L3.1 CNN for Computer Vision

Zonghua Gu 2022

— _:]Natalie Portman
=
| 2] |2 S| W Jromcuise
S| 5|>|5[>e >l 5>
o (v} O |l | Milla Jovovich
&
B |keira Knightley

Acknowledgement: some contents taken from UC Berkeley CS231n https://cs231n.github.io
Coursera MOOC on CNN: https://www.coursera.org/learn/convolutional-neural-networks
Hung-yi Lee: https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.html

Outline

 CNN Convolution layers
* Pooling and Fully-Connected layers
 CNN Case Studies

Classic Computer Vision

* Most “classic” (hon-ML) CV algorithms are
Implemented in the OpenCV library, including
— Core Operations:

 basic operations on image like pixel editing, geometric
transformations...

— Image Processing
« Thresholding, smoothing, edge detection, Hough Line

Transform...
— Feature Detection and Description
« HOG, SIFT, SURF, BRIEF, ORB... o
— Video analysis 0
» Object tracking w. optical flow
— Camera Calibration and 3D Reconstruction OpenCV

* They are simple, fast and reliable (e.g., for lane
detection), and are often used in place of or in
conjunction w. complex ML/DL algorithms, which may
sometimes be unreliable and unpredictable.

Input Image Encoding

A size N X N color image has volume N X N X 3, w. N X N pixels
and 3 color components (Red, Green, and Blue, RGB) for each pixel

A size N x N greyscale image has volume N X N x 1

Color depth, or bit depth, is number of bits used for each color
component of a single pixel

— Typical value is 8, so pixel value has range [0, 255]

— Larger depth is possible, e.qg., true color (24-bit) is used in computer and
phone displays for human eyes, but 8-bit is typically enough for CV

3 Colour Channels

Height: 4 Units
(Pixels)

Width: 4 Units
(Pixels)

Filters/Kernels in Computer Vision

« Convolution operation: we slide each filter (also called kernel) across the width
and height of the input volume, and compute dot products between the entries
of the filter and the input. As we slide the filter over the width and height of the
input volume, we will produce a 2D activation map (also called feature map) that
gives the responses of that filter at every spatial position.

— Dot product: elementwise multiplication of a filter w. corresponding input values, then
summing them to generate one output value

« Used to extract features for downstream tasks (classification or
regression)

(4 x0)

Center element of the kemel is placed over the 28 : g;

source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

(0x0)
(0x1)
(0x1)
(0 x0)
(0x1)

Source pixel

Convolution

New pixel value (destination pixel)

0(30(30| 0
0(30(30| 0
0 (30(30| 0
0(30(30| 0

I

Ol O0|O0|O0|0O0| 0
OO0 O0|O0|0O0| 0
OO0 O0|0O0| 0
OO0 |O0|O| 0
S T I e T O e O O e O IO N O
OO0 O0|O0| 0o
(||| |
OO0 O| 0o
(||| |

A Filter for Vertical Edge Detection

O|loOo|(0O| O
OO (O] O
88|38
OOOO.
88|83
|l Oo0|(O| 0O
|
]
olo|o|=
A |
*
Ol O0|O0([O0|O| O
(|| | |
OO0 O| O
A ||| | | -
OO0 OO
A ||| | |
O OO0 O| 0O
OO0 OO
OO0 OO

Sobel Filter for Vertical Edge Detection

0 (40(40| 0
0 (40(40| 0
0 (40(40| 0
0(40(40| 0

ol o=

(Q\

*
eollolloliolNolNe)
Ol O0|I OO0 O
Ol OO0 O|O
ollollol ol NoN o)
||| | |
Ol O0|I OO0 O
||| | |
O|lO0|I OO0 O
|| A | A A A

O|loOo|(0O| O
OO (OO
Sy ¥y
OOOO.
SN IYY
|l Oo0|(O| 0O
|
IR
olo|o|=
||
*
Ol O0|O0([O0|O| O
(|| | |
OO0 O| O
A ||| | | -
OO0 OO
A ||| | |
O OO0 O| 0O
OO0 OO
OO0 OO

Common Filters in CV

Operation Kernel w Image resuilt g(x.y)
1 I S |
0 0 0 Box blur _1_ 1 1 1
;i (1 lized) 9
Identity 0 1 0 normalize L 1 1
0 0 0
2 | i [R §
1 0 -1 Gaussian blur3 x 3 1)
(approximation) i = * 2
(approximation,
0 0 pp 5 1
-1 0 1|
(1 4 6 4 17
- . 4 16 24 16 4
0 -1 0 Gaussian blur5 x5 1
Edge detection -1 4 -1 (approximation) 256 6 24 36 24 6
0 -1 0 4 16 24 16 4
)) 1 4 6 4 1]
= _ [1 4 6 4 17
= ==l ,|4 16 24 16 4
=L 8=l Unsharp masking 5 x5 | 5=¢ 6 24 —476 24 6
L=k =1 =1 Based on Gaussian blur 4 16 24 16 4
| with amount as 1 and |1 4 6 4 1]
0 -1 0 threshold as 0
Sharpen _1 5 _1 (\‘Iith no image mask)
0 -1 0

* These filters were designed, or “hand-crafted”, by CV researchers. They
extract features used by downstream tasks such as classification, image
segmentation, etc.

Machine Learning Meets CV

* Instead of hand-crafted filters in classic CV,
why not learn custom filters from data by
supervised learning?

— For easy tasks like edge detection, learning may
recover filters similar to hand-crafted ones.

— For difficult tasks like cat vs. dog classification,
learning Is essential to achieving good results

W1 L’Vz |W3

* Wy L’Vs |W6

W7 }WS |W9

Convolutional Neural Networks (CNN)

P(0) =.01 7
P(1) =.01
P(2) =.01
Feature Classifier P(3) = .02

i : SoftMax)—— £ =03 L
Extraction | [©9- [re -0

. -~ P(6) = .02
m:%’»’ \\N\\N\ P(7)=.02
’,/’ \\\\\\ P(8):85
/’/’ ‘*~§f(9)=.02_
- L3 '
U,f,' 2 f /
[\

Classifier

—

‘_.-"
Wx H \/' -4
Input Image Layer 1 - \ -
- Layer 2 A
— Map) Ve u'
rad Map Pt

al < k2] e A
K1 L1->L2 K2 L2->L3 K3

« A CNN (also called ConvNet) is a sequence of
Convolutional (CONV) Layers, Pooling (POOL) Layers
and non-linear activation functions for feature extraction,
followed by one or more Fully-Connected (FC) Layers for
classification based on the extracted features

Receptive Field and Parameter Sharing

« Each neuron in a CONV layer has local, sparse
connectivity to a small patch of the input volume w. size of
the filter, called its Receptive Field (e.g., 3x3, 5x5, etc.)

— Each neuron covers a limited, narrow “field-of-view”
— In contrast, each neuron in a FC layer has RF that covers the
entire input volume

« Parameter sharing: all neurons in the same CONYV layer
share the same filter params w, b

— It helps to reduce the number of params significantly compared
to fully-connected networks

— It gives translation invariance, €.g., an edge can be detected
regardless of its location in the image

11

Convolution Operation

Slide the fllter over the image spatially, computing dot
products w'x + b to generate an activation map as output

The input may be an input RGB image w. 3 channels, hence
depth=3, or intermediate activation maps generated by hidden
layers of a CNN. We use the terms “input volume” and “output
volume” to emphasize they may be 3D tensors

__— 32x32x3 input
5x5x3 filter w

2

@ 1 number:

the result of taking a dot product wx + b between
the filter with weights w, bias b,anda 5 x 5 X 3
32 Image patch x, with 5 * 5 * 3 = 75-dimensional

3 dot product + bias

12

y
——0

32

32

o

V
——0

32x32x3 Iinput
5x5x3 filter

convolve (slide)
over all spatial
locations

32x32x3 Input
5x5x3 filter

convolve
(slide) over all
spatial
locations

28

One (blue) filter
generates one
2D activation
map as output

Two filters (blue
and green)
generate two 2D
activation maps
(blue and
green), stacked
along the depth
dimension to
produce a 3D
output volume

13

Stacked Activation Maps

« Ifwe have 6 5 x 5 filters, we’ll get 6 different activation maps (feature
maps), each computed by convolution of one filter with the input

— For each 5x5 patch of the input, there are 6 different neurons looking at it,
each extracting different features

« We stack these up to get an output volume (a new “image”) of size
28 X 28 X 6, an intermediate representation to be passed to
subsequent layers

activation maps

32 4

28

Convolution Layer w.

6 5x5 filters /

NS N N N

N
00

32

14

Actlvatlon Maps lllustration

Activation Map

K @Ej@

1 filter/kernel, 1 output activation map

Activation Map

3 filters/kernels, 3 output activation maps

15

Concrete Example:

3 Filters

3 filters Wy, W4, W5,
each extracting different
features. (W; * X;
denotes convolution of
filter W; w. input X;)
(bias terms are
assumed to be O here)

Upper left: filter W
extracts vertical line
features Z, from input
Image X,. (the other 2
filters do not extract any
meaningful features)

Lower left: filter W4
extracts horizontal line
features Z4 from input
Image X, (the other 2
filters do not extract any
meaningful features)

ZO=W0*X1+b0

1 (0 |-1

1 |0 |-2

1 (0 |-1

»

Convolution of a Filter on RGB Image
w. 3 Channels

\
\

3x3x3 4 x4

bx6x3

17

Important

Convolution of 2 Filters on RGB

Image w. 3 Channels
[[|

* E——
— I I I I

6Xx6Xx3 3x3x3 4x4x2

* 6X6 input feature map w. 3 channels; 2 3x3 filters with depth 3;
4x4 output feature map w. 2 channels

« # channels of input feature map == # depth of each filter (3)

« # channels of output feature map == # filters (2)
18

Convolution Example 1

e conv=nn.Conv2d(in channels=2,
out channels=1, kernel size=3)
— Pytorch code for a CONV layer with an input image

with 2 channels (in_channels=2), 1 3 x 3 filter (with
depth 2), 1 output activation maps (out_channels=1).

— (The biases are assumed to be 0)

input

Output

(
input channels X)s W. (X)2

O=0O :]..

Input 1 filter/kernel output

https://www.coursera.org/learn/deep-neural-networks-with-pytorch/lecture/1rUTu/9-3-multiple-input-and-output-channels 19

Convolution Example 2

e convd=nn.ConvZ2d(in channels=2,
out channels=3, kernel size=3)
— Pytorch code for a CONV layer with an input image with 2

channels (in_channels=2), 3 3 x 3 filters (with depth 2), 3 output
activation maps (out_channels=3)

— (The biases are assumed to be 0)

Input

=
()=
(=

3 filters/kernels

Convolution Example 2: Filters and
Input Image

convé4.state_dict()['weight'][0][0]]

convd.state_dict()['weight’][2][0]]

W2o
1 o [
1 [o [=2
1 o [4

convd.state_dict()['weight’][1][0]]

Wl.()
0 0 0
0 1 0
0 0 0

convéd.state_dict()['weight'][0][1]

convé.state_dict()['weight’][2][1]

Wi
2 |4
o [o |o
1 2 [«

Wl,'l
0 0 0
0 -1 |0
0 0 0

3 3 x 3 filters

Image4[1,0,:,:] Image4[1,1,:,]
Channel 1 Channel 2
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
11](1]1]1 ojlo|1|o0]o0
11]1]1]1 ojlo|lofo]o
111]1]1 ojlo|lofo]o

input image with 2 channels

21

(X)o
1

Convolution Doe
Example 2: Output NN
« Each of the 3 wTosTos] [T
filters convolved =~ oot o
with the input B

image generates w.- gz,

an output

activation map.

 The output volume -l +o0

consists of 33 x 3 o

activation maps, @,-[rrl

with volume 3 X

3 X3

Filters and Activation Maps

Actlvatlons
0
0]

Example
filters
CINEERMNZIIANEENESEOIRSTISEEREERG
one filter => :
ne activation map example 5x5 filters
(32 total)

Activations: i
o 7 ‘; 1

23

/X7 Input, 3x3 filter, stride=1 = output: 5x5 filter

24

/X7 Input, 3x3 filter, stride=2 = output: 3x3 filter

25

/X7 Input, 3x3 filter, stride=3 = output: ???

The rightmost

and bottom

columns are not

processed!

26

Solution: Add Padding

« /X7 Input, 3x3 filter, stride=3, zero padding
w. 1 = output: 3x3 filter

0/0j(0|0O|O0O|0O|0O]|O 0{0|0|0O|0O| 0/0(O0]|O 0(0(0(0| 0[O0

ol o ol o o

o O o o] o

ol O©o| ol o

27

Important

Summary. To summarize, the Conv Layer:

» Accepts a volume of size W; x Hy x Dy Common settings
Requires four hyperparameters: '

P T—— K = (powers of 2, e.g. 32, 64, 128, 512)
o their spatial extent F', - F=3,S=1,P=1
o the stride S, - F=5S=1,P=2
o the amount of zero padding P. - F=]_, S = 1, P=0

Produces a volume of size Wy x Hy x Dy where:

o Wo=(W, —F+2P)/S+1

o Hy = (H; — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)

° D2 = K
With parameter sharing, it introduces F' - F' - Dy weights per filter, for a total of (F' - F'- Dy) - K weights
and K biases.
In the output volume, the d-th depth slice (of size W5 x Hs) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

« Ifinput has square shape, then we denote N, = W; = Hy; a filter is assumed to have square
shape

« Each filter has the same depth D, as its input volume, and the number of filters K equals
the depth D, of its output volume

* In practice, it is common to have stride S = 1, filter size F X F, and zero-pad P = %(F —1).
Then output activation map has same spatial size as input. This is called “same padding”

- Wy =Wy +2P—F)+1=-(W; +F —1—F) +1=Wy; similarly, H, = H,
- eg,F<3=>P=0;F =3=>P=1,F =5=>P =2

Computation of CONV Layer Sizes

28

CONV Example 1: No Pad

Input volume: 5 x5x 1 (W; = H; = N; = 32,D, = 1)(e.g., a greyscale image)
1 0 1
A3x3x1fiter|]0 1 0

.11 0 1
Output activation map:

— Spatial size: W, = H, = N, =§(N1+2P—F)+1 =%(5—3)+1 =3
— Depth: D, =K =1
Output volume: 3 x 3 x 1

Even though the fig shows sequential computation, convolution operations are inherently
parallel, hence suitable for efficient implementation on parallel hardware, e.g., GPU,
FPGA...

(K =1,F = 3)w. stride S = 1, no pad

1><l 1><EI 1><l 0 0
(Jxﬂ 1xl 1><EI 1 0 4
Q:l Oxl'.l 1xl 1 1
0|0|11(1(0
011|11(0(0
Image Convolved
Feature

29

CONV Example 2: Same Padding

* Inputvolume: 5 x5 x1
« A3x3x1filter(K=1F=3)w.strideS=1,padP =1
« OQutput volume: 5 x5 X 1 (since %(5 +2—-3)+1=05)

« Output activation map has the same spatial dimension as input
(5% 5)

Center element of the kernel is placed over the (0% 0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution

New pixel value (destination pixel)
s 30

CONV Example 3: Stride § = 2

* Inputvolume: 5 x5 X3
« 23x3x3filters(K=2,F=3)w.strideS=2,pad P =1

. 1
« Output volumes: 23 x3x 1 (smceE(S +2+x1-3)+1=23)
— Animation: https://cs231n.github.io/convolutional-networks/

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:s:,0] wl[:,:,0] wll:z,:,0] oli,:,0]
T |1 35 3

2 5 2
3 3 2
oli,i,1]
21 3
-3 -6
1 4 5

x[:

0 0

0 1

0 0

i 2 fas b0 (1531 Bias 1 (1x1x1)

0 ,rlfz 10 b0 [17, 0 [2,:,0]

GO B B RIS B S

0O 0 0 0 0 0

x[:,:,2] | toggle movement

0o 0 0 0 0

0 20 0

Of1 fjo |1 2 0

0o S Bl 0

01 12 2 0 0

¢ 0 0 1 1 2 O

o0 0 0 0 0 0

31

https://cs231n.github.io/convolutional-networks/

CONV Example 4: Input Depth D; = 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0
156 | 155 | 156 | 158 | 158 0 167 | 166 | 167 | 169 | 169 163 | 165 | 165
153 | 154 | 157 | 159 | 159 | .. o | 164 | 165 | 168 [170 | 170 164 | 166 | 166
149 | 151 | 155 | 158 | 159 0 160 | 162 | 166 | 169 | 170 0 156 | 158 | 162 | 165 | 166
146 | 146 | 149 | 153 | 158 | .. 0 | 156 | 156 | 159 | 163 | 168 | .. o | 155 | 155 | 158 | 162 | 167
145 | 143 | 143 | 148 | 158 0 155 | 153 | 153 | 158 | 168 0 154 | 152 | 152 | 157 | 167 %
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)
1|1 100 o e
014 B e Movement of
AR i the filter
Kernel Channel #1 Kernel Channel #2 Kernel Channel #3
Output
I I l
308 T —498 + 164 +1=-25
Input volume: M X N X 3 H
A3x3x3filter(K=1F=3)w.strideS=1,padP =1 o
Output volume: M X N x 1 (since%(M +2+x1-3)+1=M, %(N

+2%x1-3)+1=N)

https:/towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 32

CONV Example 5: Multiple Filters K = 10

3

Input volume: 32 x 32 X3 (W; = H, = N; = 32,D; = 3)

105 x 5 x 3 filters (K = 10,F = 5) w. stride S = 1, no pad (P = 0)
Each output activation map:

— Spatial size: W, = H, =N, = <(N; +2P —F) +1=-(32 - 5) + 1 = 28
— Depth: D, = K =10

Output volume: 28 X 28 X 10

No. params (weights and biases) in this layer: each filter has 5 * 5 =
34+ 1 =76 params, so 10 filters add up to 76 * 10 = 760 params

32 / 32
@>® 2 I 50000

(10 neurons)

32 A 32 28

3 10

28

Input volume 1 output channel Input volume Output volume 33

CONV Example 6: Pad P = 2

Input volume: 32 X 32 x 3 (W; = H, = N; =
32,D; = 3)

105 x5 x 3 filters (K = 10,F = 5) w. stride § = 1,
pad P = 2

Each activation map:

— Spatlal size: W, =H, =N, = —(N1 +2P-F)+1=
—(32+2*2—5)+1—32

— Depth D, =K =10

Output volume:32 x 32 x 10

No. params: each filterhas 5«5+« 34+ 1 =76
params, so 10 filters add up to 76 x 10 = 760
params

34

Pointwise Convolution with 1 X 1 Filter

A1 X1 filter performs “mixing” of the input
channels, then applies a non-linear activation
function

» Can be used to reduce the number of
channels (volume depth); the non-linear
activation function also helps increase model
capacity s e e s e

6 X6 X 32 1x1x32 6 X 6 X # filters

35

1 x 1 Filter Example

Input volume: 56 X 56 X 64 (W; = H, = N; = 56,D; = 64)

321 x1x64filters (K =32,F = 1) w. stride S = 1, no pad

Each activation map:

— Spatial size: W, = H, =N, = <(N; +2P — F) + 1 =-(56 — 1) + 1 = 56
— Depth: D, = K =32

Output volume:56 X 56 x 32

No. params: each filter has 1 * 1 x 64 + 1 = 65 params, so 32 filters
add up to 65 * 32 = 2080 params

1x1 Conv

56 w. 32 filters 56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

56
64 32 36

Dilated Convolution

1 Dilated Convolution 2 Dilated Convolution 4 Dilated Convolution

(a)

* |Insert Os between
Input elements to
Increase receptive
fleld size without

Increasing #

params Regular convolution 2-dilated
(1-dilated) convolution

3D Convolution

« 3D filter slides
along all 3 axes
(width, height,
depth). Very
computation
Intensive

« Usefulfor3D N |
Images such as e
medical CT/MRI

Images, or Point
Clouds from
Lidar

38

Converting Convolution to Matrix
Multiplication: 1D CONV Example

» Since parallel hardware
(GPU, FPGA...) can

Input

Kernel | xg Output

handle matrix wo| | x Vi
multiplication efficiently, wi |* | % | = | %
this conversion increases Wa| | % Vs
computation efficiency at L
the expense of increased
memory size for storing |
the weights (the biases TaTeToTol ”
are not shown in fig) 0 lwolwilwal 0| x i .

00 |wy|lwi|w, X V3

39

Converting Convolution to Matrix
Multiplication: 2D CONV Example

Input
Kernel I ‘ I
Xo | X1| X2 X3 Output

‘W0,0;‘WO,I WQ,I'

Xa | X5 | X6 | X7 - |YoiYa]|
w12 ¥ : =

) Xs | Xo | X10 X11 (Y2 |Y¥s |
W2,0W2,1W2,2 il

B ! 2x2

3Ix3

WLoWL

| |
| X12 | X13 | X14 | X15

1¢‘1x4

Unrolling the convolution operation ===

to matrix multiplication | X2
V Xa v

e e e e T
Wo,0Wo,1 W02 0 W1o0W11W12 O W20W21W22 0 |0 | 0 | 0 O | Xs | | Yo |
|
0 WooWoiWoz O WioWiiWiz O W20W2iW22 0 | 0 | 0 0
0|0 _Wo,o§WO,JWo,z. 0 WioWii1Wi2 0 W20W21W22 0 0 O | X7 | Y2 |
ojo0]|oO vW0,0l[Wo,l'WO,l_ 0 |WioWiiWi2 O W20W21W22 0 | 0 | Xs Ys |
- 4x16 X9 4x1
Sparse matrix C fiae—t
X11
X12
Two different ways X

[K|

|X15|16x 1 40

Outline

 CNN Convolution layers
* Pooling and Fully-Connected layers
« CNN Case Studies

41

32

32

Typical CNN Architecture

« Multiple layers, each consisting of CONV, POOL and
non-linear activation functions (e.g., ReLU), are
stacked into a deep network

— Many variants possible, e.g., multiple CONV layers can be
stacked without POOL and activation functions in-between

CONYV,
POOL,
RelLU
e.g. 6
5x5x3
filters

6

28

28

CONYV,
POOL,
RelLU
e.g. 10
5x5x6
filters

10

24

CONYV,
POOL,
RelLU

24 fot
f0)=y
ReLU , R

Activation f(»)=0 y
Function

42

Feature Hierarchy

* Multiple hidden layers extract a hierarchy of
iIncreasingly-abstract features layer-by-layer,
until the last layer produces a classification

result

s |Low-Level
Feature

| Mid-Level

Feature

|High-Level

Feature
| 9

Trainable
Classifier

P(car) = .9
P(truck) =.1

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013] 43

Important

Pooling (Sub-Sampling) Layer

« Accepts avolume of size Wy x Hy x I
e Hequires two hyperparameters:
o their spatial extent F'
o the stride S,
e Produces avolume of size Wo x Hs x Iy where:
o Wo = (W) —F)/S+1
o Hy=(H, —F)/S+1
o Dg = Dl
o |ntroduces zero parameters since it computes a fixed function of the input
= For Pooling layers, it is not common to pad the input using zero-padding.

« A pooling filter has depth 1, and operates over each activation map
independently, hence the input volume and output volume have the same depth
Dy = D,
— In contrast, a CONV filter has the same depth D, as its input volume, and the number
of filters K equals the depth D, of its output volume
— Common settings: F =2,S=2,0orF=3,§=2
« Example: pooling w. a 2 x 2 filter w. stride S = 2, no pad
« OQutput volume: % X % x D4 (since % Wy, —2)+1= %% (HL—-2)+1= il

2
44

Max Pooling w. Examples

Max pooling: take the max
element among the F = F
elements ineach F X F
patch of each input
activation map to reduce its
dimension (F = 2,5 = 2)
Alternative: average pooling
Is less commonly used

Pooling is also called
subsampling or
downsampling

Max pooling selects the
brighter pixels from the
image. It is useful when the
background of the image is
dark and we are interested in
only the lighter pixels of the
iImage. Average pooling
method smooths out the
image and hence the sharp
features may not be identified
when this pooling method is
used.

1112 | 4
5| 6|78
31210
112 |3 | 4

224x224x64

l

s —

224

6 |8
max pooling
3 |4
3.3 5.3
avg pooling
2 |2
112x112x64
pool

—_—

|

e 112
downsampling

112

45

Overlapping Pooling

* Input volume: N X N X D4

* A 3 X 3 pooling filter w. stride S = 1, no pad

« Qutput volume: (N —2) X (N — 2) x D4(since %(N —3)+1=
N — 2)

— In practice, it is more common to have F = 3,5 = 2 for overlapping
pooling

max pool w. 3x3
filter and stride 1

46

FC Layer

Contains neurons that connect to the entire
iInput volume w. no weight sharing

— No. params for FC layer of size N,,; connected to
iInput layer of size N;,, IS (N;;; + 1) * Nyt

OtptVIm Output Volume
20x1
Output Nodes

5x1
Output Volume
14x14x3

ReLU Activation Fn.

Volume-28x28x3 ‘j

O O
O O

{%
O_
O_
Q_

Convolution
layer Stride 1

layer Stride 2 O O bias Seft-max Layer

Max Pool
Fully co Soft-Max
Input Volume Flatten layer Layer Re LUA t atio Activation Fn
32x32x1 En.

47

CNN Toy Example

« A CNN with a CONV layer, a FC layer and a SoftMax layer

« Step 6 (SoftMax):
— Logits: [4,—1]

2 271
— SoftMax scores [——=, 5 —=] = [.97,.03]
1 0 1 Q 2
WF: bF: 1 WAL
-1 2 1||-1]|| o
o |4 2 1 3
— 2 |7 [-3||8 2 (7]/0(8 7
1,0 1 -2 2
—_— ®-1‘401@0401®_?8®.8®4
312 |01 mm! —> — s S—
6 9 1 4 6 9 |1 4 9 |6 9
0(1 4| 1|2
51 6 1 51 (6|1 6
2 3 1 1 0) .
[Convolution] [Pooling][Flatten]
.—1”{1- 1 0 ; ;) ; :
Step 1 (Convolution): —— ——@® +{1 =1 Step 2 (Activation): ReLU{ 1)= 0 Step 3 (Max): Max(
ST il) =|
7 7
7| 8 g 1 4

Step 4 (Flatten):

%
k] B 9

1|lefl 2|1 8
Step 5 (Affine mapping): .
1((1/|0||0 9

Step 6 (SoftMax)

Huang C, Fan J, Chen X, et al. Divide and slide: Layer-wise refinement for output range analysis of deep neural
networks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(11): 3323-3335.

[][]
[e][x]

.03

[Fully-connected]

-[E

Summary of 3 Types of CNN Layers

CONV POOL FC
F . * F *
F . X K F || max
! i ' Nin Nout
Input W, x Hy X D, Wy X Hy X Dy Nin
volume
Output W, x H, X K W, x H, X K Nyt
volume
No. params (FxFxDy+1)*K 0 (Nip + 1) * Nyye
No.MULs | (F*F*D;+ 1)K * W, * H, 0 (Nip + 1) * Noye

(1) No. MULs for CONV layer: (F = F = D; + 1) MULs to compute each output
element; K * W, x H, output elements
(2) The bias term +1 is often omitted

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks

Fully-Connected NN vs. CNN

hidden layer 1 hidden layer 2 hidden layer 3 RELU RELU RELU RELU RELU RELU

cwlovl Cofvlcolel ClNVlCOiNVl

input layer

N
S

=
=

E . b fiflick

=l E ;a?plane

‘\ l‘ \cl%jt XX/
T e vd

BErA XL/

\ ‘.

e
=
=

=

=

ix
.- b S AR
PERTONEY AN
|72 08,02 NS0 7 SNSRI TEN
P TR RO ‘fs \]E
NN S
SRS
% .
et

J
i = Shlp
i horse

VIS
TN PRk
G s
NN

AR AR

RS

* InaFCNN, all layers are
Fully-Connected <=3) layer(s) are FC

« Cannot alter input image size « CONV layers can handle images of
* No translation invariance arbitrary size

e No. params can grow very Translation invariance
large, prune to overfitting Fewer params than MLP

50

Outline

 CNN Convolution layers
* Pooling and Fully-Connected layers
 CNN Case Studies

51

LeNet-5

10

No. params

156
0
2416
0
48120
10164

Convolution Subsampling COMVOMtion o L mpling CO’(“S’;‘é’)"O” corg%ed Output
(5X5) (5X5) y
| A= "H— "'.r|;li N
2XBKL eXmAT ma Do e @ o
Layer Input No. Filter Output
Wy X Hy X Dq Filters KXKxD/S W, X H, X D,
C1.CONV 32x32x1 6 5x5x1 28 X 28 X 6
S2:POOL 28 x 28X 6 6 2X2X1/2 14 X 14 X 6
C3:CONV 14x14x6 16 5X5X%X6 10 X 10 x 16
S4:POOL 10x10x 16 16 2X2X1/2 5X5x%X16
C5:CONV 5x5x16 120 5x5x%x16 1x1x120
F6 FC - — 84
Output FC 10

850
o2

LeNet-5 Detalls

Input image: 32 x 32 x 1 (grey-scale images of hand-written digits w. size 32 x 32 pixels)
Conv filters 5 x 5 x 1 w. stride 1; Pooling filters 2 x 2 w. stride 2

Conv Iayer C1 maps from input volume 32 X 32 X 1 to 6 feature maps w. volume 28 x 28 X 6
(since = (32 —5)+1=28). Noparams: (5*5*x1+1) *x6 =156

Poollng Iayer S2 maps from input volume 28 x 28 X 6 to 6 feature maps w. volume 14 X 14 x
6 (since - (28 2) + 1 = 14).

Conv Iayer C3 maps from input volume 14 X 14 X 6 to 16 feature maps w. volume 10 X 10 X
16 (since = (14 5)+1=10). Noparams: (5*x5*x6+ 1) *16 = 2416

Pooling Ia}/er S4 maps from input volume 10 X 10 X 16 to 16 feature maps w. volume 5 X 5 X
16 (since - (10 —2)+1=15)

Conv Iayer C5 maps from input volume 5 X 5 X 16 to 120 feature maps w. volume 1 X 1 X
120 (since = (5 —5)+1=1). Noparams: (5*5*16+ 1) * 120 = 48120

- You can also view it as an equivalent Fully-Connected layer that maps from the flattened input of size
400 X 1 (55 =16 = 400) to output of size 120 x 1. For details, refer to L4.2 “Turning FC layer into
CONV Layers”

FC layer F6 maps from input of size 120 X 1 to output of size 84 x 1. No params: (120 + 1) *
84 = 10164

Output layer (SoftMax) maps from input of size 84 x 1 to output of size 10. No params: (84 +
1) * 10 = 850

https://www.analyticsvidhya.com/blog/2021/03/the-architecture-of-lenet-5/
https://towardsdatascience.com/understanding-lenet-a-detailed-walkthrough-17833d4bd155

53

AlexNet [Krizhevsky et al. 2012]

* Inputimage: 227 X 227 X 3

« Istlayer (CONV1): 9611 x 11 flltersw stride S = 4, w. ReLU activation function

« Output volume: 55 x 55 X 96 (since = 2 (227 —11) + 1 =55).
« 2"]ayer (POOL1): 3 x 3 filters w. strlde S = 2 (overlapping)
« OQutput volume: 27 X 27 X 96 (since = (55 —3)+1=27)

. Total No. params: 60M
 |Introduced RelLU activation function

a=2 same s=2

MAX-POOL
— > —> —>
33X 3 5% 5 3X3

MAX-POOL

55x55 X 96 27x27 X96 27x27 X256 13%x13 x256
227Tx227 X3 C) ()
MAX-POOL O O
— —> = = |
3% 3 3x 3 3x 3 3x3 ' ’
s=2

same

O

13x13 x384 13x13 x384 13x13 X256 6X6 X256 9216

O

4096

O
O

O

I ng®

Softmax
1000

4096

54

VGGNet [Simonyan 2014] (the best performing
variant VGG-16)

CONV =3x3 filter, s = 1, same MAX-POOL =2x2,s=2

—» 224x224x64—» 112x112 xX64 —» 112x112 X128 ——» 56X 56 X128
[CONV 64] POOL [CONV 128] POOL
X2 X2

224224 x3

——» H6XH6 X256 —» 28X28 X256 —» 28x28 X512 —» 14x14x5H12
[CONV 256] POOL [CONV 512] POOL
%3 % 3

—» 14x14 X512 ——» Tx7x512 ——» FC — FC — Softmax
[CONV 512] POOL 4096 4096 1000
x3
224x224x3 224x224x64

Same padding used for all CONV layers

112 x 112 x 128

56|x 56 x 256

TX T %512
28 x 28 x 512

114X 12x 312 1x1x4096 1x1x1000

=) convolution+ReLU
) max pooling
fully nected+RelLU
softmax

VGG-16 Detalls

 VGG-16 has 16 weight layers, not including POOL layers w.
0 weight

* Inputimage: 224 x 224 X 3

« Istand 2" CONV layers: 64 3 x 3 filters w. stride S = 1, pad
P=1

— Output volume: 224 x 224 X 64 (since - (224 +2x1—-3)4+1=224)

« 39 POOL layer: 2 x 2 filters w. strlde S =2
— Output volume: 112 x 112 X 64 (smce (224 2) +1=112)

« 4™ and 5" CONV layers: 128 3 X 3 filters w. stride S = 1, pad
P=1
— Output volume: 112 x 112 x 128 (since - (112 +2x1-3)4+1=112)
« 6" POOL layer: 2 x 2 filters w. strlde S =2
— Output volume: 56 x 56 x 128 (smce (112 —2)+1=256)
* Total No. params: 60M
* ImageNet top 5 error: 7.3%

Stacked 3 x 3 CONV Layers

2 stacked 3 x 3 CONV layers w. pad P = 1 have the same effective receptive
field as a5 x 5 CONV layer; 3 stacked 3 x 3 CONV layers w. pad P = 1 have RF
of 7 x 7; L stacked 3 x 3 CONV layers w. pad P = 1 have RF of 1 + 2L

Benefits:

— Fewer params. Suppose all volumes have the same depth D, thena 7 x 7 CONV layer has
(7*7 %D+ 1) * D = 49D? params, while three stacked 3x3 CONV layers have only
(3*3*D+ 1) *D *3) ~ 27D? params

— Two layers of non-linear activation functions increases CNN depth. hence laraer model

capacity
2 [/ Z r \ / 5*5 filter
I\ [V effective receptive field of 5*5
7 RN

787 A S . | [/
| & - | NN / / T
7 o e v s —

LI e o . S — | -

effective receptive field of 5*5

https://zhuanlan.zhihu.com/p/79258431

57

VGGNet No. Params

INPUT: [224x224x3) memory: 224*224*3=158K weights:
CONV3-64: [224x224x64] memory: 224*224%64=3.2M weights: (3”3*3}*6& = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*%112*64=-808K weights: @
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*p4)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=-480K weights: @
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*%28*%256=200K weights: @
CONV3-512: [28x28x512] memory: 28*28*512=-400K weights: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=-106K weights: @
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=-100K weights: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7%7%512=25K weights: @
FC: [1x1x4896] memory: 4896 weights: 7*7*512*4096 = 182,760,448

[1x1x4896] memory: 4096 weights: 4696*4896 = 16,777,216

[1x1x1668] memory: 1008 weights: 4996*1866 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Memory refers to memory size of activation maps
For ease of calculation, only the No. weights are counted, not the biases

VG G N et Varl antS Best performing variant

/ VGG-16
ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers

mput (224 x 224 RGB 1imagq)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3i-64 conv3-64
maxpool

conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool

conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3i-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool

convi-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512

convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max 59

GoogLeNet [Szegedy et al., 2014]

K
2 Z w w
& & M B v
2 2 v B B B o B Lo
; . ; ; EolEs 5 o & 1 & |2
4 H4 % ¢ . £ & & b3 3 £ H 3 £
B2 2 ea E& =3 =3 & & B B o 2 2 ey 2
vz P T & & & w = P & & = v =] £F £,
I = = = g = = by b
by §E v kS B =
= = w w g
] v M o w I v 1 B B EFEME S EL 2]
i ¥ i o
3 & 3 L = i B & o 5
" &" & 2 2 2 1 B Sl - = I ¥ [
& & B
g b o = =
£ £3 = & o o
w = w o w e 3 g 2 I
" "3 I - -
+5 + +5 + %5 *
3 =32 2 £32 = 23
=] & =] = w
2 Eo
= 2
& & A A
2 ® &

for regularization

AW HEE':‘Ii 1060

Previous
Activation Concat

!
e o
'

Inception Module

60

Inception Module

« Can’t make up your mind about filter size”? Have them
all in the Inception Module!
— But this increases computation load

« Additional 1 x 1 CONV layers serve as bottleneck to
reduce number of parameters and computation load

Previous Channel

Activation Concat

61

CONV
32,
5 X5 X192
Same

padding

28x 28x 192 T =2 28x28x 32

« Without the bottleneck layer: No. params: 5 * 5 * 192 * 32 = 153600;
No. MULs: (5 5% 192) * (32 * 28 x 28) = 120M

CONV
32,
B X HX16
—> >
CONV Same
18 padding
’ (P =2)

28 x 28 x 192 1 X 1X 192 98« 28 x 16 28 X 28 X 32

* With the bottleneck layer: No. params: 1 *1*x 192« 16 + 5+ 5 * 16 *
32 = 15872; No. MULs: (1 *1%192) x (16 *28 x28) + (5*5* 16) *
(32 x 28 % 28) = 12.4M 62

« Compared to AlexNet:

GoogLeNet Size

— 12x less params (only 5M, due to no FC layers), 2x
more compute (due to more CONYV layers)

type pa;:::ize/ m;it:eut depth F1ix1 f:;;: #3x3 fez:c: FEOHXS l;:: : params ops
convolution TXT/2 112x112x64 1 27K 34M
max pool 3x3/2 56 X 56 x 64 0

convolution 3x3/1 56 X56x 192 2 64 192 112K 360M
max pool 3x3/2 28 x28x 192 0

inception (3a) 28 X 28 X 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 X 28 x 480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14 x 14 x 480 0

inception (4a) 14x14x 512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c¢) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x 14X 528 2 112 144 288 32 64 64 580K 119M
inception (de) 14x14x 832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TXTxX832 0

inception (5a) TXTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TxTx1024 2 384 192 384 48 128 128 1388K 7IM
avg pool TXT7/1 1x1x1024 0

dropout (409%) 1x1x1024 0

linear 1x1x1000 1000K IM
softmax 1x1x1000 0

63

Xception [Chollet 2017] MobileNets [Howard et al.
2017] : Depthwise Separable Convolution

3 channel Input Filters * 4 Maps * 4 3 channel Input Filters * 3 Maps * 3

T

3 H

mEser

% 1

Each filter is convolved with one input channel

Each filter is convolved with all Maps * 3 Filters * 4

Maps * 4
iInput channels

Regular Convolution

The intermediate feature maps serve as
bottleneck to reduce number of parameters and
computation load

(Optional) Depthwise Separable Convolution -A Followed by pointwise convolution
FASTER CONVOLUTION!

https://www.youtube.com/watch?v=T703xvJLuHk

64

https://www.youtube.com/watch?v=T7o3xvJLuHk

Example: Regular Convolution

Input feature map

2 channels

No. params: 3 x
3x2x4 =72
(Four 3 x 3 X 2
filters) (not
counting biases)

No. MULS: (3 * 3 =
2)* (4*x4x4) =
1152 (3 * 3 * 2
MULs to compute
each output
element; 4 * 4 * 4
output elements)

65

Example: Depthwise Separable

Convolution

1. Depthwise Convolution

2. Pointwise Convolution

I_IJIJIJ

1x1 —

filters

No. params: 3 * 3 * 2 +
2*%4 =26 (Two 3 X 3 X
1 filters and four 1 x 1 X
2 filters) (not counting
biases)

No. MULs: (3 *3* 1) =
2x4x4)+ (1x1*2)=
(4*4+4) =416
(Depthwise Conv: 3 * 3 =
1 MULSs to compute
each output element; 2 =
4 x 4 output elements;
Pointwise Conv: 1 1 * 2
MULSs to compute each
output element; 4 = 4 x 4
output elements)

66

Residual Networks (ResNet) [He et al.
2015]

« Based on VGG-19, adding more layers and
skip connections

* ImageNet top 5 error: 3.6%

* Plaint net

"

weight layer

any two
stacked layers v relu

weight layer

relu
H(x) Y

-

* Residual net

X |
A 4

weight layer

F(x) J relu

weight layer

Hx)=F(x)+x

identity
X

67

34-layer residual

In a standard network, output from a given
layer is F(x)

In ResNet w. the identity skip (or short-cut)
connection, output from a given layer is H(x)

=F(x)+x
Benefits:

— Residual connections help in handling the
vanishing gradient problem in very deep NNs

If identify mapping is close to optimal, then

ResNet Skip Connection

weights can be small to capture minor
differences only, in other words,

“unnecessary layers” can learn to be identity
mapping. This allows stacking many layers

(e.g., 152) without overfitting

o~
~
>
c
]
o
~
x
~

pool, /2

3x3 conv, 128, /2

3x3 conv, 128

nv, 128 .
nv, 128 .
nv, 128 .

3x3 co

3x3 co

8
m
>
m

Q
8
>
[
o
o
™
x
®

* Residual net

X

weight layer

F(x)

relu
A\ 4

weight layer

Hx)=F(x) +x

nv, 256

3x3 col

identity

X

68

-

Consider a 3-layer Network

Standard NN:

- x3 = f3(f2(f1(x0)))
ResNet:

- x = f1(xo) + xg

- X3 = fo(x1) + x1 = f2(fi(x0) + x0) + f1(x0) + %o

- X3 = f3(x2) + x, = f3(f2(f1(x0) + x0) + f1(x0) + x0) + f2(f1(x0) + x0) + f1(x0) + xg
Suppose f,(x,) is a vector of very small values (layer 2 is “off"/skipped),
then it Iooks Illl<e the input x, bypassed the second layer completely on its

way to the output x;
— 8 parallel paths on the left vs. 4 parallel paths on the right

69

ResNet Is an Ensemble of Models

* Every input x, to ResNet may
activate a unique path to the output.
Total number of possible paths is 2V,
where N is the total number of layers
In the network, since each layer may
be either “on” or “off” for a given input
X0

— Compare w. a standard network, where

there is only one single path for any
Input corresponding to all layers being

“On”, and no Iayer |S Sklpped 0.9- Er'rcnj ‘J‘r‘hIEII‘I deleting Iayelrsl .
« Consequences: T
— Resilience to layer deletion: deleting 1-3 _..| g HDH[}E
layers in a large ResNet introduces only =« H HH
around 6-7% error ol : GDEH
— Shortening of effective paths: w. 152- m‘ﬂﬁ@ﬁ?--

layer ResNet, most paths are only 20- " iiseseresmnnnusiiaes
30 levels deep! -

Deeper Nets have Better Performance

CIFAR-10 experiments

56-layer

\ L 44-layer

s~ ~—— e 32-layer

10F ! e — o

‘ 20-layer
[piain-20
plain-32

:P:"?"-: solid: test

lz ain-o

% 1 3 1 5 6 dashed: train

iter. (led)

CIFAR-10 ResNets

20-layer
32-layer
44-layer
56-layer
110-layer

71

ResNet Training with Stochastic
Depth

* For each minibatch of
iInputs, randomly skip |
some layers (replaced =
w. identity mapping)

* Reduced network depth
during training; full
depth during inference

110-layer ResNet on CIFAR-10

Test Error with Constant Depth 0
——— Test Error with Stochastic Depth 10
Training Loss with Constant Depth

Training Loss with Stochastic Depth|

10"

10

test error (%)
training loss

® l ® l O
MBl - @@Weo—-00Wme-

Il
®
3 L 2 O
B2 | memd o pness 4
1 | |
MBS | pems- SLppme

ImageNet Large Scale Visual
Recognition Challenge

* 1,000 object classes, 1.4 M labeled
Images

B Research
Revolution of Depth
2 B- 2 AlexNet, 8 layers g VGG, 19 layers % ResNet, 152 layers
25'8 E n t e r D e e p L e a r n I n g (ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)
16.4 £
ELC—CL Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Lcamwgm'l::‘gRL:oe'\.uov:” arXiv 2015
7.3 6.7
3.6 i
. B -
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Lin et al Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedyetal Heetal Shao et al Huetal Russakovsky
Perronnin (AlexNet) Fergus Zisserman (GoogleNet) (ResNet) (SENet) etal
(VGG)

CNN Layer Patterns

A typical CNN architecture looks like: INPUT->[[CONV->RELU] *N->POOQL?] *M->[FC-
>RELU] *K->FC
— where * indicates repetition, and POOL? indicates an optional pooling layer. N = 0 (usually N < 3),
M >0, K =0 (and usually K < 3)
Some common architectures:
— INPUT->FC, implements a linear classifier. Here N =M =K = 0.
— INPUT->CONV->RELU->FC
— INPUT->[CONV->RELU->POOL] *2->FC->RELU->FC (fig below). There is a single CONV
layer between every POOL layer.
— INPUT->[CONV->RELU->CONV->RELU->POOL] *3->[FC->RELU] *2->FC There are
two CONV layers stacked before every POOL layer, e.g., two stacked 3 x 3 CONV Layers. This is

generally a good idea for larger and deeper networks, because multiple stacked CONV layers can
develop more complex features of the input volume before the destructive pooling operation.

v

— CAR
— TRUCK
— VAN

EEL T IF 00

a

DEERSEaEE

’ /v"\/’ .
’ ol] [] — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COLUP&EZTED SOFTMAX

FEATURE LEARNING CLASSIFICATION 74

Layer Sizing Rules-of-Thumb

The input layer (that contains the image) should be divisible by 2 many times. Common
numbers include 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. ImageNet), 384,
and 512.

The CONYV layers should use small filters (e.g. 3x3 or at most 5x5), stride S=1. The input
volume should have “same padding”, i.e., the conv layer does not alter the spatial size of
the input. For any F, pad P=(F-1)/2 preserves the input size, e.g., when F=3, P=1; when
F=5, P=2. This means the CONV layers only transform the input volume depth-wise, but do
not perform downsampling. (c.f. CONV Example 3 and VGGNet).

The POOL layers are in charge of downsampling the spatial dimensions of the input. The
most common setting is to use max-pooling with 2x2 receptive fields (F=2), with stride of 2
(S5=2). A less common setting is to use F=3, S=2. It is uncommon to see receptive field
sizes for max pooling that are larger than 3, because the pooling is then too lossy and
aggressive.

In some cases (especially in early layers), the memory size can build up very quickly with
the rules of thumb presented above. For example, filtering a 224x224x3 image with three
3x3 CONV layers with 64 filters each and padding 1 would create 3 activation volumes,
each with size 224x224x64. This amounts to a total of about 10 million activations, or
72MB of memory (per image, for both activations and gradients). Since GPUs are often
bottlenecked by memory, it may be necessary to compromise. In practice, make the
compromise at only the first CONV layer that is looking at the input image. For example,
AlexNet uses filter size of 11x11 and stride of 4 in the first CONV layer.

75

Memory Size Considerations

From the intermediate volume sizes:

— These are the raw number of activations at every layer of
the CNN, and also their gradients (of equal size). Usually,
most of the activations are on the earlier CONV layers of a
CNN. These are kept around because they are needed for
backpropagation during training, but for inference, we can
store only the current activations at the current layer and
discarding the activations from previous layers.

From the parameter sizes:

— These are the weights and biases, and their gradients
during backprop, and also a step cache if the optimization
IS using momentum, Adagrad, or RMSProp. Therefore, the
memory to store the parameter vector alone usually should
be multiplied by a factor of at least 3 or so.

Each number may need 4 B storage space for floating
point, 8 B for double, or 1 B or smaller for optimized
fixed-point implementations.

76

Transfer Learning

Instead of training your CNN from scratch, start from a pre-trained
CNN (e.g., ResNet) and fine-tune it for your task

First, replace SoftMax layer (classification head) with your own

Next, train the CNN while keeping parameters frozen for
— all CONV layers and only train the FC layer

— or part of the earlier CONV layers close to the input layer (since earlier
layers extract lower-level features that are more likely to be common
among different tasks)

— or none of the layers

— The decision depends on how much training data you have, and how
similar your task is to that of the pre-trained CNN

Keep frozen earlier layers Retrain one or Replace SoftMax

/ g7 more later layers layer
i
J

— TRUCK
— VAN
= =
E= S :
A m [] — eicveLe

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX
9 & CONNECTE(]

N ——

i i i

FEATURE LEARNING CLASSIFICATION 77

