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ML Taxonomy

• Supervised Learning:
– The system is presented with example inputs and 

their desired outputs, given by a “teacher”, and 
the goal is to learn a general rule that maps 
inputs to outputs.

• Classification (cat or dog?)

• Regression (housing price next year?)

• Unsupervised Learning:
– No labels are given to the learning algorithm, 

leaving it on its own to find structure in its input. 
Unsupervised learning can be a goal in itself 
(discovering hidden patterns in data) or a means 
towards an end (feature learning).

• Parametric UL (e.g., Gaussian Mixture Models)

• Non-parametric UL
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ML Taxonomy

• Reinforcement Learning:
– An agent interacts with a dynamic environment in which it 

must perform a certain goal. The agent is provided 
feedback in terms of rewards and it tries to learn an 
optimal policy that maximizes its cumulative rewards.

– Algorithms: Model-based; Model-free (Value-based, 
Policy-based)

– Applications: Game playing (AlphaGo); Robotics; AD…
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Training vs. Inference
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• Training: millions of iterations of forward pass + back 
propagation to adjust model params (e.g., NN 
weights); requires large CPU/GPU clusters and 
days/weeks of training time

• Inference (also called prediction): a single forward 
pass; can be run on edge devices



Supervised Learning: Classification and 

Regression  
• Classification is used to predict/classify discrete labels such as Male or 

Female, True or False, Spam or Not Spam, etc.

• Regression is used to predict continuous values such as price, salary, age, 
etc.

• Both are Supervised Learning algorithms that require ground-truth values as 
labels.

• Both need loss functions to measure how the predicted value differs from 
ground-truth value.

5https://www.javatpoint.com/regression-vs-classification-in-machine-learning
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A Neuron and its Activation Function
• The activation function is a nonlinear monotonic 

function that acts like a “gate”: the output is larger for 
larger input activation
– Perceptron 𝑦 = 𝜎 𝑧 = step(𝑤𝑥 + 𝑏) (activation function 𝑓 =

step function, shown below)

– Linear Regression if 𝑦 = 𝑧 = 𝑤𝑥 + 𝑏 (activation function 𝑓 =
identity function)

– Logistic Regression if 𝑦 = 𝜎 𝑧 = 𝜎(𝑤𝑥 + 𝑏) (activation 
function 𝑓 = sigmoid function)
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Linear Regression for Regression

• Function approximation 𝑦 = 𝑤𝑥 + 𝑏, with learnable 
parameters 𝜃 = {𝑤, 𝑏}, where 𝑥, 𝑦, 𝑏 are vectors, and 𝑤 is a 
weight matrix

– e.g., we want to predict price of a house based on its feature vector 
𝐱 = 𝑥1 𝑥2 𝑥3

𝐓, where 𝑥1is area in square meters (sqm), 𝑥2 is 
location ranking (loc), 𝑥3 is year of construction (yoc)

– Predicted price 𝑦 = 𝑤𝑥 + 𝑏 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏
– Fig shows an example for scalar 𝑥 and 𝑦
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Logistic Regression for Binary 

Classification
• Consider a binary classification problem: an input image 𝑥 may be 

classified as a dog with probability 𝑃(𝑦 = 𝑑𝑜𝑔|𝑥), a cat with probability 
𝑃(𝑦 = 𝑐𝑎𝑡|𝑥), with 𝑃 𝑦 = 𝑑𝑜𝑔 𝑥 + 𝑃 𝑦 = 𝑐𝑎𝑡 𝑥 = 1.0

• Logistic Regression: use sigmoid function 𝜎 𝑧𝑖 =
1

1+𝑒−𝑧𝑖
to map from 

the activation (also called the logit) to the output probability

• In addition to binary classification at the output layer, sigmoid may also 
be used as the non-linear activation function in the hidden layers of a 
NN 
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Common Activation Functions used 

in DL

9https://laptrinhx.com/complete-guide-of-activation-functions-574622854/



Deep Neural Networks

• We can stack many hidden layers to form 

a DNN if we have enough data and 

computing power to train it

• The high model capacity of DNN comes 

from non-linear mappings: hidden units 

must be followed by a non-linear activation 

function

– Without non-linear activation functions, a DNN 

with many layers can be collapsed into an 

equivalent single-layer NN
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Fully-Connected NNs

• Number of params at 

the i-th layer is 

𝑁𝑖−1 + 1 ∗ 𝑁𝑖, where 

𝑁𝑖 is the number of 

neurons at the i-th

layer. Can grow very 

large

– (We will discuss CNNs 

with much fewer 

params in the next 

lecture)
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A 3-layer NN



Example: Two-Layer Fully-Connected 

NN for Solving XOR
• The NN consists of one input, one hidden, 

and one output layer, with sigmoid activations

12

2 hidden units with  

sigmoid activations

output unit with  

sigmoid activation

𝒙𝟏 𝒙𝟐 𝒚

0 0 0

0 1 1

1 0 1
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Setting # Layers and Their Sizes

• An example illustrating adding more hidden 
neurons increases model capacity and 
reduces training error

• But too many layers and neurons may lead to 
overfitting
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Loss Functions

• Classification

– Cross-Entropy Loss, Log Loss, Focal Loss, 

Exponential Loss, Hinge Loss…

• Regression

– MSE (Mean Squared Error)/L2 

Loss/Quadratic Loss, MAE (Mean Absolute 

Error)/L1 Loss, Huber Loss, Log Cosh Loss, 

Quantile Loss…

14https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0



NN for Multi-Class Classification

• Consider a NN defining the model ℎ𝜃: 𝒳 →
ℝ𝑘, as the mapping from input 𝑥 to output 
ℎ𝜃 𝑥 , a 𝑘-dim vector of logits, where 𝑘 is the 
number of classes
– 𝜃 is the set of params (weights and biases)

– 𝑦 is the correct label for input 𝑥

– Note that ℎ𝜃 does not include the last SoftMax 
layer

• e.g., a 3-layer NN consisting of 2 layers with 
ReLU activation functions and a last linear 
layer is

– ℎ𝜃 𝑥 = 𝑊3max(0,𝑊2max(0,𝑊1𝑥 + 𝑏1) + 𝑏2) + 𝑏3
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Cross-Entropy Loss for Multi-

Class Classification
• The SoftMax operator 𝜎:ℝ𝑘 → ℝ𝑘computes a vector of 

predicted probabilities 𝜎(𝑧): ℝ𝑘 from a vector of logits 
𝑧: ℝ𝑘 in the last hidden layer (the penultimate layer), 
where 𝑘 is the number of classes:

– 𝜎 𝑧 𝑖 =
exp 𝑧𝑖

σ𝑗=1
𝑘 exp 𝑧𝑗

• The loss function is defined as the negative log 
likelihood of the predicted probability corresponding to 
the correct label 𝑦:

– Loss 𝑥, 𝑦; 𝜃 = − log 𝜎 ℎ𝜃 𝑥
𝑦
=− log

exp ℎ𝜃 𝑥 𝑦

σ𝑗=1
𝑘 exp ℎ𝜃 𝑥 𝑗

=

log σ𝑗=1
𝑘 exp ℎ𝜃 𝑥 𝑗 − ℎ𝜃 𝑥 𝑦

– Minimizing Loss ℎ𝜃 𝑥 , 𝑦 amounts to maximizing the logit 
ℎ𝜃 𝑥

𝑦
corresponding to the correct label 𝑦
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Cross-Entropy Loss Example
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Aurélien Géron A Short Introduction to Entropy, Cross-Entropy and KL-Divergence (YouTube)



Cross-Entropy Loss Example
• Consider a NN for 3-class classification. Fig shows the last linear 

layer and the SoftMax layer 

• The last linear layer computes the vector of logits ℎ𝜃 𝑥 = 𝑊𝑥𝑖 +
𝑏 = −2.85 .86 .28 𝑇(𝑥 is the input image to the NN, 𝑥𝑖 is the 
intermediate input to the last layer)

• The SoftMax layer computes the vector of predicted probabilities 
.016 .631 .353 𝑇 for labels 1 2 3 𝑇, and the loss − log .353, 

assuming correct label 𝑦𝑖 = 3
– Logits: [𝑒−2.85, 𝑒 .86, 𝑒 .28] = .058, 2.36,1.32
– Normalize by 𝑒−2.85 + 𝑒 .86 + 𝑒 .28 = 3.738 to get SoftMax scores 

[
.058

3.738
,
2.36

3.738
,
1.32

3.738
] = [.016, .631, .353]

18Last Linear Layer SoftMax Layer

correct 

label



Example CV Task: Multi-Class Image 

Classification
• Two stages: feature extraction from input, 

and classification based on extracted 
features

• Classifier returns output as a list of 
probabilities with size equal to the number of 
classes, but it may also return the top-1 or 
top-5 results with highest probability ranking

19

Feature

Extraction

Classifier

𝑃 0 = .01
𝑃 1 = .01
𝑃 2 = .01
𝑃 3 = .02
𝑃 4 = .03
𝑃 5 = .01
𝑃 6 = .02
𝑃 7 = .02
𝑃 8 = .85
𝑃 9 = .02

sum

to 1.0

CNN

(or classic CV algo)
SoftMax



Binary Classification Metrics
• The relevant class is considered “positive” 

in a binary classifier

• e.g., for a medical test that aims to 
diagnose people with a certain disease. 
“Positive” denotes sick (has disease), and 
“negative” denotes healthy (no disease)
– TP: a sick person is diagnosed as sick

– TN: a healthy person is diagnosed as 
healthy

– FP: a healthy person is misdiagnosed as 
sick

– FN: a sick person is misdiagnosed as 
healthy

• Never Forget Again! // Precision vs Recall 
with a Clear Example of Precision and 
Recall by Kimberly Fessel
– https://www.youtube.com/watch?v=qWfzIY

CvBqo

20

https://www.youtube.com/watch?v=qWfzIYCvBqo


Example Confusion Matrix 1
• Precision = 

𝑇𝑃

𝑇𝑃+𝐹𝑃
=

1

1+7
= .125

– When the classifier predicts positive, it is correct 12.5% of the time

• Recall (TPR) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

1

1+2
≈ .333

– Among all the positive cases, the classier correctly classifies 33.3% of them as positive

• 𝐹1 = 2 ∗
Precision∗Recall

Precision+Recall
= 2 ∗

.333∗.125

.333+.125
= .182

• False Positive Rate (FPR) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=

7

7+90
≈ .072

– Among all the negative cases, the classier misclassifies 7.2% of them as positive

• Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

1+90

1+90+7+2
= .91

– The classier makes the correct prediction 91% percent of the time

• Positive correlation between TPR vs. FPR

• In general, negative correlation between precision vs. recall (may be non-
monotonic)

21https://medium.com/swlh/recall-precision-f1-roc-auc-and-everything-542aedf322b9

Ground Truth

Positive Negative

Predicted
Neg False Negative (FN)=2 True Negative (TN)=90

Pos True Positive (TP)=1 False Positive (FP)=7



Example Confusion Matrix 2

22

• Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

0

0+0
(ill-defined)

– When the classifier predicts positive, it is correct ?% of the time (since it never predicts 
positive, the question is ill-defined)

• Recall (TPR) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

0

0+3
= 0

– Among all the positive cases, the classier correctly classifies 0% of them as positive

• False Positive Rate (FPR) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=

0

0+97
= 0

– Among all the negative cases, the classier misclassifies 0% of them as positive

• Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

0+97

0+97+0+3
= .97

– The classier makes the correct prediction 97% percent of the time

• A medical test that never makes any positive diagnoses is very accurate for a 
rare disease (diagnose everyone to be healthy), but not very useful

Ground Truth

Positive Negative

Predicted
Neg False Negative (FN)=3 True Negative (TN)=97

Pos True Positive (TP)=0 False Positive (FP)=0



ROC and AUC
• Binary classification is typically based on a decision threshold parameter. 

Moving the decision threshold will cause FPR and TPR to move in the same 
direction

– e.g., a medical test that sets a lower threshold for positive diagnosis will have both 
higher FPR and higher TPR, and vice versa

• Receiver Operating Characteristic (ROC) Curve plots FPR (x-axis) vs. TPR 
(y-axis); Area Under the Curve (AUC) is the area under ROC (.5 ≤ 𝑅𝑂𝐶 ≤ 1, 
since 𝐹𝑃𝑅 ≤ 𝑇𝑃𝑅)

– Fig shows an example with 4 points (FPR, TPR) highlighted: (0,0), (.2, .6), (.6, .8), 
(.6,1.0)

– The ideal ROC curve: 𝐹𝑃𝑅 ≡ 0, 𝑇𝑃𝑅 ≡ 1, 𝐴𝑈𝐶 = 1, with 𝐹𝑃 = 𝐹𝑁 = 0,
– The worst ROC curve; 𝐹𝑃𝑅 ≡ 𝑇𝑃𝑅, 𝐴𝑈𝐶 = .5 (dotted line) 

23Predict positivePredict negative

Decision 

thresh.

Distribution of 

positive data 

items

Distribution of 

negative data 

items

FPFN

TN TP

Feature



Confusion Matrix for Multi-Class 

Classification
• Binary classification is a special case of 

multi-class classification:
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Binary

Ground Truth

Pos Neg

Pred.
Pos FN TN

Neg TP FP

Ground Truth

Cls1 Cls2 Cls3

Pred.

Cls3

Cls2

Cls1



K-Fold Cross-Validation

• Divide data into train data 
and test data

• Since we cannot peek at the 
test data during training 
time, we use part of the train 
data for Cross-Validation:

• e.g., Divide training data into 
K=5 parts (folds). Use each 
fold as validation data, and 
the other 4 folds as training 
data. Cycle through the 
choice of which fold used for 
validation  and average 
results.

25https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_05_2_kfold.ipynb
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Training Neural Networks



Local Gradient at One Neuron
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activations

• “local gradient”

• f

• gradients



Gradient Descent
• Gradient descent 𝜃 ← 𝜃 − 𝛼∇𝜃Loss 𝑥, 𝑦; 𝜃
• Loss surface of a DNN is highly non-convex; can only 

hope to find “reasonably good” local minima
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𝔼 𝑥,𝑦 ∼𝐷Loss(𝑥, 𝑦; 𝜃)

𝜃



Gradient Descent Algorithms

• Steepest descent may result in in efficient zig-zag 
path

• More advanced GD methods exploit momentum, 
e.g., Nesterov, AdaGrad, RMSProp, Adam…
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Negative gradient direction 𝜃1

𝜃2

𝜃

http://dataplusplus.ca/blog/2017/gradient-descent-with-momentum



Mini-batch Stochastic Gradient Descent

• Only use a small portion (a mini-batch) of 

the training data to compute the gradient

• Common mini-batch sizes are 32/64/128 

examples

• Loop:

– Sample a mini-batch of data

– Forward prop it through the graph, get loss

– Backprop to calculate the gradients

– Update the parameters using gradient 

descent
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Batch Normalization
• For each mini-batch:

– 1. Compute the empirical mean and variance independently for each 
dimension 𝑖 = 1,…𝑚

– 2. Normalize to a unit Gaussian with 0 mean and unit variance

• BN layers inserted before nonlinear activation function, and it 
keeps 𝑥’s average value around 0 for maximum gradient during 
learning

• Scale and shift params 𝛾, 𝛽 gives more flexibility during training

• Benefits: 

- Improves gradient flow through the network; Allows higher learning
rates; Reduces the strong dependence on initialization; Acts as a form 
of regularization
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CONV

BN

tanh

FC

BN

tanh

...



Learning Rate Schedule during 

Training
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Hyperparameter Optimization
• Example hyperparams

– Network architecture

– Learning rate, its decay schedule, update type

– Regularization (L2/Dropout strength)

• Grid search vs. random search
– Random search can use the computing budget more effectively

– With 9 evaluations, random search explored 9 different values 
for the important parameter; grid search only explored 3.
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Classification Accuracy

• Big gap between training accuracy and validation 
accuracy may imply overfitting => decrease model 
capacity?

• No gap may imply underfitting => increase model 
capacity?
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Data Augmentation for Enlarging 

Training Dataset

• Mirroring, 

random 

cropping, color 

shifting, 

rotation, 

shearing, local 

warping…
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Color Shifting


