L7.1 MDP Planning

Zonghua Gu 2022

Acknowledgement: slides based on https://www.coursera.org/specializations/reinforcement-learning
And textbook by Sutton and Barto http://incompleteideas.net/book/the-book-2nd.html

Markov Decision Process (MDP)

 An MDP consists of:

— Set of states S

— Start state s,

— Set of actions A

— Transitions and rewards p(r, s'|s, a) (w. discount y)
 Policy maps from states to actions:

— g)gtgrmlnlstlc policy a = n(s) defines a deterministic action a for
S

— Stochastic polic f% |s% defines a probability distribution over
possible action r'state s.

. Markov means that next state only depends on current state
- P(St+1 = S,|St = St, Ay = Ay, S¢—1 = St-1,Ap—1 = A1, S0 = S, Ao = ao)
- =_P(St+1 =5'|S; = s, Ap = ay) _
— Given the present state, the future and the past are independent

— e. or driving task, current vehicl gosmon x as the st te does not
sa |s he Markov 8ro erty, since the next state de en n not
ut also vel acce era lon x (I@ssu acce eration x
gnsﬁant W|th|n %Stf\’}?& we rede ne the state as vector
x X, x en it satlsflest rkov property.

— Or, current snapshot of front camera view can be used as the state
e.g., NVIDIA’s PilotNet), but some works use past N video frames
as the state to capture more dynamics (e.g., Waymo’s
ChauffeurNet).

MDP Quiz

For this MDP with a single state s and two possible actions

left and right. Are these valid policies?

— 1) w(left|s) = n(right|s) = 0.5 (goes left or right with equal
probability. uniform random policy)

— 2) nw(left|s) = 1.0, (right|s) = 0 (always goes left)

— 3) Alternating left and right, i.e., if previous action is left, then
current action must be right, next action must be left, and so on.

— ANS: 3) is not a valid policy, since it depends on the history of
actions. To be a valid policy, the action must depend on the
current state only.

An Example MDP

« Green nodes denote 3 states s, 51, s,; Red nodes denote 2 possible
actions ay, a; in each state. Each red node can also be denoted as
(s,a).

« Agent taking action a in state s may get different reward r and next
state s’, denoted as state transition (s, a,r,s"), due to environment
uncertainty (all rewards are 0 expect +5 and —1 show in fig).

RL Reward Function

* For the vehicle in left fig:

— state: Pose of ego-car (x, y, 8) and environment map; action: Steering wheel/brake/acceleration
« Possible reward function: R; = w;V .4,- cos 8 — w,|cte]

— Weight sum to maximum longitudinal velocity (first term), and minimize cross-track error (distance to
lane center)

— This is an example of dense reward (e.g., at every time step), as opposed to sparse reward (e.g.,
only at the end of each episode)

« Compare with twiddle() :

— twiddle() can be viewed as an RL algorithm (policy gradient), that learns PID parameters with sparse
reward (cost function is average cross-track error (cte), computed at the end of each simulation
episode, as sum of squares of ctes for N timesteps divided by N. But it is very crude:

— It does not use the numeric value of cte, only its relative size (if err < best_err);

— Cost function does not include heading angle 9;

— if the track is very long and irregular, then we can make the reward denser, to adjust PID parameters
every K timesteps instead of at the end of each episode.

if err < best_err:
best_err = err
dp[i] *= 1.1
else:
plil -= 2 %= dp[i]

robot = make_robot()
Track

x_trajectory, y_trajectory, err = run(robot, p)

Car Axis

-]
if err < best_err:
best_err = err
dpl[i] *= 1.1

else:
ol =i twiddle()
dp[i] *= 8.9

Ben Lau, Quantitative Researcher, Hobbyist, at MLconf NYC 2017

Amazon DeepRacer

« Amazon Web Services (AWS) launched
DeepRacer in 2018 for training AD algorithms with
RL

— https://aws.amazon.com/deepracer/

* You can train RL algorithm in the simulator on
AWS cloud, but it costs money after some free
time.

* They hold competitions, both online and in real-

world. 1/10t scale race car costs USD $349.

https://aws.amazon.com/deepracer/

Params for Writing
Reward Function

|
2 Track T’u‘idih
4 Headinhg of the car

1 Position of the car

Steering anglef & . |
||

E‘Didl.an-:e from center
||

3 Waypoints

all_wheels_on_track

distance_from_center

is_left_of_center

is_reversed

heading

progress

steps

speed

steering_angle

track_width

waypoints

closest_waypoints

Example Reward Function

def reward_function(params):
"Example of penalize steering, which helps mitigate zig-zag behaviors™
Read input parameters
distance_from_center = params['distance_from_center']
track_width = params['track_width']
steering = abs(params['steering_angle’]) # Only need the absolute steering angle

Calculate 3 markers that are at varying distances away from the center line
marker_1 = 0.1 * track_width

marker_2 = 0.25 * track_width

marker_3 = 0.5 * track_width

Give higher reward if the agent is closer to center line and vice versa
if distance_from_center <= marker_1.:

reward =1

elif distance_from_center <= marker_2:
reward = 0.5

elif distance_from_center <= marker_3:
reward = 0.1

else:

reward = 1e-3 # likely crashed/ close to off track

Steering penalty threshold, change the number based on your action space setting
ABS_STEERING_THRESHOLD = 15

Penalize reward if the agent is steering too much
if steering > ABS_STEERING_THRESHOLD:
reward *= 0.8

return float(reward)

A more realistic and complex reward function: https://www.middleware-
solutions.fr/2019/08/14/an-introduction-to-aws-deepracer

https://www.middleware-solutions.fr/2019/08/14/an-introduction-to-aws-deepracer/

MDP Search Tree

 Each MDP state s projects a search tree starting from it.

* In general, both policy and environment may be
stochastic
— Policy m(al|s): probability distribution over possible actions a
from state s.

— Environment p(r, s'|s, a): if agent takes action a in state s,
env gives probability distribution over reward r and next

states s’.

£

(s,a,s") called a
transition

Y
Reward R(s, a,s’) V\

Preventing Infinite Rewards

Problem: What if the game lasts forever? Do we
get infinite rewards? No. Possible solutions:

Finite horizon: (limit search tree depth)
— Terminate episodes after a fixed T timesteps

Discount factor: 0 <y <1

— Think of it as a 1 — y chance of ending the episode at
every step. Effectlve horizon (expected episode

length): 207" = 1=

— Smaller y leads to shorter horizon, and preference of
short-term to long-term rewards, and vice versa

(Can have both finite horizon and discount factor)

Absorbing state: guarantee that for every policy,
a terminal state will eventually be reached

10

Discount Factor Example

 Each time we descend
a level in the search \
tree, we multiply in the v 1 < .
discount once L

Example: y = 0.5 vf .
- U(123) = 1x1 +
052 4+ 0253 <

U([321]) =1+3 + 2 2
0.5%2 + 0.25*1 X' S I

Discounting Example

Given:
— Actions: East, West, and Exit (only available in exit states a, e)
— Transitions: deterministic

For y = 1, optimal policy in each state is always moving West

— From state d, reward of going Westis0+y-0+y2-0+y3-10 = 10, larger
than reward of going East0+y -1 =1

For y = 0.1, optimal policy in each state is shown below

— From state d, reward from going Westis0+y-0+y%-0+y3-10 = 0.01, less
than reward from going East 0 +y - 1 = 0.1.

For which y are West and East equally good when in state d?

_ v3.10=1v - L -
y 1=y -1=y=7=~32

N

10| €| (< | 1 10

10

AN
A
\ 4
(WY

Known MDP

* |n this lecture, we assume known MDP, and
use dynamic programming to solve Bellman
Equations and find the optimal policy (no
learning here).

State transition dynamic

p(s’|s,a) known
Reward function

r(s) known //

\ |
\-\\ I'o 1 I'o rs Reward
S i U] L
State prior [)“(.S') B S0 | \1 59 S3 State
SsEEEEEE®N
»
// " a 19 s Action

1
m(a ‘.s‘)
Policy want to optimize

13

Important

Formal Definition of MDP

Return (cumulative discounted rewaer_)tgtl tirlpe t: Gy = Ryyq
+VYRes2 +V?Reps + -+ y IRy = 2k=0 V" Resk+1

— Ateachstep t € [0,T — 1], agent takes an action A; in state S;; at
step t + 1, agent receives a reward R, and transitions into the
next state S;,; with the trace (S¢, A¢, Rt+1,S¢+1)

— We assume episodic tasks, and this specific episode has length
of T steps. (T = oo for continuous tasks)

State Value Function: expected return under policy : v, (s)

= Er[G¢|S: = s]

Action Value Function: expected return from taking action a, then
follow policy : q,(s,a) = E[G:|S; = s,A; = a]

The RL problem: find the optimal policy (a|s) that maximizes the
expected return from each state (the state VF)

P(Res1,St+11Se, A¢)
Environment

Reward R; .4

Action A
‘ State S;. 4

RL Agent
T (A¢|St)

14

Important

Bellman Expectation Equations

» Bellman Expectation Equation for State Value
Function:

o Ur(s) = Xam(als) X, o p(r,s'ls, @) [r + yvr(s')]
— Expected value starting from state s and following
policy .
« Bellman Expectation Equation for Action
Value Function

° qTL’(S) Cl) — Zrls’p(rJ S’|S, a) [T T

Y 2ar r(a'ls’) Ar (s',a’)]
— Expected value starting from state s, taking action
a, and thereafter following policy .

15

Important

Bellman Optimality Equations

« Bellman Optimality Equation for State Value Function:
+ 0.(s) = max %, p(r,s'ls, @) [r + yv.(s")]

— Max value starting from state s and following the greedy policy
n(s) = argmaxgq, ?S

d
« Bellman Optimality Equation for Action Value Function

o q.(s,a) =X, op(,5s'|s,a) [r + ymax q. (s, a’)]

— Max value starting from state s, taklng action a, and thereafter

following the greedy policy (s) = argmax g, (s, @)
d

\V(s)= " (RGs, a0+ 1€ T3V (s) . Notations in left fig:
o mqg\@// RS, «WM e Y T(s,a5s)[.]
yQ= M (RG, Q)¢ iéJT(s a5 o (9(5) *Kzﬂshqlﬁﬁ) -1 7 Lo P STl @) [

23— ~ ¢ R(s,a)

e — , , ’ ’
Qls,«) = RS2+ %Tlslq,s') Ve Q(sha) Yy (T, 8 [s,a) T

16

Bellman Equations written with
Expectation Symbols

Bellman Exp Equations:
v (s) = IIE:aIEr,s’[r + YV, (s")]

qr(s,a) = IEr,s’ |7 + YEqaqr (s, a)]
Bellman Opt Equations:

v,(s) = max E, o[r + yv.(s")]
s B,

q.(s,a) = E, ¢ [r +y max q. (s, a)]
Detailed derivations:

= vr(s) = Xam(als) g(s,a) = II5:a~1'c(a|s)q1'c(sr a) =
IIEa~7T(ClIS) IET, s'~p(r,s1s,a) [r + an(sl)]

- qq(s,a) = Zr,g' p(r,s'ls,a) [r + yv(s)] = E; ' <persiis,a) [r + yv,(s)] =
E. s'persisay + VEa~n(als) 4 (S, @]

- v(s) = mc(?x q.(s,a) = m(?XIEr,s’~p(r,sr|s,a) [r + yv.(s)]

- q.(s,0) =X, o p(r,S'|s,) [r + yv(SD] = B, o pirsiisay [T+ ¥V ()]

17

Important Backup Diagrams

S

nm(als): agent
takes action a

(state, action) p(r.s'ls,a): env
gives reward r
.~~~ and moves agent
to s’

Bellman Exp Eqn for g, (s, a) Bellman Opt Egn for q.(s, a)

18

Important

v(s) vs. q(s,a)
« State-action Value Function q(s,a) contains more

iInformation than State value function v(s). Given
q.(s,a), optimal policy m.(s) = argmax q.(s, a).
a

« Can always go from g (s,a) to v,(s), or from q.(s,a)
to v, (s):
= Un(s) = 2am(als) gz (s, a); vi(s) = max q.(s, a)

« With known MDP (p(r,s'|s, a), i.e., model-based): can
go from v,(s) to g, (s,a), or from v,(s) to q.(s,a):

- qn(S; Cl) — Zr,s’ p(rr S’|S, a) [T + yvn'(sl)]

- q.(s,a) = ZT’S, p(r,s'|s,a) [r + yv.(s)]

* With unknown MDP (unknown p(r,s’|s,a), i.e.,
model-free) : cannot go from v, (s) to g, (s,a), or from
v,(s) to q.(s,a)

19

important | - Simplified Bellman Equations for

Deterministic Env
* Bellman Equations:
- v (s) = Xam(als)qr(s, a)
- qr(s,a) = 2. o0, s'[s,a) [r + yv(s)]

- v,(s) = max q.(s,a)
a

- q.(s,a) =X, o p(r,s']s,a) [r + yv.(s)]

 For Deterministic Env: there Is only one possible
(r,s') fora given (s,a) (we use Rg to
emphasize that reward r Is specific to this

(s,a)):
- Qn(sr Cl) — Rg + yvn(s’)
- q.(s,a) = R + yv,(s")

20

Policy Evaluation

* The prediction problem: predict Value Function for
given policy m by solving Bellman Exp. Equation
for State Value Function

- Vp(s) = Xam(als) X, o p(r,s'|s,a) [r + yv(s)] =
Er|Res1 +¥YVr(Se+1)|Se = 5]
e Can also be written as:
- vn(S) = Za n(als)qn(s, a)
- qr(s,a) =X, o p(r,s'[s,a) [r + yvr(s')] denotes the

State-Action Value Function for taking action a in
state s, then follow policy = afterwards

« A set of linear equations that can be solved
analytically for small system

— # unknowns = # equations = # states

21

Grid World1: Policy Evaluation

Non-episodic MDP w. deterministic env: Agent in state s € {4, B, C, D} taking action a
€ {l,r,u, d} always moves to the next state in the movement direction, unless it is
blocked by the walls. Discount factor y = 0.7.

Random policy: Agent in state s € {4, B, C, D} takes a random action a € {l,r, u, d} with
equal probability of 0.25 each. == 0

]
|
Bellman Exp. Equation for det env: v,(s) = Y, w(als)q,(s,a); q,(s,a) = R? + yv,(s") *A ...:._ Bﬁ:
Ve(A) = 0.25(q (A, 1) + 42 (A,7) + q(4,1) + gz (4, d)) = 0.5 - 0.7v,(4) + 0.25 - (5 :)
+ 0.7v(B)) + 0.25 - 0.7v,(C) ———5—,——:——— ATY
- qrz(A D) =q(4,u) =0+ 0.7v,(4) :
- (A1) =5+ 0.7v,(B
- Z,TEA, d)) =0+ 0.717”((6)) -IG b :* D
12(B) = 0.25(qz(B, 1) + q(B,7) + 4z (B,10) + g (B, d)) = 0.25 - 0.7v,(A) + 0.5 - (5 i :

+ 0.7v,(B)) + 0.25 - 0.7v,,(D)
- qz(B,)) =0+ 0.7v,(A) o506 | 259
- qr(B, 1) =qz(A,u) =5+ 0.7v,(B) ﬂ
- qr(B,d) =0+ 0.7v,(D) 250, | 259,
v,(C) = 0.25(q(C, 1) + g (C,7) + g (C,u) + q-(C,d)) = 0.25 - 0.7v,(A) + 0.5 - 0.7v,(C)
+0.25 - 0.7v,(D) 3' Ve (:
- qr(C,1) =q(C,d) =0+ 0.7v,(C) // \ BE=4
- qr(C,7) =0+ 0.7v,(D) /
~ g, (Cu) = 0+ 0.7v,(4) a ’ .
vy(D) = 0.25(q;(D,1) + q,(D,7) + qz(D,u) + qg;(D,d)) = 0.25 - (5 + 0.7v,(B)) + 0.25 r/ \ / \BF=1

. 0.717,T(C) + 0.5 - 0.717,T(D)
- qz(D,) =0+ 0.7v,(C) S ‘ . ‘ ’ Uﬂ'
- qz(D,1) = q,(D,d) =0+ 0.7v,(D)

~ g(D,w) =5+ 0.7v,(B)

Solution: v, (A) = 4.2,v;(B) = 6.1, v;(C) = 2.2, v,(D) = 4.2. q(s,a) can also be equation for v(s)
obtained. nd) (B w(C) w(D) In(s, @) (BF: Branching Factor)

Bellman expectation

	Default Section
	Slide 1: L7.1 MDP Planning
	Slide 2: Markov Decision Process (MDP)
	Slide 3: MDP Quiz
	Slide 4: An Example MDP
	Slide 5: RL Reward Function
	Slide 6: Amazon DeepRacer
	Slide 7
	Slide 8: Example Reward Function
	Slide 9: MDP Search Tree
	Slide 10: Preventing Infinite Rewards
	Slide 11: Discount Factor Example
	Slide 12: Discounting Example
	Slide 13: Known MDP
	Slide 14: Formal Definition of MDP
	Slide 15: Bellman Expectation Equations
	Slide 16: Bellman Optimality Equations
	Slide 17: Bellman Equations written with Expectation Symbols
	Slide 18: Backup Diagrams
	Slide 19: v open paren s close paren vs. q open paren s ,a. close paren
	Slide 20: Simplified Bellman Equations for Deterministic Env
	Slide 21: Policy Evaluation
	Slide 22: Grid World1: Policy Evaluation

