
sharp left and right turns.

* Five vehicles successfully completed the
132 mi course. Stanford’s Stanley won the
$2M top prize.

Vehicle

Team Name

Team Home

Stanley Stanford Racing Team& | Stanford University, Palo Alto, California

Sandstorm | Red Teamg@

Kat-5

TerraMax Te

H1ghlander | Red Team
Te

N
am {aray &

am TerraMax e

Carmnegie Mellon University, Pittsburgh, Pennsylvania

The Gray Insurance Company, Metairie, Louisiana

Oshkosh Truck Corporation, Oshkosh, Wisconsin

Time Taken
(h:m)

6:54

7:05

714

7:30

12:51

Result

First place

Second place

Third place

Fourth place

Cwer 10-hour limit, fifth place
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DARPA Urban Challenge (2007)

« Held at the site of the now-closed George Air Force Base. The
course involved a 60 mi urban area course, to be completed in less
than 6 hours. Rules included obeying all traffic regulations while
negotiating with other traffic and obstacles and merging into traffic.

« CMU’s Boss won the $2M top prize, and Stanford’s Junior won the
$1M second prize.

« The 3 Grand Challenge races jump-started the Self-Driving Car
Industry. Faculty and students from winning teams such as Stanford
and CMU later became leaders in SDC projects at companies like
Google/Waymo and Uber and numerous startups.

Team Name
Tartan Racing
Stanford Racing?
VictorTango

MITeE

The Ben Franklin Racing
Team®

Comell&

1D
19
03

30
79

74

26

Vehicle
Boss

Junior

Odin
Talos

Little
Ben

Skynet

Type

2007 Chevy Tahoe
2006 Volkswagen Passat

Wagon
2005 Ford Hybrid Escape
Land Rover LR3

2006 Toyota Prius

2007 Chevy Tahoe

Team Home
Carnegie Mellon University, Pittsburgh, Pennsyhvania
Stanford University, Palo Alto, Califomnia

Virginia Tech, Blacksburg, Virginia
MIT, Cambridge, Massachusetts

University of Pennsylvania, Lehigh University, Philadelphia, Pennsylvania

Cornell University, Ithaca, New York

Time Taken
(h:m:s)
4:10:20

4:29:28

4:36:38
Approx. 6 hours

Mo official time.

Mo official time.
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Highway vs. City Driving

 Highway driving Is perceived as an easier problem

than city driving.

— Has potential of massive displacement of truck driver jobs

— But traffic merging Is tricky and may require human
operator assistance

Travel Speed
Traffic Volume
Number of Lanes

Others

Highway Driving
High

High

Large (6-8)

Entry and exit
points for traffic
merging

City Driving
Low to medium
Medium to high
Small (2-4)

Many intersections
with traffic lights
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Brief History of SDCs

Google’s Uber hires 40 CMU NHTSA
AV passes a robotics researchers issues
DARPA Google 14-mile Tesla to work on AVs; revised safety
Grand begins AV driving test releases Ford begins testing guidelines for
Challeliﬁges prolject in Nevada Auto-Pilot its AVs. AVs
2004/05 2009 20|12 20'15 2(!15 2017
2007 2o|13 20|13 20|16 2016
DARPA Urbane Mercedes and NHTSA Major acquisitions NHTSA
Challenge Infiniti produce releases and partnerships issues
cars with radar| |initial policy (GM and Cruise guidelines for
sensors and on AVs Automation; GM and testing and
some AD Lyft; Toyota and deployment of
features Jaybridge Robotics; AVs
Uber and Volvo)

https://www.mcca.com/wp-content/uploads/2018/04/Autonomous-Vehicles.pdf



Operational Design Domain (ODD)

 The ODD defines the conditions under which

a vehicle is designed to function and Is

expected to perform safely. The ODD

includes (but isn’t limited to) environmental,
geographical, and time-of-day restrictions, as
well as traffic or roadway characteristics.

— e.g., an autonomous freight truck might be
designed to transport cargo from a seaport to a
distribution center 30 Km away, via a specific
route, in day-time only. This vehicles ODD is

limited to the prescribed route and time-of-day,
and it should not operate outside of it

17



Five Levels of Automation

« L1: ADAS features that either control steering or speed to support the driver.

« L2: both steering and acceleration are simultaneously handled by AD system. The human driver
still monitors the environment and supervises the support functions.

« L3: Conditional automation: the system can drive without the need for a human to monitor and
respond. However, the system might ask a human to intervene, so the driver must be able to take
control at all times.

« L4: These systems have high automation and can fully drive themselves under certain conditions.
The vehicle won’t drive if not all conditions are met.

 L5: Full automation, the vehicle can drive wherever, whenever, with unJimited ODD.

Q.i s

A A A A
1 2 3 4 5
DRIVER ASSISTANCE PARTIAL AUTOMATION CONDITIONAL AUTOMATION HIGH AUTOMATION FULL AUTOMATION
You monitor the environment. You are the driver, When system requests,
even when automation features are turned on. you must take control. Mo requirement for you to take over control
System operates when specific System operates in all
System suports you driving. conditions are met. conditions
Steering OR speed
are automated. Steering AND speed are automated.

https://www.wevolver.com/article/2020.autonomous.vehicle.technology.report 1o



State of the Art

Current commercial products are at most L2 (e.g.,
Tesla Autopilot)

L2 to L3 is perceived to be a giant leap

Automakers keep pushing the timeline of L3 and
above to the future...

Public
Perception

State and Federal

Legislation
Technology
Testing

1

Driver Assistance Partial Automation Conditional Automation High Automation Full Automation
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Two Different Paths to L4/5

Tesla starts from L2 and mass deployment, and gradually moves to L4/5.
Waymo, nuTonomy...starts from L4 in limited ODD, and gradually expands

deployment
A ’ ' 4 a ®ﬁumnnmg
WAY MO
a4l ~2030
-
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Scale / Scope

Emilio Frazzoli, nuTonomy



AD Safety Evaluation Metric: Miles
Driven?
* Not All Miles are Equal.
— Driving conditions may be dramatically different.

— Companies may be incentivized to avoid difficult
driving conditions.

Miles driven here Not the same as here
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Total Miles Driven

10 million

October

44444

@ 6 miliion
April

@ 5 million
February

ovem!

ctober

@ 1 million

bid

10 million miles and counting

Waymo Reaches 10 Million Miles

Autopilot Miles

2,500,000,000

2,000,000,000 -

1,500,000,000 A

1,000,000,000 A

500,000,000 +

Current Total Autopilot Miles:

1,074,461,764

Date: 2019-01-02

Current Autopilot Miles on Hardware 1

587,071,243

4(’17‘.5’@()5?2

Projected Total Autopilot Miles:

2,341,760,040

Date: 2020-01-01

Projected Autopilot Miles on Hardware 1

790,016,716

1,551,743,324

\)

2015

Tesla Autopilot Reaches 1 Billion Miles in 2019

2016 2017

2018 2019 2020
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Miles Driven per Disengagement
(2018)

FleaThILE Autonomous Miles Driven per Disengagement

W
WAYMO
-
Z 0
1.923

O X
nuro @8 = e california Department of Motor Vehicles defines a
CONY - 1.022 disengagement as a “deactivation of the autonomous

e W mode when a failure of the autonomous technology is
“”“” detected or when the test driver disengages the
Bai &I IZ‘"‘ autonomous mode.”
Aurora I1oo There is a lot of disagreement on the level of accuracy

of the metric as it may be too vague, is valid only for
- California, and may not reflect the difficulty of the
,S%A_ ‘2° chosen driving environment.

drive.ai |«

Sources: California Department of Motor Vehicles Disengagement Reports February 2019

Decoding the Autonomous Driving Landscape July 2019 | Firstmile | www. firstmile.de
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“The Moore’s Law for Self-Driving Vehicles”,
Edwin Olson, CEO of May Mobillity

Moore’s law in the semiconductor industry says that “the number of transistors on a chip
doubles approximately every 18 months”, i.e., w. exponential growth rate

Can we have a Moore’s law for AD? “The number of miles between disengagements will
double approximately every 16 months.”
— Between human performance (102 miles per fatality) and the best-reported self-driving car

performance (10* miles per disengagement) is a gap of 10,000x. Even with performance doubling
every 16 months, it will reach human levels of performance in 2035.
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Year 24
https://medium.com/may-mobility/the-moores-law-for-self-driving-vehicles-b78b8861e184



When will AD Really Arrive?

 Chris Urmson, co-founder and CEO of
Aurora.

—“In 5 years” - 2009
—“In 5 years™ - 2012
—“In 5 years” - 2015
—“In 5 years” - 2018




Tesla doesn’t stop, (2
hitting the trailer

The Tesla Fatality in May 2016

The Tesla Model S (L2) was driving 74 mph on the highway when it was struck by a
semitruck

The driver’s hands were off the steering wheel for a total of 37 minutes during the 37.5
minutes of time the car was in Autopilot, despite repeated visual warnings

Tesla: “Neither Autopilot nor the driver noticed the white side of the tractor trailer against a
brightly lit sky, so the brake was not applied.”

— A failure of computer vision algorithm for object detection; maybe a lidar could have prevented the
accident.

Tesla used to use Mobileye’s hardware platform EyeQ, but they broke up after the accident,
and Tesla started to develop its hardware platform FSD.

Us 2> Trailer turns left
in front of the Tesla

Gy € :/o

4

fax,

and traveling (3] ¥ - .

under it Tesla "ENcE
veers off

/
road and strikes Qﬁ POWER POLL

two fencesanda | Q%‘M
power pole :

/
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The Tesla Fatality in Mar 2018

In 2018, a man died from a high-speed crash because his Tesla Autopilot system steered the car
into a median on Highway 101 in Mountain View, CA.

NTSB's investigation report, released in Feb 2020, lists 23 findings that enumerate all the factors
that contributed to the fatal collision.

— Limitations on Tesla's Autopilot Lane-Keeping Assistance (LKA) caused the vehicle to veer into the median
and failed to provide an alert to the driver in the seconds leading to the crash.

— The collision avoidance system was not designed to detect a crash attenuator, which resulted in a severe
crash in which the automatic braking and collision warning systems failed to activate.

— A failure of computer vision algorithm for lane tracking.
Tesla Autopilot 2 almost crashes Into Barrier (similar to this crash)
—  https://lwww.youtube.com/watch?v=TIUU1xNqgl8w

> - N -5
A Tesla Model X is surrounded by firefighting foam
after crashing and catching fire on Highway 101 in
Mountain View in March 2018. An NTSB investigation
blamed the car's Autopilot system for steering into
the median divide, and said the driver likely failed to
react because he was playing a video game. Courtesy
of Mountain View Fire Department

https://www.mv-voice.com/news/2020/02/25/ntsb-teslas-autopilot-steered-model-x-into-highway-median-
causing-fatal-mountain-view-crash
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https://www.youtube.com/watch?v=TIUU1xNqI8w

Tesla still cannot recognize white
trucks in 2020

* Tesla on autopilot crashes into overturned
truck on busy highway in Taiwan

— https://www.youtube.com/watch?v=X3hrknv0

dPQ

Tesla on autopilot crashes into
overturned truck

28


https://www.youtube.com/watch?v=X3hrKnv0dPQ

The Uber Pedestrian Fatality in Mar
2018

« Police release video of Uber collision that killed pedestrian
— https://www.youtube.com/watch?v=q7d90ZFhg28

* “The recorded telemetry showed the system had detected
Herzberg six seconds before the crash, and classified her first
as an unknown object, then as a vehicle, and finally as a
bicycle, each of which had a different predicted path
according to the autonomy logic.”

29


https://www.youtube.com/watch?v=q7d90ZFhg28

The Uber Pedestrian Fatality in Mar

2018

 The AV (L3/4) was equipped with both Lidar
and Radar. After the woman was detected on

the road (6 sec before)

— first classified as unknown object

— then misclassified as a vehicle

— then a bicycle
» 1.3 sec before, the Volvo system tried to do

emergency braking maneuver

— but Uber had disabled it for testing
* The safety driver was not watching the road

moments before the vehicle struck her.

— It was probably too dark for the driver to see her In
time.

30



AD Landscape Today

FIRSTMILE Autonomous Vehicle Landscape

@ Data and simulation ! @ Light detection, ranging and

sensing

1
. Autonomous driving systems
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Autonomous vehicle manufacturers
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Decoding the Autonomous Driving Landscape July 2019 | Firstmile | www firstmile.de Note: All firms shown are either currently or formerly VC / PE-backed
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Four Major Tasks of an AV

| Prediction: Where are they going? |

| Planning and Control: Where should | go? |
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AD Processing Pipeline

4 N
EllTiI'DlL‘lllEIlt
——.. i
Mapping
. S
Sensors 1
Output | Actuation
4 N 4 N 4 N
Em‘u‘mmlleut N Mnmlm Controller
Perception Planning
- J /O J/
Sensing: Planning: Acting:
Understanding the Decision making in the Moving the vehicle to follow
surrounding environment, context of other road users the planned trajectory
incl. localization, detection,
prediction
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Inputs

GPS /IMU / Wheel

Environment Perception

Odometry

LIDAR

Vehicle
Position

Localization

Dynamic Object

Cameras

Radar

HD Foad
Map

Detection

Static Object

Detection

Bounding Object Dynamic Objects
Boxes Dynamic Object Tracks Object Motion
Tracking Prediction
Static
Objects
—
- Emww [ Svstem Supervisar ]
Sensors 1 .
Churput - - Actuation
B B g ’—-l Controller ]—t
N r
S
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Prediction

 Based on state
— Kalman filter
— Particle filter
« Data-driven
— ML-based classification
« Pedestrian intention prediction

— Based on visual cues such as pose, etc.
— Very difficult problem

QUL UL
JHS R T

FEFELILEEERRRR T

it
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Object tracks

LIDAR

Prior Road Map

Wehicle Position

Segmented Image

Static Objects

Environmental Maps

Occupancy Grid Map

Occupancy Gnd Map

Localization Map

Detailed Road Map

Localization Map

L J

Detailed Road Map

L J

L J

Semsors

Crurpat

[ System Supervisor ]

;’:{"t?’n I—-l Conmoller I—t

Acnation




Motion Planning

Current Goal
Detailed Road Map

Vehicle Position

Mission Planner

Mizssion Path

¥

Dynamic Objects ,
Behavior Planner

Behavior Constraints

Occupancy Grid

+ Planned Trajectory

P
-

Vehicle Position Local Planner

Dynamic Objects Ervironment
> Mappinz System Supervizor
\._II_-‘
Sensors -
Crurpur r Actuation

' ™)
Environment Muotion | l | )
Perception Planninz Controller
N r




Mission Planner

« Use graph search to find a path from
source to destination on the map
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Behavior Planner

* Plan the set of high-level driving actions or
maneuvers to safely achieve the driving
mission under various driving conditions

Decelerate N Sto
to Stop P

Follow - . Track
Leader ] Speed
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| ocal Planner

* Plan a safe and smooth trajectory (vehicle
pose as function of time)




Controller

* Velocity controller for longitudinal speed control
« Steering controller for lateral speed control

« Common control algorithms
— PID: Proportional Integral Derivative
— MPC: Model-Predictive Control

Planned Trajectory

WVehicle Position

Throttle percentage

Velocity Controller Brake percentage

Steering Controller \ Steering Angle

[ System Supervizor ]

» Enwironment
Mappinz
Sensors 1
ut
O - -
Environment
1 Perception

‘ Maotion | I | )
Planming Confrollsr
>
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Classic Pipeline vs. ML/DL

« Classic AD processing pipeline: separate algorithms for each
processing stage.

* Where does ML/DL come In?

— CNN (Convolutional Neural Networks) for perception is well
accepted.

— DNN trained with Imitation Learning (IL) or Reinforcement
Learning (RL) is still in the early-research stage.
» “End-to-end” mapping from pixels to control commands

« Many variants of hybrid approaches, e.g., “half-way” mapping from pixels
to waypoints used for planning

» Several companies are making a bet on it, incl. Waymo, Voyage,
Wayve...

Environment
Mapping

Sensors I

Output Actuation

i imnput layer

hidden layer

TuuSH iay s




SENSORS AND PERCEPTION




Perception Tasks

4 main perception tasks
— Detection
» Detect the existence of an object in the environment

— Classification

 ldentify what the object is, e.qg., traffic sign, traffic light, pedestrian
— Tracking

« Track a moving object across time

— Segmentation

« Semantic segmentation: classify each pixel to its semantic category, e.g., road, car,

sky...
» Instance segmentation: classify each pixel to an object instance, e.g., car1, car2...

Mobileye's Autonomous Car What the System Sees
— https://www.youtube.com/watch?v=jKfiwHsHUdVc

Detection Classification Tracking Segmentation
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https://www.youtube.com/watch?v=jKfwHsHUdVc

The variety of static and
moving objects that an AV needs to detect and recognize

Static Moving Road

g Lane Traffic
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Street
Markings Lights
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Perception is Challenging

« The long tail distribution is challenging: anything can happen on the road!
* Video from 2015, recorded by Google’s AV.




The Typical AV Sensor Configuration

I Under the bonnet

How a self-driving car works

Signals from GPS (global positioning system) Lidar (light detection and ranging)
satellites are combined with readings from sensors bounce pulses of light off the
tachometers, altimeters O surroundings. These are analysed to
and gyroscopes to provide identify lane markings and the

more accurate positioning y o— edges of roads

than is possible with

GPSalone —e e

Video cameras detect traffic lights,
read road signs, keep track of the
Radar Y 4 position of other vehicles and look
sensor L s 2 out for pedestrians and obstacles

on the road

Ultrasonic sensors may
be used to measure the
position of objects very
close to the vehicle, :
such as curbs and other by a central computer that’
vehicles when parking manipulates the steering,

accelerator and brakes, Its

software must understand Radar sensors monitor the position of other

the rules of the road, both vehicles nearby. Such sensors are already used
Souvce-The Fronowdst formal and informal in adaptive cruise-control systems



Configuration of Sensors of Some Research

AVs
Uber Waymo | GM Cruise Navya Drive.ai | Nissan Tesla
Autonomy Autopilot
Cab V9
Cameras 8 8 16 6 10 12 8
Lidars 1 6 5 10 4 6 0
Radars 4 4 8 4 2 9 1

« Tesla is one of the few AD companies that do not use Lidar.
* Elon Musk, 2017:

— “Once you solve cameras for vision, autonomy is solved; if you don’t
solve vision, it's not solved ... You can absolutely be superhuman with
just cameras.”

— “In my view, Lidar is a crutch that will drive companies to a local
maximum that they will find very hard to get out of. Perhaps | am
wrong, and | will look like a fool. But | am quite certain that | am not.”
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Passive vs. Active Sensors

 Passive sensors detect existing energy, like
light or radiation, reflecting from objects in the

environment.
— Cameras

 Active sensors (also called range sensors)
send their own signal and sense its reflection

— Lidar, Radar, ultrasound

Gamma-Ray X-Ray UV = Visible — IR Microw ave Radio

| | ———t—— — : | |
102 10% 10% 10¢ 10* 107 10° 10 10*  10°

Wavelength, h (m)

https://www.wevolver.com/article/2020.autonomous.vehicle.technology.report
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Camera

Pro: cheap, versatile, stereo vision w. two cameras
Con: easily affected by illumination conditions, needs additional light at night

Key parameters
— Resolution
* e.¢.,1080p HD cameras provide 1920x1080-pixel resolution, or 2.1 megapixels.

— Field of View (FOV)
« The extent of the observable world that is seen at any given moment
« Given same resolution, wider FOV results in large image distortion.

— Dynamic range

+ Maximum difference between the darkest and lightest pixel intensities in an image, measured in dB.

An AV needs HDR (High-Dynamic-Range) cameras with at least 100dB.
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Range Sensors

They rely on Time of Flight (ToF) to measure distance

(range), a key element for localization and environment
modeling

— Lidar uses electromagnetic waves.
— Radar uses radio waves
— Ultrasonic uses sound waves

The traveled distance of a wave is given by d = %*t
- d: distance

- v: speed of wave propagation
— t: ToF (roundtrip)
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Range Sensors

« Propagation speed v

Sound: 0.3 m/ms

Electromagnetic wave (incl. light): 0.3 m/ns
« 1 M times faster than sound

« To travel 3 meters:

10 ms for ultrasonic sensor
10 ns for Lidar

Measuring time of flight with electromagnetic signals is not an
easy task. Hence Lidars are expensive and delicate

« The quality of range sensors mainly depends on:

Inaccuracies in the time of fight measurement (laser range
Sensors)

Opening angle of transmitted beam (especially ultrasonic range
Sensors)

Interaction with the target (surface, specular reflections)
Variation of propagation speed (sound)
Speed of vehicle and target
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Lidar

- Lidar (Light Detection and Ranging Device) sends millions of light pulses per
second in a well-designed pattern to generate “Point Clouds” that describe the
3D geometry of the surrounding environment

« Pro: independent of lighting conditions, precise distance measurements for
3D perception @
« Con: expensive, medium resolution
 Key parameters:
— Laser beam count
— Rotation Speed

- FOV
— Range distance (from tens to hundreds of meters)

e h
Scene under exposure / Light scanner ’
Laser beam ' Optics or — Light source
Light diffuser
Computing unit === 3D point cloud

|7 Optics Photodetector Signal processor

. ™, /

. g

distance = time x velocity of light

LiDAR system




Velodyne Lidar

The high-end Velodyne HDL-64E with 64 laser
emitters

Rotation rate up to 15 Hz

FOV is 360° horizontally and 26.8° vertically

Angular resolution is 0.09° and 0.4° respectively
Delivers ~1.3M data points per second

Expensive (~USD$40-80K) (cheaper versions available)
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Many Variants of Lidars in the Market

LiDAR: from technologies to applications

'i%

\"Na\Y.
(o9 S ==
. Consumer optics ‘LJ“ . O/ZS‘

MEMS, scanner
Optical packaging ‘ Topography
Fiber-optic r n /
communication b L , y
3 Wind |- i
£ o

Space

s

Laser diode

VCSEL 6

ol
.
N

PET Transportationa
Image processing

f_";%) Cloud data 4 3 \ Robots
: %5

e _ QA 4 Consumer
Geographic utomatlg Farget
recognition

information

w E —
M —
VCSEL: Vertical Cavity Surface-Emitting Laser PET: Positron Emission Tomography
MEMS: Micro-Electro-Mechanical System OCT: Optical Coherence Tomography

SiPM: Silicon Photomultiplier

(Yole Développement, May 2018)
http://lwww.f4news.com/2018/05/04/yole-on-lidar-market/
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Apple IPAD Pro has Bu

lIt-in Lidar (2020

-uur

* It allows users to
scan a depth-
accurate depiction of
the environment.

* Main application:
Augmented Reality
(AR)

— Needs depth
iInformation to place

virtual objects in the
environment.

Hide Mesh Start Plane Detection



mmWave Radar

Pro: provides both position and relative speed information;
can operate in varied conditions (low-lighting, rain, fog...)

Con: low resolution

Key parameters
— Sensing distance, FOV, Position and velocity accuracy

Two types
— Short-medium range with wide FOV
— Long range with narrow FOV
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Ultrasound

Pro: not affected by lighting conditions, rain or fog

Con: short sensing range (mainly used for parking assistance)
Key parameters

— Sensing range

— FOV
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Comparison of Sensing Ranges

Long range RADAR
Object detection,

through rain, fog, dust.

Signal can bounce
around/underneath
vehiclesin front that
obstruct view.

Cameras
A combination of
cameras for short-long

range object detection.

Broad spectrum of use
cases: from distant
feature perception to
cross traffic detection.
Road sign recognition.

LIDAR
3D environment mapping,
object detection.

Short / Medium
range RADAR
Short-mid range
object detection.
Inc. side and rear
collision avoidance.

https://www.wevolver.com/article/2020.autonomous.vehicle.technology.report

Ultrasound

Close range object
detection. For object:
entering your lane.
For parking.
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Other Comparisons

« Each sensor has its strengths and weaknesses
« Sensor fusion crucial for robust perception

Camera Lidar Radar
Sensing Range Good
Functioning in bad weather Poor Good
Functioning in poor lighting Good Good
Object Detection Good
Object Classification Good Poor

Lane Tracking Good Poor Poor
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GNSS/GPS

GNSS (Global Navigation Satellite System)

provides localization service for outdoor

applications. Current GNSS systems include: ol

— GPS (USA), Galileo (Europe), Beidou (China), GNSS Sateltes
GLONASS (Russia)

Conventional GPS provides a few meters

accuracy, affected by cloud covers and tall

buildings; RTK (Real-Time Kinematic) GPS

can provide centimeter-level accuracy by

calculating and transmitting differential

correction data via radio to allow the roving

GPS system (vehicle) to correct its position

GNSS data

GNSS data

RTK corrections

O

|
—
RTK Base Station



IMU

* IMU (Inertial Measurement System) measures
acceleration (linear and angular) and orientation (yaw,
pitch, roll)

— For ground vehicles on 2D plane, only yaw is relevant.
— For aerial vehicles in 3D space, all three are relevant

« Often combined with GNSS/GPS to form INS
(Integrated Navigation System), using sensor fusion to
achieve higher estimation accuracy

Roll

=
= Pitch
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AV Sensors Generates Big Data

Sensors, esp. cameras and lidars, generate the most amount of data
Sensor data must be processed in real-time by perception algorithms

THE COMING FL INAUTONOMOUS VEHICLES

SONAR
RADAR o GPS

PER SECOND
PER SECOND

£ / " AUTONOMOUS VEHIGLES

CAMERAS n .- LIDAR

J\ | )L ~ I
PERSECOND \\ PERDAY...EACH DAY ,__// PERSECOND

intel)

https://datacenterfrontier.com/autonomous-cars-could-drive-a-deluge-of-data-center-demand/
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High-Definition (HD) Maps

““Bike Lane.'
pne Boundary
ane Paint Lane Arrow

Lane Drive path Ao _ Lane Width

.




HD Maps

 Different from navigation maps
(e.g., Google Maps) designed for
human eyes, HD maps are
designed for processing by
computers

— Highly-accurate (centimeter-level) -
3D representation of the road el
network, e.g., cross section
layout; locations of traffic e 115
lights/signs; semantic information

on certain road segments (speed
limits...)

 Benefits

— Help reduce Region-of-Interest
(ROI) for detection of traffic
elements

— Help with AV localization based
on known object positions

— help with recognition of lane
center line

Jl4
LITTT
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Are HD Maps Necessary?

 Humans don’'t need HD maps to drive

« HD maps vs. on-board sensing
— Use of HD maps limits the area of operation; mapless
systems allow universal operation anywhere.
— Use of HD maps reduces the computational burden

on on-board sensing: the more that has already been
mapped out, the easier it is for the on-board system to

focus on the moving parts; mapless systems must
figure out everything on-the-fly with no prior
knowledge of the environment

|t is generally agreed that L4-L5 levels of
automation cannot work without HD maps, at least
for now; L2-L3 levels may work without them (e.qg.,

Tesla does not use HD maps)
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Typical Automotive E/E Architecture

Ethernet as high-bandwidth
backbone network

— Ethernet TSN posed to be the
dominating standard protocol.

— i CAN MOST
ot iog cmet is also used for Controte ea Networs il

I Collision Detection

Ethernet TSN (Tims-Sensitive Networking)
FlexRay for safety-critical X-by-
Wire, where X stands for brake,
steer, drive...
— Gradually being replaced by
Ethernet
Media Oriented Systems _
Transport (MOST) for multimedia ~O A A=
transmission ) ’
— Gradually being replaced by Ethernet _, ‘
Ethernet !
CAN (ContrO”er Area Network) FIeXRaVyV Locallnlercc%rlxrr\:ect Network
for low-bandwidth network and
interfacing with sensors/actuators

LIN (Local Interconnect Network)
for body electronics, e.g., door,
light, rearview mirrors...

Brake-by-Wire System Multifunction Keyless System

https://www.renesas.com/eu/en/solutions/automotive/technology/networking-solutions.html
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Evolution of Automotive E/E Architecture

 From many (~80-100) distributed and networked ECUs to a
few (~4) high-performance ECUs with massive computing
power, and large number of (~60) small ECUs for interfacing
with sensors and actuators.

« This helps simplify system architecture, reduce network load,
and improve system reliability.

80-100 ECUs 4 High-performance ECUs
6 CAN-Bus 60 Sensor/Actuator ECUs
2 FlexRay 1 Ethernet backbone

1 Ethernet backbone 1 CAN per zone

sensor/Actuator
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Trunk of an Experimental AV from Ford (2017)

Where do | put
my groceries?

https://www.theverge.com/2017/10/10/16449416/nvidia-pegasus-self-driving-car-ai-robotaxi 70



AD Hardware Considerations

Power consumption

— Power consumption of electronics (sensors and computing
hardware) for AD may be 100x that of a vehicle with regular
ADAS. This drains battery and implies increased fuel
consumption or reduced range for EVs

« EV drivers often turn off air conditioning due to range anxiety; will
they turn off AD and drive manually for this reason?

— Waymo and Ford now focus on Hybrid Vehicles, while Uber
uses a fleet of full gasoline SUVSs.

Cooling capacity

— Fan or liquid cooling.

Form factor

— Must be compact and unobtrusive.
Cost

— Important for mass deployment.

— Cost of electronics in an experimental AV often exceeds cost
of the original vehicle.
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SoC Hardware for AVs

The most compute-intensive workload is Deep Learning

— Mostly inference tasks, but may also perform training tasks in
case of online-learning.

Many vendors provide SoC (System-on-Chip) products that
iIntegrate CPU cores with specialized computational engines
for Deep Learning:

— GPU (Graphics Processing Unit)

* NVIDIA is the only serious player.

» Other GPU venders, e.g., AMD, ARM, Intel, focus on computer graphics
instead of general-purpose computing (GPGPU).

— FPGA (Field-Programmable Gate Arrays)
« Xilinx, Intel Altera
— ASIC (Application-Specific Integrated Circuit)

» An explosion of specialized ASICs for Deep Learning in recent years,
with hundreds of companies and products ranging from high-
performance to embedded.

— DSP (Digital Signal Processor)
* Mainly for image preprocessing, e.g., products from Texas Instruments.
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CPU vs. GPU

* GPU has much simpler control logic than CPU, hence

has more computational elements (Arithmetic Logic

Units)

 GPU is ideally suited for processing highly-parallel

workloads

— e.g. matrix-multiply, which is a core operation in Deep

Learning algorithms
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CPU vs. GPU

 When you are plowing a field, would you prefer 4
strong oxen (a multicore CPU), or 1024 chickens

(a GPU)?

« Similar arguments for FPGAs (Field-
Programmable Gate Arrays) and ASICs
(Application-Specific Integrated Circuits)
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NVIDIA DRIVE Hardware

A family of products, ranging from the low-end Parker to the latest
high-end THOR with 2000 TOPS (Tera Operations Per Second)

— Besides CPU and GPU cores, also includes NVDLA (NVIDIA Deep
Learning Accelerator), an ASIC for Deep Learning inference.
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https://wccftech.com/nvidia-intros-drive-thor-balancing-ai-performance-for-full-vehicle-autonomy/
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FPGAS

 FPGA is reprogrammable hardware, consisting of an array of
Configurable Logic Blocks (CLBs) and interconnections which
can be configured at design time or runtime.
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Inpu11

FPGA vs. GPU

SIMD (Single Instruction, Multiple Data) computation model.

— This is ideally suited for training tasks, with well-known algorithms such

as Stochastic Gradient Descent with mini-batches.

— But not ideal for inference tasks.

» Larger batch size leads to high throughput, but also high and nondeterministic
latency for each data item.

« Smaller batch size leads to low computation efficiency.

FPGA can perform “batch-less” inference

— Low and deterministic latency for any batch size.
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FPGA for Automotive

« FPGAs can be integrated into sensors (camera, Lidar,
radar), or serve as central compute engine in domain
controller or AD computer

 Xilinx FPGASs have 90% market share in lidars.

 Intel is pushing hard into the automotive market, with
acquisition of Altera in 2015.

Forward Camera Domain Controller Surround View Cameras

Zynq® UltraScale+™ MPSoC Zynq® UltraScale+™ MPSoC

Zynq® UltraScale+™ MPSoC

Safety MCU

LiDAR

Serial Zynq® UltraScale+™ MPSoC

Processor
Application Software

Software Framework

Software Framework

https://www.xilinx.com/applications/automotive/automated-driving.html 78



ASICs

« ASICs for Deep Learning are often called Neural

Processing Units or Al accelerators.

ASICs, thanks to dedicated circuit design, may
achieve up to 10x in computation efficiency and
power consumption compared to CPU/GPU, and
less dramatic, but still significant improvement
compared to FPGA. The drawback is loss of
programmability and flexibility.

— Industry: almost every chip vendor provides some

kind of Al accelerator, e.g. Google’s Tensor
Processing Unit (TPU)

— Academia: Al accelerators is a dominating topic in top

conferences in computer architecture, including ISCA,
MICRO and HPCA.
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MobileEye
EyeQ Series

« “Computer Visio
Processors” are

ASICs

Highest Autonomous
Level Supported

LPDDR4-4267
4x32b
EyeQ5
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/1— 40Gbps
Boot ROM \I— Semiconductor Technology 180nm CMOS 90nm CMOS

https://www.mobileye.com/our-technology/evolution-eyeq-chip/
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Tesla FSD

* Full Self-Driving Chip (FSD) is designed by Tesla and introduced in early
2019 for their own cars.

« Itincorporates 3 quad-core Cortex-A72 clusters for a total of 12 CPUs
operating at 2.2 GHz, a GPU operating 1 GHz, 2 Neural Processing Units
(NPUs) operating at 2 GHz, and various other hardware accelerators.

— NPU: ASIC for Deep Learning inference

Camera |/F saty |L
ISP / System ’55;,,:;{;::.,5 TESLA
(24-bit) ng# UBQO1BO
Z S832YNA
" (600 GFLOPS) Quad-Core
ideo CortexA7T2 H1834
{Eancgtil_}t? 2.2 GHz
© : NoC
S =
i [ & b=
n.—,‘l|-_-l:' (:Q;'?gxigg o O
< NPU NPU 2.2 GHz ||~
DQ:E 2 GHz 2 GHz O
01| (36.86 TOPS) | | (36.86 TOPS) =
5 Quad-Core m‘
CortexA7?2 (o)
2.2 GHz
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Products from Automotive OEMs and
Suppliers

* These companies do not design chips.
Rather, they offer integration solutions based
on products from chip vendors like NVIDIA.

— Delphi/Audi zFAS (zentrales Fahrerassistenz-
Steuergeraet)

« based on NVIDIA Tegra K1 and Mobileye EyeQ3

. gedging their bet on products from two mortal enemies

— ZF ProAl
« based on NVIDIA DRIVE PX2

— Bosch Al Car Computer
» based on NVIDIA DRIVE AGX Xavier

— Continental ADCU:; Visteon DriveCore; NXP
BlueBox; Renesas R-Car...
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OFTWARE PLATFORMS

SOFTWARE:
PRODUCT VS PLATFORM




The AUTOSAR Consortium

 AUTomotive Open System ARchitecture (AUTOSAR) is a global
development partnership of automotive interested parties founded in
2003. It pursues the objective to create and establish an open and
standardized software architecture for automotive Electronic Control
Units (ECUSs).
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AUTOSAR Classic Platform
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AUTOSAR Adaptive Platform

AUTOSAR-AP is an industry standard that specifies standard
interfaces required for developing future high-performance multicore
automotive ECUs.

Compared to Classic AUTOSAR for resource-constrained safety-
critical ECUs, AUTOSAR-AP is designed for high-performance ECUs,
and allows dynamic linking of services and clients during ECU runtime,
which facilitates Over-the-Air (OTA) Update.

AUTOSAR Adaptive Platform - AP

SWC SWC AUTOSAR SWC
Runtime Environment
ARA ARA

for Adaptive Applications ARA

API Adaptive AUTOSAR Services
i i [ service |
Management Service Service Service
Software
Configuration Masneac:err‘;yert Diagnostics

API API Management
_ Persistency
Operating
System
API

API API API
p&;?{;,n Logging and Hardware Communication
v e | Factng | accsersin e

(Virtual) Machine / Hardware
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Integration of Multiple .%— Dﬁ“.

ETSI

Backend Systems

S Oftware P I atfo r m S Road-Side Infrastructure

« AUTOSAR CP (labeled

C) is used for safety-

critical ECUs for low-level
control and interfacing
with actuators

« AUTOSAR AP (labeled
A) is used for high- Flawe: 54 Exsnciany dociommoestod st laionms
performance AD
com p u te I. """"""""""" E authority, OEM, map, ... via backend

* Non-AUTOSAR (labeled . l """"""""""
N) m ay b e Linux Or ___; environment, drl;::cset::; r?nd vehicle state
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Figure 2-2 Exemplary interactions of AP and CP



EB corbos

«  EB corbos is a software platform that uses virtualization technology (hypervisor) to integrate AUTOSAR
AP, CP and non-AUTOSAR OS on a single multicore ECU, while achieving high degree of isolation
between different Virtual Machine patrtitions, including:

— Performance Partitions with complex Performance Cores for high-performance, subject to low-levels of safety
certification

—  Safety Partition with simpler Safety Cores for safety-critical functions, subject to high-levels of safety certification
—  Security Partition with processor security extensions (e.g., ARM TrustZone, Intel Software Guard Extensions (SGX))
for secure boot, crypto operations, etc.
«  Anexample of a Mixed-Criticality System, where subsystems with different safety criticality levels are
integrated on the same platform

New CPU-intensive Takeover of existing _
. . . Safety-relevant vehicle
(safety-relevant) Novel user functions: vehicle functions from Secure startup, functions, monitoring of
functions: _ e.g. App Store Classic AUTOSAR authentication performance partitions
e.g. sensor fusion (SWCs)

| | I | I

Performance Partitions ! I Security Partition I I Safety Partition

: i !
1 . 1 1 .

Classic AUTOSAR IR : T""EStE_d I : Classic AUTOSAR
! | nvironment ! I

I
' !
AUTOSAR 0OS ; : Trusted OS | Ml AUTOSAR Safety OS
|
I

Adaptive AUTOSAR Adaptive AUTOSAR

Virtual Machine

Virtual Machine Virtual Machine

Secure Boot

Performance Cores

High-performance Computer




Robot Operating System (ROS)

ROS is a set of software libraries and tools for building robotic applications.
Many companies use ROS to develop AVs. It uses the publish-subscribe

paradigm for inter-node communication.
— ROS has a Master node that provides naming and registration services to the rest of the

nodes.
— ROS 2 removed the Master node, and uses publish-subscribe middleware DDS (Data

Distribution Service).

A drawback of ROS compared to AUTOSAR:

— Since ROS uses Linux as the OS, it is not possible to pass high-level of safety
certification (ASIL-D).

i ' i '
Communication { Visualization } Perception
. A . A
Ty Ty
Motion Planning Robot Control
LA N
.~/ .
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Computer Vision

Robot Operating Systemn

Hardware Drivers
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Simulation { Data Logging } Machine Learning
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Application
Layer
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Application

Application

_________________________

Client Library Client Library
Abstract DDS Layer
Moadel
TCPROS/UDPROS “n:l et |
- fiira-process
Linux Linux,"Windows/Mac/RTOS

Maruyama Y, Kato S, Azumi T. Exploring the performance of ROS2[C]//Proceedings of the 13th
International Conference on Embedded Software. 2016: 1-10.
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Apex.0S

o “Safe and certified software framework for autonomous
mobility systems.”

« AiIms to be certified as a Safety Element out of Context
(SE00C) up to ASIL D.

— Hard real-time, static memory allocation (no new() or malloc()),
callbacks vs. waitset, security, testing, real-time 1/0O logging...

— Real-Time Linux or QNX as the RTOS.

ROS 1 ROS 2 Apex.OS

- First release in 2010, EOL 2020 - First release in 2018 - Pilot release in 2018, product release
- SDK for robotic systems - SDK for robotic systems in 2019, certification in 2020

- Designed for research - Designed for R&D - Designed for safety-critical systems

- Open Source: BSD - Open Source: Apache 2 - APl-compatible to ROS 2
- Proprietary license

ROS 1 Yo ROS 2 ) Apex.0S

Real-Time Linux / QNX




NVIDIA DRIVE Software Framework

DRIVE AV DRIVE IX
DRIVE Planning Visuvalization Al CoPilot Al Assistant

System
DRIVE Mapping AV Visualization

DRIVE Perception

Camera Calibration

Mewral Networks

DM5Visualization

DRIVEWORKS

DRIVE Metworks DRIVE Calibration

TN T T s
T e Cutr

-, -
( ) DRIVE Core
. _' e we M Sensor Abstraction Layer + Plugins Vehicle |10 Point Cloud Processing Tools [Recorder)

Radar, Lidar
IMUWGPS, CAN

. =1 = e

CAMERAs

DRIVE AGX DEVELOPER KITS [Xavier/Pegasus) DRIVE HYPERION [Reference Architecture)




NVIDIA DRIVE Software Framework

* An open-source framework for AD (only for
NVIDIA hardware).

— DRIVE OS is a foundational software stack consisting
of an embedded Real Time OS (RTOS), hypervisor,
CUDA libraries, Tensor RT, and other modules that
give you access to the hardware engines.

— DriveWorks SDK enables developers to implement
AV solutions by providing a comprehensive library of
modules, developer tools, and reference applications.

— DRIVE AV provides perception, mapping, and
planning modules that utilize the DriveWorks SDK.

— DRIVE IX provides full cabin interior sensing
capabilities needed to enable Al cockpit solution.
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Autoware

Open-source AD platform from Japan.
— Autoware.Al (https://www.autoware.al) is based

on ROS-1.

— Autoware.auto (https://www.autoware.auto) is the
new version based on ROS2.

ROS PC

E Autoware (ROS)

Recognition __

Judgment

Object Detection
Localization

Lane following
Intersection

.

Operation

Acceleration
Braking
Steering

hutowa reRider
AutowareRoute - E '.-.
wp» i
e e Route planning
M Veh|cle contr0| (CAN)

4

A

Vehicle

AUTOWARE

ECOSYSTEM

1- User applications

1- Algorithms el /\UitoVvare Al I —

1- Framework / SDK ROS1 ROS 2
1- OS / RTOS Linux Linux
2-Maps

2-Simulation

3-Compute Drivers an
3-Sensors

d Supporting Software

3-Vehicle

1- On-Board Software
2 - Off-Board Software
3 - Hardware



Baidu Apollo

* An open-source, hardware-neutral AD platform from China.

Initially based on ROS, but later replaced ROS with their own
components.

— Real-Time Operating System (RTOS); Linux kernel with real-time
patch

— Cyber RT: lightweight, high-performance communication middleware

Production Component

Apollo Studio Simulation Secirity
HD Map

Map Engine Localization Perception Prediction Planning Control

Apollo Cyber RT vaXx
P - Adapter

RTOS

Certified Apollo Compatible Drive-by-Wire Vehicle Open Venhicle Interface

New in Apollo 7.0
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V2X Types

Four types of V2X applications in 3GPP Standard:

— Vehicle-to-Vehicle (V2V)
* e.g., collision avoidance system
— Vehicle-to-Pedestrian (V2P)
* e.g., safety alerts to pedestrians and bicyclists
— Vehicle-to-Infrastructure (V2I)
* e.g., adaptive traffic light control, traffic-light optimal speed advisory

— Vehicle-to-Network (V2N)
* e.g., real-time traffic routing, cloud services
» Also called Vehicle-to-Cloud

RSU Application
@ Pedestrian  Server

<
3.
2l
]
<
Pl
Bl

Vehicle
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Two Camps

 DSRC (Distributed Short-Range
Communication): Toyota, GM...

— Based on WiFi, i.e., 802.11p at 5.9GHz
— For latency-sensitive applications.

o C-V2X (Cellular V2X): Qualcomm/Ford...

— Traditionally for latency-tolerant applications e.g.,
Over-the-Air (OTA) updates.

— With the advent of 5G, C-V2X will become more
prevalent, used also for latency-sensitive
applications.

* C-V2X seems to be winning over DSRC In
recent years. The following slides are based
on Qualcomm’s C-V2X approach

https://www.qualcomm.com/media/documents/files/accelerating-c-v2x-commercialization.pdf
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V2X Applications in AD

Non line-of-sight sensing Conveying intent Situational awareness
Provides 360" NLOS awareness, works at Shares intent, sensor data , and path Offers increased electronic horizon to support
night and in bad weather conditions planning info for higher level of predictability soft safety alerts and graduated warning
@) A» 5 ;
e AR & Reduced
speed ahead
Road A Sudden
hazard lane change

Queue warning/
shockwave damping
Blind intersection/vulnerable

»
road user (VRU) alerts '



C-V2X Evolution towards 5G

* In 2020/07, 3GPP (3rd Generation Partnership
Project) declared R16 to be frozen

Network independent

D2D

communications

R12/13

stablished foundation

basic D2D comm.

Enhanced _? 'h
safety ot

C-V2X R14 (Ph. 1) C-V2X R15 (Ph. II)

Enhanced communication’s range
and reliability for V2X safety

Autonomous a
driving

C-V2X R16 5G NR support (Ph. 1)
(Advanced safety applications)

Ultra-reliable, low latency, high throughput
gommunication for autonomous driving

No

Yes

Yes

Communications’

Broadcast only

Broadcast only

Broadecast + Unicast/Multicast

High speed support No Yes Yes

High density support No Yes Yes

Throughput High throughput for enhanced safety Ultra-high throughput

Latency Low latency for enhanced safety applications | Ultra-low latency

Reliability Reliability for enhanced safety application Ultra-high reliability

Positioning No Share positioning information Wideband ranging and positioning
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C-V2X Defines 2 Transmission Modes

« V2X-Cellular: network communications going through base station
(eNodeB)

« V2X-Direct: Device-to-Device direct communications without going through
base station

Network communications Direct communications
V2N on “Uu” interface operates in traditional V2V, V2, and V2P on “PC5” interface’,
mobile broadband licensed spectrum operating in ITS bands (e.g. ITS 5.9 GHz)
independent of cellular network
Uu interface PC5 interface
e.g. accident 2 kilometer ahead e.g. location, speed

V21 V2l
(PC5) / \[PCE}
V2N V2N
(Uu) (Uu) V2V
/ \ [F"[_,DJI

eMNodeB UE-P ver

(PC5) (PC5)
6‘ o O ‘
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V2X-Cellular for Latency-Tolerant Use
Cases

=
04

A | ]
. . - — y )
(| 'l.
/ \ e« - Traffic flow control/

Discover parking @A > e 8 Queue warning

and charging

T\ M
1" e

Cloud-based sensor sharing Road hazard warning 1 km ahead
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V2X-Direct for Latency-Sensitive Active
Safety Use Cases

« Useful for NLOS (Non-Line-of-Sight)

scenarios.
(,’3
A » - ” | Omph A »
o) s > ax) ) ®
Do not pass Blind curve/ Road works
warning (DNPW) Local hazard warning warning

R PO SR
) 4> B - -A‘x(ﬁ@ :-

Intersection movement assist Vulnerable road user (VRU) Left turn
(IMA) at a blind intersection alerts at a blind intersection assist (LTA)
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C-V2X Deployment

 Combined RSUs (Road-Side Units) with direct link (PC5)
Interface for V2X-Direct, and 4G/5G base stations for V2X-
Cellular, benefiting from cellular network densification in 5G
(smaller and denser cells)

4G/5G small cells with Uu interface
- RSUs with direct link/PC5 interface

|
{ | ‘
v / / //'/
[ '/ , Va //
: ) : /I f //'/u| // :
/ /
s L ( /A
7 !
7 / e
,."/ y //'/
/ /
4 /
/
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Use Case: Disabled Vehicle after
Blind Curve

« C-V2X has (at least 2x) longer range than
DSRC/802.11p, which enables the ego-vehicle to get
warning message earlier, hence travel at higher speed
while avoiding collision with the disabled vehicle

Icy road condition é’
4 Omph

C-V2X 802.11p
38mph 28mph
Normal road condition &}
4 nph
A C-v2X 802.11p
63mph 46mph

Stopping distance estimation’
(Driver reaction time + braking distance)

ce (m)

Stopping distan

63 mph

Normal

C-V2X
oy D

Velocity (mph)

DSRC
(60m) [E)



Use Case: Do Not Pass Warning

« C-V2X's longer range enables the ego-vehicle to
get warning message earlier, hence travel at
higher speed while avoiding collision with the
disabled vehicle

C-Vv2X Required passing alert distance (m)
vs. speed (mph)’

43mph —

* 443m >
43 mph
802.11p | :
400 28 mph (34‘\;%)]( -
28mph ‘:E | DSRC (L)

200 (240m)

@ -n -

240m > 0 20 40




Industry Consortium

« 5GAA Is a cross-industry consortium that
defines 5G V2X communications

-] 5GAAY ()

Automotive Association

Automotive industry Telecommunications

Vehicle platform, hardware, and software solutions Connectivity and networking systems, devices, and technologies

End-to-end solutions for intelligent transportation mobility systems and smart cities

Analog Devices AT&T  Audi BAIC BMW Bosch CAICT CETECOM China Mobile Continental Daimler

Danlaw Denso Ericsson FEV Ficosa Ford Gemalto Hirschmann Car Communication Huawei Infineon

Interdigital Jaguar KDDI Keysight Technologies KT  Laird Land Rover LG MINI muRata Nokia

NTT DoCoMo P3 Panasonic Qualcomm  Rohde & Schwarz ROHM  Rolls-Royce  SAIC Motor Samsung  Savari

SK Telecom  SoftBank T-Mobile Telefonica Telstra TUV Rheinland Valeo Verizon VLAVl Vodafone ZF ZTE
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L4
Q

5G Accelerates AVs

autonomous vehicles

V2X wireless sensor
802.11p (DSRC/ITS-G5)
C-V2X

3D HD maps
Semantic lane information
Landmark and lane
coordinates for positioning

Precise positioning
GNSS positioning

Dead reckoning

VIO

ﬁg

Heterogeneous

connectivity

Cellular 3G/ 4G/ 5G
Wi-Fi/ BT

CAN / Ethernet / Powerline

On-board intelligence
Heterogeneous computing
On-board machine learning
Computer vision

Sensor fusion

Intuitive security

0

@

Autonomous
vehicle

Power optimized processing for the vehicle

Fusion of information from
multiple sensors/sources

Path prediction, route planning,
control feedback

* My thoughts: Massive deployment of V2X is
necessary for AVs to benefit from V2X; It is a
promising technology, but current AV players are
not counting on V2X.
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ETHICAL ISSUES
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Two Introductory Videos

« The ethical dilemma of self-driving cars - Patrick Lin
— https://www.youtube.com/watch?v=ixloDYV{KAO

« Moral Machines: How culture changes values
— https://www.youtube.com/watch?v=jPo6bby-Fcg
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The Trolley Problem

« There is a runaway trolley barreling down the railway tracks. Ahead, on the
tracks, there are five people tied up and unable to move. The trolley is
headed straight for them. You are standing some distance off in the train
yard, next to a lever. If you pull this lever, the trolley will switch to a different
set of tracks. However, you notice that there is one person on the side track.
You have two options:

— Do nothing and allow the trolley to kill the five people on the main track.
— Pull the lever, diverting the trolley onto the side track where it will kill one person.

 What is the right thing to do?
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Variant of Trolley Problem with a
Probability Threshold

 YOou are In a situation where:

— A. you kill a pedestrian with probability 1, but it's
not your fault

— B. you kill a different pedestrian with probabillity p,
and it is your fault

 What is your threshold value p;;,, for making
the choice?

— if(p = ps1,) choose A; otherwise choose B

®
fog ——— R japalier
S \ jaywa

p =0->choose B
p = 1->choose A
o O<p<i1->7

Pedestrian on sidewalk

=
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MIT Moral Machine Experiment

A 2016 survey indicates that people wanted an autonomous vehicle to protect pedestrians even if it
meant sacrificing its passengers — but also that they wouldn’t buy self-driving vehicles programmed to
act this way. This prompted the MIT Moral Machine Experiment, a platform for gathering a human
perspective on moral decisions made by machine intelligence, such as AVs
(http://moralmachine.mit.edu/)

An AV must choose between killing two passengers or five pedestrians. An AV experiences a sudden
brake failure. Staying on course would result in the death of two elderly men and an elderly woman who
are crossing on a ‘do not cross’ signal (left). Swerving would result in the death of three passengers: an
adult man, an adult woman, and a boy (right).

You can also design other scenarios. Accident scenarios are generated with nine factors: sparing
humans (versus pets), staying on course (versus swerving), sparing passengers (versus pedestrians),
sparing more lives (versus fewer lives), sparing men (versus women), sparing the young (versus the
elderly), sparing pedestrians who cross legally (versus jaywalking), sparing the fit (versus the less fit),
and sparing those with higher social status (versus lower social status).

This platform gathered 40 million decisions in ten languages from millions of people in 233 countries

 BeBells

Awad, Edmond, et al. "The moral machine experiment." Nature 563.7729 (2018): 59-64.
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Individual Variations

a Preference in favour of the choice on the right side b Preference in favour of sparing characters
Intervention - Preference for action Preference for inaction Stroller 4.
- Girl 4.
Relation to AV Sparing passengers e “ *** Sparing pedestrians Boy 1.
Gender Sparing males * * Sparing females Male doctor | ,‘.
Female doctor 4.
Fitness -} Sparing the large * 1’ Sparing the fit Femala athlete 4. -
Executive female -
Sockal Stales - Soaring | at ‘ Soaring hicher stat Male athlete -f- o [l
cial s paring lower status paring higher status Executive male 4.
Law - Sparing the unlawful E Sparing the lawful Large man -
Homeless 1
Age - Sparing the elderly ﬁ 1&0 Sparing the young Old man 4-
Old WOITIAN -y emrremmmees
Mo. characters - Sparing fewer characters * ------------------------- *** Sparing more characters Dog 4,
Criminal -
Species Sparing pets H ** Sparing humans Cat et -
| | * 1 ] I 1
Nochange  +0.2 +0.4 +0.6 +0.8 -0z -0.1 ch’é‘gg g 01 02

AP

Fig. 2 | Global preferences. a, AMCE for each preference. In each row, AP
is the difference between the probability of sparing characters possessing
the attribute on the right, and the probability of sparing characters
possessing the attribute on the left, aggregated over all other attributes.

For example, for the attribute age, the probability of sparing young
characters is 0.49 (s.e. = 0.0008) greater than the probability of sparing
older characters. The 95% confidence intervals of the means are omitted
owing to their insignificant width, given the sample size (n = 35.2 million).
For the number of characters (No. characters), effect sizes are shown

for each number of additional characters (1 to 4; n; = 1.52 million,

1, = 1.52 million, n; = 1.52 million, n4 = 1.53 million); the effect size for
two additional characters overlaps with the mean effect of the attribute. AV,
autonomous vehicle. b, Relative advantage or penalty for each character,
compared to an adult man or woman. For each character, AP is the
difference the between the probability of sparing this character (when
presented alone) and the probability of sparing one adult man or woman

(n = 1 million). For example, the probability of sparing a girl is 0.15 (s.e.

= 0.003) higher than the probability of sparing an adult man or woman.

«  AMCE (Average Marginal Component Effect)
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Cultural Clusters

Three large clusters

— Western: Protestant, Catholic, and
Orthodox countries in Europe and North
America

— Eastern: Islamic and Confucian (Asian)
cultures

— Southern: Central and South America, as
well as France and former French colonies.
The preference to spare younger
characters rather than older characters
IS much less pronounced for countries
in the Eastern cluster, and much higher
for countries in the Southern cluster.

The same is true for the preference for
sparing higher status characters.

Countries in the Southern cluster exhibit
a much weaker preference for sparing
humans over pets, compared to the
other two clusters.

Only the (weak) preference for sparing
pedestrians over passengers and the
(moderate) preference for sparing the
lawful over the unlawful appear to be
shared to the same extent in all clusters

MORAL COMPASS

A survey of 2.3 million people worldwide reveals variations in the moral
principles that guide drivers’ decisions. Respondents were presented with 13
scenarios, in which a collision that killed some combination of passengers
and pedestrians was unavoidable, and asked to decide who they would spare.
Scientists used these data to group countries and territories into three groups
based on their moral attitudes.
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AV Ethical Issues: Is it Worth the Time?

Many argue that ethical issues are just a distraction from the
real problem of AV safety and security, esp. in the presence
of ML/DL algorithms.

— None of the AV accidents in recent years involved any ethical
decisions similar to the Trolley Problem. They are due to failures
IN sensors or perception algorithms.

Sebastian Thrun (formal head of Google's SDC project,
former professor at Stanford who led the development of
Stanley, winner of DARPA Grant Challenge in 2005):

— “l think it's a great thing for philosophers to discuss these kind of
problems. They can get tenure at their universities, but it's not of
practical relevance. If we manage with certain car technology to
halve the traffic deaths in the world, which means if we are able
to have 500,000 fewer deaths in total, then for this extremely
rare, purely hypothetical trolley problem that might occur once in
a hundred years. | think whatever the outcome is, the mental
energy that philosophers have spent on discussing it is
completely out of proportion to the benefit of others on one
problem. | will leave it at that.”
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AV Testing Legislation (USA)

It is absolutely necessary to
test AVs on public roads for
technology development,
but is it ethical?

Legislation regulating AV
testing differs widely across |
states. Several states have
no proposed legislation,
meanwhile states like
Nevada, California, Texas,
and Arizona are hotbeds for
testing AVs.

My opinion: Yes, if Human
Operators are alert and
reS po n SI b I e . l Allows autonomous testing on public roads

Proposing legislation for AVs

Currently there is no
national standard.
Every state uses a
different approach.

Failed or reversed legislation
—— Testing being performed in state by government approval

€ Breaktirough
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